Split lines with many copyright years
[gromacs.git] / src / gromacs / simd / tests / simd.cpp
blob70b425074e468db8ace299f9009918f6f886c622
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 2014,2015,2016,2017,2018 by the GROMACS development team.
5 * Copyright (c) 2019,2020, by the GROMACS development team, led by
6 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
7 * and including many others, as listed in the AUTHORS file in the
8 * top-level source directory and at http://www.gromacs.org.
10 * GROMACS is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU Lesser General Public License
12 * as published by the Free Software Foundation; either version 2.1
13 * of the License, or (at your option) any later version.
15 * GROMACS is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * Lesser General Public License for more details.
20 * You should have received a copy of the GNU Lesser General Public
21 * License along with GROMACS; if not, see
22 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
23 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
25 * If you want to redistribute modifications to GROMACS, please
26 * consider that scientific software is very special. Version
27 * control is crucial - bugs must be traceable. We will be happy to
28 * consider code for inclusion in the official distribution, but
29 * derived work must not be called official GROMACS. Details are found
30 * in the README & COPYING files - if they are missing, get the
31 * official version at http://www.gromacs.org.
33 * To help us fund GROMACS development, we humbly ask that you cite
34 * the research papers on the package. Check out http://www.gromacs.org.
36 #include "gmxpre.h"
38 #include "simd.h"
40 #include "gromacs/simd/simd.h"
41 #include "gromacs/utility/basedefinitions.h"
43 #if GMX_SIMD
45 namespace gmx
47 namespace test
50 /*! \cond internal */
51 /*! \addtogroup module_simd */
52 /*! \{ */
54 /* Unfortunately we cannot keep static SIMD constants in the test fixture class.
55 * The problem is that SIMD memory need to be aligned, and in particular
56 * this applies to automatic storage of variables in classes. For SSE registers
57 * this means 16-byte alignment (which seems to work), but AVX requires 32-bit
58 * alignment. At least both gcc-4.7.3 and Apple clang-5.0 (OS X 10.9) fail to
59 * align these variables when they are stored as data in a class.
61 * In theory we could set some of these on-the-fly e.g. with setSimdRealFrom3R()
62 * instead (although that would mean repeating code between tests), but many of
63 * the constants depend on the current precision not to mention they
64 * occasionally have many digits that need to be exactly right, and keeping
65 * them in a single place makes sure they are consistent.
67 # if GMX_SIMD_HAVE_REAL
68 const SimdReal rSimd_c0c1c2 = setSimdRealFrom3R(c0, c1, c2);
69 const SimdReal rSimd_c3c4c5 = setSimdRealFrom3R(c3, c4, c5);
70 const SimdReal rSimd_c6c7c8 = setSimdRealFrom3R(c6, c7, c8);
71 const SimdReal rSimd_c3c0c4 = setSimdRealFrom3R(c3, c0, c4);
72 const SimdReal rSimd_c4c6c8 = setSimdRealFrom3R(c4, c6, c8);
73 const SimdReal rSimd_c7c2c3 = setSimdRealFrom3R(c7, c2, c3);
74 const SimdReal rSimd_m0m1m2 = setSimdRealFrom3R(-c0, -c1, -c2);
75 const SimdReal rSimd_m3m0m4 = setSimdRealFrom3R(-c3, -c0, -c4);
77 const SimdReal rSimd_2p25 = setSimdRealFrom1R(2.25);
78 const SimdReal rSimd_3p25 = setSimdRealFrom1R(3.25);
79 const SimdReal rSimd_3p75 = setSimdRealFrom1R(3.75);
80 const SimdReal rSimd_m2p25 = setSimdRealFrom1R(-2.25);
81 const SimdReal rSimd_m3p25 = setSimdRealFrom1R(-3.25);
82 const SimdReal rSimd_m3p75 = setSimdRealFrom1R(-3.75);
83 const SimdReal rSimd_Exp = setSimdRealFrom3R(1.4055235171027452623914516e+18,
84 5.3057102734253445623914516e-13,
85 -2.1057102745623934534514516e+16);
86 # if GMX_SIMD_HAVE_DOUBLE && GMX_DOUBLE
87 // Make sure we also test exponents outside single precision when we use double
88 const SimdReal rSimd_ExpDouble = setSimdRealFrom3R(6.287393598732017379054414e+176,
89 8.794495252903116023030553e-140,
90 -3.637060701570496477655022e+202);
91 # endif // GMX_SIMD_HAVE_DOUBLE && GMX_DOUBLE
93 # if GMX_SIMD_HAVE_LOGICAL
94 // The numbers below all have exponent (2^0), which will not change with AND/OR operations.
95 // We also leave the last part of the mantissa as zeros, to avoid rounding issues in the compiler
96 # if GMX_DOUBLE
97 const SimdReal rSimd_logicalA =
98 setSimdRealFrom1R(1.3333333332557231188); // mantissa 01010101010101010101010101010101
99 const SimdReal rSimd_logicalB =
100 setSimdRealFrom1R(1.7999999998137354851); // mantissa 11001100110011001100110011001100
101 const SimdReal rSimd_logicalResultAnd =
102 setSimdRealFrom1R(1.266666666604578495); // mantissa 01000100010001000100010001000100
103 const SimdReal rSimd_logicalResultOr =
104 setSimdRealFrom1R(1.8666666664648801088); // mantissa 11011101110111011101110111011101
105 # else // GMX_DOUBLE
106 const SimdReal rSimd_logicalA = setSimdRealFrom1R(1.3333282470703125); // mantissa 0101010101010101
107 const SimdReal rSimd_logicalB = setSimdRealFrom1R(1.79998779296875); // mantissa 1100110011001100
108 const SimdReal rSimd_logicalResultAnd = setSimdRealFrom1R(1.26666259765625); // mantissa 0100010001000100
109 const SimdReal rSimd_logicalResultOr = setSimdRealFrom1R(1.8666534423828125); // mantissa 1101110111011101
110 # endif // GMX_DOUBLE
111 # endif // GMX_SIMD_HAVE_LOGICAL
113 # endif // GMX_SIMD_HAVE_REAL
114 # if GMX_SIMD_HAVE_INT32_ARITHMETICS
115 const SimdInt32 iSimd_1_2_3 = setSimdIntFrom3I(1, 2, 3);
116 const SimdInt32 iSimd_4_5_6 = setSimdIntFrom3I(4, 5, 6);
117 const SimdInt32 iSimd_7_8_9 = setSimdIntFrom3I(7, 8, 9);
118 const SimdInt32 iSimd_5_7_9 = setSimdIntFrom3I(5, 7, 9);
119 const SimdInt32 iSimd_1M_2M_3M = setSimdIntFrom3I(1000000, 2000000, 3000000);
120 const SimdInt32 iSimd_4M_5M_6M = setSimdIntFrom3I(4000000, 5000000, 6000000);
121 const SimdInt32 iSimd_5M_7M_9M = setSimdIntFrom3I(5000000, 7000000, 9000000);
122 # endif
123 # if GMX_SIMD_HAVE_INT32_LOGICAL
124 const SimdInt32 iSimd_0xF0F0F0F0 = setSimdIntFrom1I(0xF0F0F0F0);
125 const SimdInt32 iSimd_0xCCCCCCCC = setSimdIntFrom1I(0xCCCCCCCC);
126 # endif
128 # if GMX_SIMD_HAVE_REAL
129 TEST(SimdTest, GmxAligned)
131 // Test alignment with two variables that must be aligned, and one that
132 // doesn't have to be. The order of variables is up to the compiler, but
133 // if it ignores alignment it is highly unlikely that both r1/r3 still end
134 // up being aligned by mistake.
135 alignas(GMX_SIMD_ALIGNMENT) real r1;
136 real r2;
137 alignas(GMX_SIMD_ALIGNMENT) real r3;
139 std::uint64_t addr1 = reinterpret_cast<std::uint64_t>(&r1);
140 std::uint64_t addr2 = reinterpret_cast<std::uint64_t>(&r2);
141 std::uint64_t addr3 = reinterpret_cast<std::uint64_t>(&r3);
143 EXPECT_EQ(0, addr1 % GMX_SIMD_ALIGNMENT);
144 EXPECT_NE(0, addr2); // Just so r2 is not optimized away
145 EXPECT_EQ(0, addr3 % GMX_SIMD_ALIGNMENT);
147 alignas(GMX_SIMD_ALIGNMENT) std::int32_t i1;
148 std::int32_t i2;
149 alignas(GMX_SIMD_ALIGNMENT) std::int32_t i3;
151 addr1 = reinterpret_cast<std::uint64_t>(&i1);
152 addr2 = reinterpret_cast<std::uint64_t>(&i2);
153 addr3 = reinterpret_cast<std::uint64_t>(&i3);
155 EXPECT_EQ(0, addr1 % GMX_SIMD_ALIGNMENT);
156 EXPECT_NE(0, addr2); // Just so i2 is not optimized away
157 EXPECT_EQ(0, addr3 % GMX_SIMD_ALIGNMENT);
161 ::std::vector<real> simdReal2Vector(const SimdReal simd)
163 alignas(GMX_SIMD_ALIGNMENT) real mem[GMX_SIMD_REAL_WIDTH];
165 store(mem, simd);
166 std::vector<real> v(mem, mem + GMX_SIMD_REAL_WIDTH);
168 return v;
171 SimdReal vector2SimdReal(const std::vector<real>& v)
173 alignas(GMX_SIMD_ALIGNMENT) real mem[GMX_SIMD_REAL_WIDTH];
175 for (int i = 0; i < GMX_SIMD_REAL_WIDTH; i++)
177 mem[i] = v[i % v.size()]; // repeat vector contents to fill simd width
179 return load<SimdReal>(mem);
182 SimdReal setSimdRealFrom3R(real r0, real r1, real r2)
184 std::vector<real> v(3);
185 v[0] = r0;
186 v[1] = r1;
187 v[2] = r2;
188 return vector2SimdReal(v);
191 SimdReal setSimdRealFrom1R(real value)
193 std::vector<real> v(GMX_SIMD_REAL_WIDTH);
194 for (int i = 0; i < GMX_SIMD_REAL_WIDTH; i++)
196 v[i] = value;
198 return vector2SimdReal(v);
201 testing::AssertionResult SimdTest::compareSimdRealUlp(const char* refExpr,
202 const char* tstExpr,
203 const SimdReal ref,
204 const SimdReal tst)
206 return compareVectorRealUlp(refExpr, tstExpr, simdReal2Vector(ref), simdReal2Vector(tst));
209 testing::AssertionResult SimdTest::compareSimdEq(const char* refExpr,
210 const char* tstExpr,
211 const SimdReal ref,
212 const SimdReal tst)
214 return compareVectorEq(refExpr, tstExpr, simdReal2Vector(ref), simdReal2Vector(tst));
217 std::vector<std::int32_t> simdInt2Vector(const SimdInt32 simd)
219 alignas(GMX_SIMD_ALIGNMENT) std::int32_t mem[GMX_SIMD_REAL_WIDTH];
221 store(mem, simd);
222 std::vector<std::int32_t> v(mem, mem + GMX_SIMD_REAL_WIDTH);
224 return v;
227 SimdInt32 vector2SimdInt(const std::vector<std::int32_t>& v)
229 alignas(GMX_SIMD_ALIGNMENT) std::int32_t mem[GMX_SIMD_REAL_WIDTH];
231 for (int i = 0; i < GMX_SIMD_REAL_WIDTH; i++)
233 mem[i] = v[i % v.size()]; // repeat vector contents to fill simd width
235 return load<SimdInt32>(mem);
238 SimdInt32 setSimdIntFrom3I(int i0, int i1, int i2)
240 std::vector<int> v(3);
241 v[0] = i0;
242 v[1] = i1;
243 v[2] = i2;
244 return vector2SimdInt(v);
247 SimdInt32 setSimdIntFrom1I(int value)
249 std::vector<int> v(GMX_SIMD_REAL_WIDTH);
250 for (int i = 0; i < GMX_SIMD_REAL_WIDTH; i++)
252 v[i] = value;
254 return vector2SimdInt(v);
257 ::testing::AssertionResult SimdTest::compareSimdEq(const char* refExpr,
258 const char* tstExpr,
259 const SimdInt32 ref,
260 const SimdInt32 tst)
262 return compareVectorEq(refExpr, tstExpr, simdInt2Vector(ref), simdInt2Vector(tst));
265 # endif // GMX_SIMD_HAVE_REAL
267 /*! \} */
268 /*! \endcond */
270 } // namespace test
271 } // namespace gmx
273 #endif // GMX_SIMD