Split lines with many copyright years
[gromacs.git] / src / gromacs / mdrun / tpi.cpp
blob4c808700fe5724721552dd7d96de899176ed21ff
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
5 * Copyright (c) 2001-2004, The GROMACS development team.
6 * Copyright (c) 2013,2014,2015,2016,2017 by the GROMACS development team.
7 * Copyright (c) 2018,2019,2020, by the GROMACS development team, led by
8 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
9 * and including many others, as listed in the AUTHORS file in the
10 * top-level source directory and at http://www.gromacs.org.
12 * GROMACS is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU Lesser General Public License
14 * as published by the Free Software Foundation; either version 2.1
15 * of the License, or (at your option) any later version.
17 * GROMACS is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * Lesser General Public License for more details.
22 * You should have received a copy of the GNU Lesser General Public
23 * License along with GROMACS; if not, see
24 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
25 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
27 * If you want to redistribute modifications to GROMACS, please
28 * consider that scientific software is very special. Version
29 * control is crucial - bugs must be traceable. We will be happy to
30 * consider code for inclusion in the official distribution, but
31 * derived work must not be called official GROMACS. Details are found
32 * in the README & COPYING files - if they are missing, get the
33 * official version at http://www.gromacs.org.
35 * To help us fund GROMACS development, we humbly ask that you cite
36 * the research papers on the package. Check out http://www.gromacs.org.
38 /*! \internal \file
40 * \brief This file defines the integrator for test particle insertion
42 * \author Berk Hess <hess@kth.se>
43 * \ingroup module_mdrun
45 #include "gmxpre.h"
47 #include <cmath>
48 #include <cstdlib>
49 #include <cstring>
50 #include <ctime>
52 #include <algorithm>
54 #include <cfenv>
56 #include "gromacs/commandline/filenm.h"
57 #include "gromacs/domdec/dlbtiming.h"
58 #include "gromacs/domdec/domdec.h"
59 #include "gromacs/ewald/pme.h"
60 #include "gromacs/fileio/confio.h"
61 #include "gromacs/fileio/trxio.h"
62 #include "gromacs/fileio/xvgr.h"
63 #include "gromacs/gmxlib/conformation_utilities.h"
64 #include "gromacs/gmxlib/network.h"
65 #include "gromacs/gmxlib/nrnb.h"
66 #include "gromacs/math/units.h"
67 #include "gromacs/math/vec.h"
68 #include "gromacs/mdlib/constr.h"
69 #include "gromacs/mdlib/dispersioncorrection.h"
70 #include "gromacs/mdlib/energyoutput.h"
71 #include "gromacs/mdlib/force.h"
72 #include "gromacs/mdlib/force_flags.h"
73 #include "gromacs/mdlib/gmx_omp_nthreads.h"
74 #include "gromacs/mdlib/mdatoms.h"
75 #include "gromacs/mdlib/tgroup.h"
76 #include "gromacs/mdlib/update.h"
77 #include "gromacs/mdlib/vsite.h"
78 #include "gromacs/mdrunutility/printtime.h"
79 #include "gromacs/mdtypes/commrec.h"
80 #include "gromacs/mdtypes/forcerec.h"
81 #include "gromacs/mdtypes/group.h"
82 #include "gromacs/mdtypes/inputrec.h"
83 #include "gromacs/mdtypes/md_enums.h"
84 #include "gromacs/mdtypes/mdrunoptions.h"
85 #include "gromacs/mdtypes/state.h"
86 #include "gromacs/nbnxm/nbnxm.h"
87 #include "gromacs/pbcutil/pbc.h"
88 #include "gromacs/random/threefry.h"
89 #include "gromacs/random/uniformrealdistribution.h"
90 #include "gromacs/timing/wallcycle.h"
91 #include "gromacs/timing/walltime_accounting.h"
92 #include "gromacs/topology/mtop_util.h"
93 #include "gromacs/trajectory/trajectoryframe.h"
94 #include "gromacs/utility/cstringutil.h"
95 #include "gromacs/utility/fatalerror.h"
96 #include "gromacs/utility/gmxassert.h"
97 #include "gromacs/utility/logger.h"
98 #include "gromacs/utility/smalloc.h"
100 #include "legacysimulator.h"
102 //! Global max algorithm
103 static void global_max(t_commrec* cr, int* n)
105 int *sum, i;
107 snew(sum, cr->nnodes);
108 sum[cr->nodeid] = *n;
109 gmx_sumi(cr->nnodes, sum, cr);
110 for (i = 0; i < cr->nnodes; i++)
112 *n = std::max(*n, sum[i]);
115 sfree(sum);
118 //! Reallocate arrays.
119 static void realloc_bins(double** bin, int* nbin, int nbin_new)
121 int i;
123 if (nbin_new != *nbin)
125 srenew(*bin, nbin_new);
126 for (i = *nbin; i < nbin_new; i++)
128 (*bin)[i] = 0;
130 *nbin = nbin_new;
134 //! Computes and returns the RF exclusion energy for the last molecule starting at \p beginAtom
135 static real reactionFieldExclusionCorrection(gmx::ArrayRef<const gmx::RVec> x,
136 const t_mdatoms& mdatoms,
137 const interaction_const_t& ic,
138 const int beginAtom)
140 real energy = 0;
142 for (int i = beginAtom; i < mdatoms.homenr; i++)
144 const real qi = mdatoms.chargeA[i];
145 energy -= 0.5 * qi * qi * ic.c_rf;
147 for (int j = i + 1; j < mdatoms.homenr; j++)
149 const real qj = mdatoms.chargeA[j];
150 const real rsq = distance2(x[i], x[j]);
151 energy += qi * qj * (ic.k_rf * rsq - ic.c_rf);
155 return ic.epsfac * energy;
158 namespace gmx
161 // TODO: Convert to use the nbnxm kernels by putting the system and the teset molecule on two separate search grids
162 void LegacySimulator::do_tpi()
164 GMX_RELEASE_ASSERT(gmx_omp_nthreads_get(emntDefault) == 1, "TPI does not support OpenMP");
166 gmx_localtop_t top;
167 PaddedHostVector<gmx::RVec> f{};
168 real lambda, t, temp, beta, drmax, epot;
169 double embU, sum_embU, *sum_UgembU, V, V_all, VembU_all;
170 t_trxstatus* status;
171 t_trxframe rerun_fr;
172 gmx_bool bDispCorr, bCharge, bRFExcl, bNotLastFrame, bStateChanged, bNS;
173 tensor force_vir, shake_vir, vir, pres;
174 int a_tp0, a_tp1, ngid, gid_tp, nener, e;
175 rvec* x_mol;
176 rvec mu_tot, x_init, dx;
177 int nnodes, frame;
178 int64_t frame_step_prev, frame_step;
179 int64_t nsteps, stepblocksize = 0, step;
180 int64_t seed;
181 int i;
182 FILE* fp_tpi = nullptr;
183 char * ptr, *dump_pdb, **leg, str[STRLEN], str2[STRLEN];
184 double dbl, dump_ener;
185 gmx_bool bCavity;
186 int nat_cavity = 0, d;
187 real * mass_cavity = nullptr, mass_tot;
188 int nbin;
189 double invbinw, *bin, refvolshift, logV, bUlogV;
190 gmx_bool bEnergyOutOfBounds;
191 const char* tpid_leg[2] = { "direct", "reweighted" };
192 auto mdatoms = mdAtoms->mdatoms();
194 GMX_UNUSED_VALUE(outputProvider);
196 GMX_LOG(mdlog.info)
197 .asParagraph()
198 .appendText(
199 "Note that it is planned to change the command gmx mdrun -tpi "
200 "(and -tpic) to make the functionality available in a different "
201 "form in a future version of GROMACS, e.g. gmx test-particle-insertion.");
203 /* Since there is no upper limit to the insertion energies,
204 * we need to set an upper limit for the distribution output.
206 real bU_bin_limit = 50;
207 real bU_logV_bin_limit = bU_bin_limit + 10;
209 nnodes = cr->nnodes;
211 gmx_mtop_generate_local_top(*top_global, &top, inputrec->efep != efepNO);
213 SimulationGroups* groups = &top_global->groups;
215 bCavity = (inputrec->eI == eiTPIC);
216 if (bCavity)
218 ptr = getenv("GMX_TPIC_MASSES");
219 if (ptr == nullptr)
221 nat_cavity = 1;
223 else
225 /* Read (multiple) masses from env var GMX_TPIC_MASSES,
226 * The center of mass of the last atoms is then used for TPIC.
228 nat_cavity = 0;
229 while (sscanf(ptr, "%20lf%n", &dbl, &i) > 0)
231 srenew(mass_cavity, nat_cavity + 1);
232 mass_cavity[nat_cavity] = dbl;
233 fprintf(fplog, "mass[%d] = %f\n", nat_cavity + 1, mass_cavity[nat_cavity]);
234 nat_cavity++;
235 ptr += i;
237 if (nat_cavity == 0)
239 gmx_fatal(FARGS, "Found %d masses in GMX_TPIC_MASSES", nat_cavity);
245 init_em(fplog,TPI,inputrec,&lambda,nrnb,mu_tot,
246 state_global->box,fr,mdatoms,top,cr,nfile,fnm,NULL,NULL);*/
247 /* We never need full pbc for TPI */
248 fr->ePBC = epbcXYZ;
249 /* Determine the temperature for the Boltzmann weighting */
250 temp = inputrec->opts.ref_t[0];
251 if (fplog)
253 for (i = 1; (i < inputrec->opts.ngtc); i++)
255 if (inputrec->opts.ref_t[i] != temp)
257 fprintf(fplog,
258 "\nWARNING: The temperatures of the different temperature coupling groups "
259 "are not identical\n\n");
260 fprintf(stderr,
261 "\nWARNING: The temperatures of the different temperature coupling groups "
262 "are not identical\n\n");
265 fprintf(fplog, "\n The temperature for test particle insertion is %.3f K\n\n", temp);
267 beta = 1.0 / (BOLTZ * temp);
269 /* Number of insertions per frame */
270 nsteps = inputrec->nsteps;
272 /* Use the same neighborlist with more insertions points
273 * in a sphere of radius drmax around the initial point
275 /* This should be a proper mdp parameter */
276 drmax = inputrec->rtpi;
278 /* An environment variable can be set to dump all configurations
279 * to pdb with an insertion energy <= this value.
281 dump_pdb = getenv("GMX_TPI_DUMP");
282 dump_ener = 0;
283 if (dump_pdb)
285 sscanf(dump_pdb, "%20lf", &dump_ener);
288 atoms2md(top_global, inputrec, -1, nullptr, top_global->natoms, mdAtoms);
289 update_mdatoms(mdatoms, inputrec->fepvals->init_lambda);
291 f.resizeWithPadding(top_global->natoms);
293 /* Print to log file */
294 walltime_accounting_start_time(walltime_accounting);
295 wallcycle_start(wcycle, ewcRUN);
296 print_start(fplog, cr, walltime_accounting, "Test Particle Insertion");
298 /* The last charge group is the group to be inserted */
299 const t_atoms& atomsToInsert = top_global->moltype[top_global->molblock.back().type].atoms;
300 a_tp0 = top_global->natoms - atomsToInsert.nr;
301 a_tp1 = top_global->natoms;
302 if (debug)
304 fprintf(debug, "TPI atoms %d-%d\n", a_tp0, a_tp1);
307 auto x = makeArrayRef(state_global->x);
309 if (EEL_PME(fr->ic->eeltype))
311 gmx_pme_reinit_atoms(fr->pmedata, a_tp0, nullptr);
314 /* With reacion-field we have distance dependent potentials
315 * between excluded atoms, we need to add these separately
316 * for the inserted molecule.
318 real rfExclusionEnergy = 0;
319 if (EEL_RF(fr->ic->eeltype))
321 rfExclusionEnergy = reactionFieldExclusionCorrection(x, *mdatoms, *fr->ic, a_tp0);
322 if (debug)
324 fprintf(debug, "RF exclusion correction for inserted molecule: %f kJ/mol\n", rfExclusionEnergy);
328 snew(x_mol, a_tp1 - a_tp0);
330 bDispCorr = (inputrec->eDispCorr != edispcNO);
331 bCharge = FALSE;
332 for (i = a_tp0; i < a_tp1; i++)
334 /* Copy the coordinates of the molecule to be insterted */
335 copy_rvec(x[i], x_mol[i - a_tp0]);
336 /* Check if we need to print electrostatic energies */
337 bCharge |= (mdatoms->chargeA[i] != 0
338 || ((mdatoms->chargeB != nullptr) && mdatoms->chargeB[i] != 0));
340 bRFExcl = (bCharge && EEL_RF(fr->ic->eeltype));
342 // Calculate the center of geometry of the molecule to insert
343 rvec cog = { 0, 0, 0 };
344 for (int a = a_tp0; a < a_tp1; a++)
346 rvec_inc(cog, x[a]);
348 svmul(1.0_real / (a_tp1 - a_tp0), cog, cog);
349 real molRadius = 0;
350 for (int a = a_tp0; a < a_tp1; a++)
352 molRadius = std::max(molRadius, distance2(x[a], cog));
354 molRadius = std::sqrt(molRadius);
356 const real maxCutoff = std::max(inputrec->rvdw, inputrec->rcoulomb);
357 if (bCavity)
359 if (norm(cog) > 0.5 * maxCutoff && fplog)
361 fprintf(fplog, "WARNING: Your TPI molecule is not centered at 0,0,0\n");
362 fprintf(stderr, "WARNING: Your TPI molecule is not centered at 0,0,0\n");
365 else
367 /* Center the molecule to be inserted at zero */
368 for (i = 0; i < a_tp1 - a_tp0; i++)
370 rvec_dec(x_mol[i], cog);
374 if (fplog)
376 fprintf(fplog, "\nWill insert %d atoms %s partial charges\n", a_tp1 - a_tp0,
377 bCharge ? "with" : "without");
379 fprintf(fplog, "\nWill insert %" PRId64 " times in each frame of %s\n", nsteps,
380 opt2fn("-rerun", nfile, fnm));
383 if (!bCavity)
385 if (inputrec->nstlist > 1)
388 /* With the same pair list we insert in a sphere of radius rtpi in different orientations */
389 if (drmax == 0 && a_tp1 - a_tp0 == 1)
391 gmx_fatal(FARGS,
392 "Re-using the neighborlist %d times for insertions of a single atom in a "
393 "sphere of radius %f does not make sense",
394 inputrec->nstlist, drmax);
396 if (fplog)
398 fprintf(fplog,
399 "Will use the same neighborlist for %d insertions in a sphere of radius "
400 "%f\n",
401 inputrec->nstlist, drmax);
405 else
407 if (fplog)
409 fprintf(fplog,
410 "Will insert randomly in a sphere of radius %f around the center of the "
411 "cavity\n",
412 drmax);
416 /* With the same pair list we insert in a sphere of radius rtpi
417 * in different orientations. We generate the pairlist with all
418 * inserted atoms located in the center of the sphere, so we need
419 * a buffer of size of the sphere and molecule radius.
421 inputrec->rlist = maxCutoff + 2 * inputrec->rtpi + 2 * molRadius;
422 fr->rlist = inputrec->rlist;
423 fr->nbv->changePairlistRadii(inputrec->rlist, inputrec->rlist);
425 ngid = groups->groups[SimulationAtomGroupType::EnergyOutput].size();
426 gid_tp = GET_CGINFO_GID(fr->cginfo[a_tp0]);
427 for (int a = a_tp0 + 1; a < a_tp1; a++)
429 if (GET_CGINFO_GID(fr->cginfo[a]) != gid_tp)
431 fprintf(fplog,
432 "NOTE: Atoms in the molecule to insert belong to different energy groups.\n"
433 " Only contributions to the group of the first atom will be reported.\n");
434 break;
437 nener = 1 + ngid;
438 if (bDispCorr)
440 nener += 1;
442 if (bCharge)
444 nener += ngid;
445 if (bRFExcl)
447 nener += 1;
449 if (EEL_FULL(fr->ic->eeltype))
451 nener += 1;
454 snew(sum_UgembU, nener);
456 /* Copy the random seed set by the user */
457 seed = inputrec->ld_seed;
459 gmx::ThreeFry2x64<16> rng(
460 seed, gmx::RandomDomain::TestParticleInsertion); // 16 bits internal counter => 2^16 * 2 = 131072 values per stream
461 gmx::UniformRealDistribution<real> dist;
463 if (MASTER(cr))
465 fp_tpi = xvgropen(opt2fn("-tpi", nfile, fnm), "TPI energies", "Time (ps)",
466 "(kJ mol\\S-1\\N) / (nm\\S3\\N)", oenv);
467 xvgr_subtitle(fp_tpi, "f. are averages over one frame", oenv);
468 snew(leg, 4 + nener);
469 e = 0;
470 sprintf(str, "-kT log(<Ve\\S-\\betaU\\N>/<V>)");
471 leg[e++] = gmx_strdup(str);
472 sprintf(str, "f. -kT log<e\\S-\\betaU\\N>");
473 leg[e++] = gmx_strdup(str);
474 sprintf(str, "f. <e\\S-\\betaU\\N>");
475 leg[e++] = gmx_strdup(str);
476 sprintf(str, "f. V");
477 leg[e++] = gmx_strdup(str);
478 sprintf(str, "f. <Ue\\S-\\betaU\\N>");
479 leg[e++] = gmx_strdup(str);
480 for (i = 0; i < ngid; i++)
482 sprintf(str, "f. <U\\sVdW %s\\Ne\\S-\\betaU\\N>",
483 *(groups->groupNames[groups->groups[SimulationAtomGroupType::EnergyOutput][i]]));
484 leg[e++] = gmx_strdup(str);
486 if (bDispCorr)
488 sprintf(str, "f. <U\\sdisp c\\Ne\\S-\\betaU\\N>");
489 leg[e++] = gmx_strdup(str);
491 if (bCharge)
493 for (i = 0; i < ngid; i++)
495 sprintf(str, "f. <U\\sCoul %s\\Ne\\S-\\betaU\\N>",
496 *(groups->groupNames[groups->groups[SimulationAtomGroupType::EnergyOutput][i]]));
497 leg[e++] = gmx_strdup(str);
499 if (bRFExcl)
501 sprintf(str, "f. <U\\sRF excl\\Ne\\S-\\betaU\\N>");
502 leg[e++] = gmx_strdup(str);
504 if (EEL_FULL(fr->ic->eeltype))
506 sprintf(str, "f. <U\\sCoul recip\\Ne\\S-\\betaU\\N>");
507 leg[e++] = gmx_strdup(str);
510 xvgr_legend(fp_tpi, 4 + nener, leg, oenv);
511 for (i = 0; i < 4 + nener; i++)
513 sfree(leg[i]);
515 sfree(leg);
517 clear_rvec(x_init);
518 V_all = 0;
519 VembU_all = 0;
521 invbinw = 10;
522 nbin = 10;
523 snew(bin, nbin);
525 /* Avoid frame step numbers <= -1 */
526 frame_step_prev = -1;
528 bNotLastFrame = read_first_frame(oenv, &status, opt2fn("-rerun", nfile, fnm), &rerun_fr, TRX_NEED_X);
529 frame = 0;
531 if (rerun_fr.natoms - (bCavity ? nat_cavity : 0) != mdatoms->nr - (a_tp1 - a_tp0))
533 gmx_fatal(FARGS,
534 "Number of atoms in trajectory (%d)%s "
535 "is not equal the number in the run input file (%d) "
536 "minus the number of atoms to insert (%d)\n",
537 rerun_fr.natoms, bCavity ? " minus one" : "", mdatoms->nr, a_tp1 - a_tp0);
540 refvolshift = log(det(rerun_fr.box));
542 switch (inputrec->eI)
544 case eiTPI: stepblocksize = inputrec->nstlist; break;
545 case eiTPIC: stepblocksize = 1; break;
546 default: gmx_fatal(FARGS, "Unknown integrator %s", ei_names[inputrec->eI]);
549 while (bNotLastFrame)
551 frame_step = rerun_fr.step;
552 if (frame_step <= frame_step_prev)
554 /* We don't have step number in the trajectory file,
555 * or we have constant or decreasing step numbers.
556 * Ensure we have increasing step numbers, since we use
557 * the step numbers as a counter for random numbers.
559 frame_step = frame_step_prev + 1;
561 frame_step_prev = frame_step;
563 lambda = rerun_fr.lambda;
564 t = rerun_fr.time;
566 sum_embU = 0;
567 for (e = 0; e < nener; e++)
569 sum_UgembU[e] = 0;
572 /* Copy the coordinates from the input trajectory */
573 auto x = makeArrayRef(state_global->x);
574 for (i = 0; i < rerun_fr.natoms; i++)
576 copy_rvec(rerun_fr.x[i], x[i]);
578 copy_mat(rerun_fr.box, state_global->box);
579 const matrix& box = state_global->box;
581 V = det(box);
582 logV = log(V);
584 bStateChanged = TRUE;
585 bNS = TRUE;
587 put_atoms_in_box(fr->ePBC, box, x);
589 /* Put all atoms except for the inserted ones on the grid */
590 rvec vzero = { 0, 0, 0 };
591 rvec boxDiagonal = { box[XX][XX], box[YY][YY], box[ZZ][ZZ] };
592 nbnxn_put_on_grid(fr->nbv.get(), box, 0, vzero, boxDiagonal, nullptr, { 0, a_tp0 }, -1,
593 fr->cginfo, x, 0, nullptr);
595 step = cr->nodeid * stepblocksize;
596 while (step < nsteps)
598 /* Restart random engine using the frame and insertion step
599 * as counters.
600 * Note that we need to draw several random values per iteration,
601 * but by using the internal subcounter functionality of ThreeFry2x64
602 * we can draw 131072 unique 64-bit values before exhausting
603 * the stream. This is a huge margin, and if something still goes
604 * wrong you will get an exception when the stream is exhausted.
606 rng.restart(frame_step, step);
607 dist.reset(); // erase any memory in the distribution
609 if (!bCavity)
611 /* Random insertion in the whole volume */
612 bNS = (step % inputrec->nstlist == 0);
613 if (bNS)
615 /* Generate a random position in the box */
616 for (d = 0; d < DIM; d++)
618 x_init[d] = dist(rng) * state_global->box[d][d];
622 else
624 /* Random insertion around a cavity location
625 * given by the last coordinate of the trajectory.
627 if (step == 0)
629 if (nat_cavity == 1)
631 /* Copy the location of the cavity */
632 copy_rvec(rerun_fr.x[rerun_fr.natoms - 1], x_init);
634 else
636 /* Determine the center of mass of the last molecule */
637 clear_rvec(x_init);
638 mass_tot = 0;
639 for (i = 0; i < nat_cavity; i++)
641 for (d = 0; d < DIM; d++)
643 x_init[d] += mass_cavity[i]
644 * rerun_fr.x[rerun_fr.natoms - nat_cavity + i][d];
646 mass_tot += mass_cavity[i];
648 for (d = 0; d < DIM; d++)
650 x_init[d] /= mass_tot;
656 if (bNS)
658 for (int a = a_tp0; a < a_tp1; a++)
660 x[a] = x_init;
663 /* Put the inserted molecule on it's own search grid */
664 nbnxn_put_on_grid(fr->nbv.get(), box, 1, x_init, x_init, nullptr, { a_tp0, a_tp1 },
665 -1, fr->cginfo, x, 0, nullptr);
667 /* TODO: Avoid updating all atoms at every bNS step */
668 fr->nbv->setAtomProperties(*mdatoms, fr->cginfo);
670 fr->nbv->constructPairlist(InteractionLocality::Local, top.excls, step, nrnb);
672 bNS = FALSE;
675 /* Add random displacement uniformly distributed in a sphere
676 * of radius rtpi. We don't need to do this is we generate
677 * a new center location every step.
679 rvec x_tp;
680 if (bCavity || inputrec->nstlist > 1)
682 /* Generate coordinates within |dx|=drmax of x_init */
685 for (d = 0; d < DIM; d++)
687 dx[d] = (2 * dist(rng) - 1) * drmax;
689 } while (norm2(dx) > drmax * drmax);
690 rvec_add(x_init, dx, x_tp);
692 else
694 copy_rvec(x_init, x_tp);
697 if (a_tp1 - a_tp0 == 1)
699 /* Insert a single atom, just copy the insertion location */
700 copy_rvec(x_tp, x[a_tp0]);
702 else
704 /* Copy the coordinates from the top file */
705 for (i = a_tp0; i < a_tp1; i++)
707 copy_rvec(x_mol[i - a_tp0], x[i]);
709 /* Rotate the molecule randomly */
710 real angleX = 2 * M_PI * dist(rng);
711 real angleY = 2 * M_PI * dist(rng);
712 real angleZ = 2 * M_PI * dist(rng);
713 rotate_conf(a_tp1 - a_tp0, state_global->x.rvec_array() + a_tp0, nullptr, angleX,
714 angleY, angleZ);
715 /* Shift to the insertion location */
716 for (i = a_tp0; i < a_tp1; i++)
718 rvec_inc(x[i], x_tp);
722 /* Note: NonLocal refers to the inserted molecule */
723 fr->nbv->convertCoordinates(AtomLocality::NonLocal, false, x);
725 /* Clear some matrix variables */
726 clear_mat(force_vir);
727 clear_mat(shake_vir);
728 clear_mat(vir);
729 clear_mat(pres);
731 /* Calc energy (no forces) on new positions.
732 * Since we only need the intermolecular energy
733 * and the RF exclusion terms of the inserted molecule occur
734 * within a single charge group we can pass NULL for the graph.
735 * This also avoids shifts that would move charge groups
736 * out of the box. */
737 /* Make do_force do a single node force calculation */
738 cr->nnodes = 1;
740 // TPI might place a particle so close that the potential
741 // is infinite. Since this is intended to happen, we
742 // temporarily suppress any exceptions that the processor
743 // might raise, then restore the old behaviour.
744 std::fenv_t floatingPointEnvironment;
745 std::feholdexcept(&floatingPointEnvironment);
746 do_force(fplog, cr, ms, inputrec, nullptr, nullptr, imdSession, pull_work, step, nrnb,
747 wcycle, &top, state_global->box, state_global->x.arrayRefWithPadding(),
748 &state_global->hist, f.arrayRefWithPadding(), force_vir, mdatoms, enerd, fcd,
749 state_global->lambda, nullptr, fr, runScheduleWork, nullptr, mu_tot, t, nullptr,
750 GMX_FORCE_NONBONDED | GMX_FORCE_ENERGY | (bStateChanged ? GMX_FORCE_STATECHANGED : 0),
751 DDBalanceRegionHandler(nullptr));
752 std::feclearexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW);
753 std::feupdateenv(&floatingPointEnvironment);
755 cr->nnodes = nnodes;
756 bStateChanged = FALSE;
758 if (fr->dispersionCorrection)
760 /* Calculate long range corrections to pressure and energy */
761 const DispersionCorrection::Correction correction =
762 fr->dispersionCorrection->calculate(state_global->box, lambda);
763 /* figure out how to rearrange the next 4 lines MRS 8/4/2009 */
764 enerd->term[F_DISPCORR] = correction.energy;
765 enerd->term[F_EPOT] += correction.energy;
766 enerd->term[F_PRES] += correction.pressure;
767 enerd->term[F_DVDL] += correction.dvdl;
769 else
771 enerd->term[F_DISPCORR] = 0;
773 if (EEL_RF(fr->ic->eeltype))
775 enerd->term[F_EPOT] += rfExclusionEnergy;
778 epot = enerd->term[F_EPOT];
779 bEnergyOutOfBounds = FALSE;
781 /* If the compiler doesn't optimize this check away
782 * we catch the NAN energies.
783 * The epot>GMX_REAL_MAX check catches inf values,
784 * which should nicely result in embU=0 through the exp below,
785 * but it does not hurt to check anyhow.
787 /* Non-bonded Interaction usually diverge at r=0.
788 * With tabulated interaction functions the first few entries
789 * should be capped in a consistent fashion between
790 * repulsion, dispersion and Coulomb to avoid accidental
791 * negative values in the total energy.
792 * The table generation code in tables.c does this.
793 * With user tbales the user should take care of this.
795 if (epot != epot || epot > GMX_REAL_MAX)
797 bEnergyOutOfBounds = TRUE;
799 if (bEnergyOutOfBounds)
801 if (debug)
803 fprintf(debug,
804 "\n time %.3f, step %d: non-finite energy %f, using exp(-bU)=0\n", t,
805 static_cast<int>(step), epot);
807 embU = 0;
809 else
811 // Exponent argument is fine in SP range, but output can be in DP range
812 embU = exp(static_cast<double>(-beta * epot));
813 sum_embU += embU;
814 /* Determine the weighted energy contributions of each energy group */
815 e = 0;
816 sum_UgembU[e++] += epot * embU;
817 if (fr->bBHAM)
819 for (i = 0; i < ngid; i++)
821 sum_UgembU[e++] += enerd->grpp.ener[egBHAMSR][GID(i, gid_tp, ngid)] * embU;
824 else
826 for (i = 0; i < ngid; i++)
828 sum_UgembU[e++] += enerd->grpp.ener[egLJSR][GID(i, gid_tp, ngid)] * embU;
831 if (bDispCorr)
833 sum_UgembU[e++] += enerd->term[F_DISPCORR] * embU;
835 if (bCharge)
837 for (i = 0; i < ngid; i++)
839 sum_UgembU[e++] += enerd->grpp.ener[egCOULSR][GID(i, gid_tp, ngid)] * embU;
841 if (bRFExcl)
843 sum_UgembU[e++] += rfExclusionEnergy * embU;
845 if (EEL_FULL(fr->ic->eeltype))
847 sum_UgembU[e++] += enerd->term[F_COUL_RECIP] * embU;
852 if (embU == 0 || beta * epot > bU_bin_limit)
854 bin[0]++;
856 else
858 i = gmx::roundToInt((bU_logV_bin_limit - (beta * epot - logV + refvolshift)) * invbinw);
859 if (i < 0)
861 i = 0;
863 if (i >= nbin)
865 realloc_bins(&bin, &nbin, i + 10);
867 bin[i]++;
870 if (debug)
872 fprintf(debug, "TPI %7d %12.5e %12.5f %12.5f %12.5f\n", static_cast<int>(step),
873 epot, x_tp[XX], x_tp[YY], x_tp[ZZ]);
876 if (dump_pdb && epot <= dump_ener)
878 sprintf(str, "t%g_step%d.pdb", t, static_cast<int>(step));
879 sprintf(str2, "t: %f step %d ener: %f", t, static_cast<int>(step), epot);
880 write_sto_conf_mtop(str, str2, top_global, state_global->x.rvec_array(),
881 state_global->v.rvec_array(), inputrec->ePBC, state_global->box);
884 step++;
885 if ((step / stepblocksize) % cr->nnodes != cr->nodeid)
887 /* Skip all steps assigned to the other MPI ranks */
888 step += (cr->nnodes - 1) * stepblocksize;
892 if (PAR(cr))
894 /* When running in parallel sum the energies over the processes */
895 gmx_sumd(1, &sum_embU, cr);
896 gmx_sumd(nener, sum_UgembU, cr);
899 frame++;
900 V_all += V;
901 VembU_all += V * sum_embU / nsteps;
903 if (fp_tpi)
905 if (mdrunOptions.verbose || frame % 10 == 0 || frame < 10)
907 fprintf(stderr, "mu %10.3e <mu> %10.3e\n", -log(sum_embU / nsteps) / beta,
908 -log(VembU_all / V_all) / beta);
911 fprintf(fp_tpi, "%10.3f %12.5e %12.5e %12.5e %12.5e", t,
912 VembU_all == 0 ? 20 / beta : -log(VembU_all / V_all) / beta,
913 sum_embU == 0 ? 20 / beta : -log(sum_embU / nsteps) / beta, sum_embU / nsteps, V);
914 for (e = 0; e < nener; e++)
916 fprintf(fp_tpi, " %12.5e", sum_UgembU[e] / nsteps);
918 fprintf(fp_tpi, "\n");
919 fflush(fp_tpi);
922 bNotLastFrame = read_next_frame(oenv, status, &rerun_fr);
923 } /* End of the loop */
924 walltime_accounting_end_time(walltime_accounting);
926 close_trx(status);
928 if (fp_tpi != nullptr)
930 xvgrclose(fp_tpi);
933 if (fplog != nullptr)
935 fprintf(fplog, "\n");
936 fprintf(fplog, " <V> = %12.5e nm^3\n", V_all / frame);
937 const double mu = -log(VembU_all / V_all) / beta;
938 fprintf(fplog, " <mu> = %12.5e kJ/mol\n", mu);
940 if (!std::isfinite(mu))
942 fprintf(fplog,
943 "\nThe computed chemical potential is not finite - consider increasing the "
944 "number of steps and/or the number of frames to insert into.\n");
948 /* Write the Boltzmann factor histogram */
949 if (PAR(cr))
951 /* When running in parallel sum the bins over the processes */
952 i = nbin;
953 global_max(cr, &i);
954 realloc_bins(&bin, &nbin, i);
955 gmx_sumd(nbin, bin, cr);
957 if (MASTER(cr))
959 fp_tpi = xvgropen(opt2fn("-tpid", nfile, fnm), "TPI energy distribution",
960 "\\betaU - log(V/<V>)", "count", oenv);
961 sprintf(str, "number \\betaU > %g: %9.3e", bU_bin_limit, bin[0]);
962 xvgr_subtitle(fp_tpi, str, oenv);
963 xvgr_legend(fp_tpi, 2, tpid_leg, oenv);
964 for (i = nbin - 1; i > 0; i--)
966 bUlogV = -i / invbinw + bU_logV_bin_limit - refvolshift + log(V_all / frame);
967 fprintf(fp_tpi, "%6.2f %10d %12.5e\n", bUlogV, roundToInt(bin[i]),
968 bin[i] * exp(-bUlogV) * V_all / VembU_all);
970 xvgrclose(fp_tpi);
972 sfree(bin);
974 sfree(sum_UgembU);
976 walltime_accounting_set_nsteps_done(walltime_accounting, frame * inputrec->nsteps);
979 } // namespace gmx