2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
5 * Copyright (c) 2001-2004, The GROMACS development team.
6 * Copyright (c) 2011,2012,2013,2014,2015,2016,2017, by the GROMACS development team, led by
7 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
8 * and including many others, as listed in the AUTHORS file in the
9 * top-level source directory and at http://www.gromacs.org.
11 * GROMACS is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public License
13 * as published by the Free Software Foundation; either version 2.1
14 * of the License, or (at your option) any later version.
16 * GROMACS is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * Lesser General Public License for more details.
21 * You should have received a copy of the GNU Lesser General Public
22 * License along with GROMACS; if not, see
23 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
24 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
26 * If you want to redistribute modifications to GROMACS, please
27 * consider that scientific software is very special. Version
28 * control is crucial - bugs must be traceable. We will be happy to
29 * consider code for inclusion in the official distribution, but
30 * derived work must not be called official GROMACS. Details are found
31 * in the README & COPYING files - if they are missing, get the
32 * official version at http://www.gromacs.org.
34 * To help us fund GROMACS development, we humbly ask that you cite
35 * the research papers on the package. Check out http://www.gromacs.org.
48 #include "gromacs/domdec/domdec.h"
49 #include "gromacs/gmxlib/network.h"
50 #include "gromacs/math/units.h"
51 #include "gromacs/math/vec.h"
52 #include "gromacs/mdlib/main.h"
53 #include "gromacs/mdtypes/commrec.h"
54 #include "gromacs/mdtypes/inputrec.h"
55 #include "gromacs/mdtypes/md_enums.h"
56 #include "gromacs/mdtypes/state.h"
57 #include "gromacs/random/threefry.h"
58 #include "gromacs/random/uniformintdistribution.h"
59 #include "gromacs/random/uniformrealdistribution.h"
60 #include "gromacs/utility/fatalerror.h"
61 #include "gromacs/utility/pleasecite.h"
62 #include "gromacs/utility/smalloc.h"
65 #define PROBABILITYCUTOFF 100
66 /* we don't bother evaluating if events are more rare than exp(-100) = 3.7x10^-44 */
68 //! Rank in the multisimulaiton
69 #define MSRANK(ms, nodeid) (nodeid)
72 ereTEMP
, ereLAMBDA
, ereENDSINGLE
, ereTL
, ereNR
74 const char *erename
[ereNR
] = { "temperature", "lambda", "end_single_marker", "temperature and lambda"};
75 /* end_single_marker merely notes the end of single variable replica exchange. All types higher than
76 it are multiple replica exchange methods */
77 /* Eventually, should add 'pressure', 'temperature and pressure', 'lambda_and_pressure', 'temperature_lambda_pressure'?;
78 Let's wait until we feel better about the pressure control methods giving exact ensembles. Right now, we assume constant pressure */
80 typedef struct gmx_repl_ex
82 int repl
; /* replica ID */
83 int nrepl
; /* total number of replica */
84 real temp
; /* temperature */
85 int type
; /* replica exchange type from ere enum */
86 real
**q
; /* quantity, e.g. temperature or lambda; first index is ere, second index is replica ID */
87 gmx_bool bNPT
; /* use constant pressure and temperature */
88 real
*pres
; /* replica pressures */
89 int *ind
; /* replica indices */
90 int *allswaps
; /* used for keeping track of all the replica swaps */
91 int nst
; /* replica exchange interval (number of steps) */
92 int nex
; /* number of exchanges per interval */
93 int seed
; /* random seed */
94 int nattempt
[2]; /* number of even and odd replica change attempts */
95 real
*prob_sum
; /* sum of probabilities */
96 int **nmoves
; /* number of moves between replicas i and j */
97 int *nexchange
; /* i-th element of the array is the number of exchanges between replica i-1 and i */
99 /* these are helper arrays for replica exchange; allocated here so they
100 don't have to be allocated each time */
108 /* helper arrays to hold the quantities that are exchanged */
117 static gmx_bool
repl_quantity(const gmx_multisim_t
*ms
,
118 struct gmx_repl_ex
*re
, int ere
, real q
)
124 snew(qall
, ms
->nsim
);
126 gmx_sum_sim(ms
->nsim
, qall
, ms
);
129 for (s
= 1; s
< ms
->nsim
; s
++)
131 if (qall
[s
] != qall
[0])
139 /* Set the replica exchange type and quantities */
142 snew(re
->q
[ere
], re
->nrepl
);
143 for (s
= 0; s
< ms
->nsim
; s
++)
145 re
->q
[ere
][s
] = qall
[s
];
153 init_replica_exchange(FILE *fplog
,
154 const gmx_multisim_t
*ms
,
155 const t_state
*state
,
156 const t_inputrec
*ir
,
157 const ReplicaExchangeParameters
&replExParams
)
161 struct gmx_repl_ex
*re
;
163 gmx_bool bLambda
= FALSE
;
165 fprintf(fplog
, "\nInitializing Replica Exchange\n");
167 if (ms
== nullptr || ms
->nsim
== 1)
169 gmx_fatal(FARGS
, "Nothing to exchange with only one replica, maybe you forgot to set the -multi option of mdrun?");
171 if (!EI_DYNAMICS(ir
->eI
))
173 gmx_fatal(FARGS
, "Replica exchange is only supported by dynamical simulations");
174 /* Note that PAR(cr) is defined by cr->nnodes > 1, which is
175 * distinct from MULTISIM(cr). A multi-simulation only runs
176 * with real MPI parallelism, but this does not imply PAR(cr)
179 * Since we are using a dynamical integrator, the only
180 * decomposition is DD, so PAR(cr) and DOMAINDECOMP(cr) are
181 * synonymous. The only way for cr->nnodes > 1 to be true is
182 * if we are using DD. */
188 re
->nrepl
= ms
->nsim
;
189 snew(re
->q
, ereENDSINGLE
);
191 fprintf(fplog
, "Repl There are %d replicas:\n", re
->nrepl
);
193 check_multi_int(fplog
, ms
, state
->natoms
, "the number of atoms", FALSE
);
194 check_multi_int(fplog
, ms
, ir
->eI
, "the integrator", FALSE
);
195 check_multi_int64(fplog
, ms
, ir
->init_step
+ir
->nsteps
, "init_step+nsteps", FALSE
);
196 const int nst
= replExParams
.exchangeInterval
;
197 check_multi_int64(fplog
, ms
, (ir
->init_step
+nst
-1)/nst
,
198 "first exchange step: init_step/-replex", FALSE
);
199 check_multi_int(fplog
, ms
, ir
->etc
, "the temperature coupling", FALSE
);
200 check_multi_int(fplog
, ms
, ir
->opts
.ngtc
,
201 "the number of temperature coupling groups", FALSE
);
202 check_multi_int(fplog
, ms
, ir
->epc
, "the pressure coupling", FALSE
);
203 check_multi_int(fplog
, ms
, ir
->efep
, "free energy", FALSE
);
204 check_multi_int(fplog
, ms
, ir
->fepvals
->n_lambda
, "number of lambda states", FALSE
);
206 re
->temp
= ir
->opts
.ref_t
[0];
207 for (i
= 1; (i
< ir
->opts
.ngtc
); i
++)
209 if (ir
->opts
.ref_t
[i
] != re
->temp
)
211 fprintf(fplog
, "\nWARNING: The temperatures of the different temperature coupling groups are not identical\n\n");
212 fprintf(stderr
, "\nWARNING: The temperatures of the different temperature coupling groups are not identical\n\n");
217 bTemp
= repl_quantity(ms
, re
, ereTEMP
, re
->temp
);
218 if (ir
->efep
!= efepNO
)
220 bLambda
= repl_quantity(ms
, re
, ereLAMBDA
, (real
)ir
->fepvals
->init_fep_state
);
222 if (re
->type
== -1) /* nothing was assigned */
224 gmx_fatal(FARGS
, "The properties of the %d systems are all the same, there is nothing to exchange", re
->nrepl
);
226 if (bLambda
&& bTemp
)
233 please_cite(fplog
, "Sugita1999a");
234 if (ir
->epc
!= epcNO
)
237 fprintf(fplog
, "Repl Using Constant Pressure REMD.\n");
238 please_cite(fplog
, "Okabe2001a");
240 if (ir
->etc
== etcBERENDSEN
)
242 gmx_fatal(FARGS
, "REMD with the %s thermostat does not produce correct potential energy distributions, consider using the %s thermostat instead",
243 ETCOUPLTYPE(ir
->etc
), ETCOUPLTYPE(etcVRESCALE
));
248 if (ir
->fepvals
->delta_lambda
!= 0) /* check this? */
250 gmx_fatal(FARGS
, "delta_lambda is not zero");
255 snew(re
->pres
, re
->nrepl
);
256 if (ir
->epct
== epctSURFACETENSION
)
258 pres
= ir
->ref_p
[ZZ
][ZZ
];
264 for (i
= 0; i
< DIM
; i
++)
266 if (ir
->compress
[i
][i
] != 0)
268 pres
+= ir
->ref_p
[i
][i
];
274 re
->pres
[re
->repl
] = pres
;
275 gmx_sum_sim(re
->nrepl
, re
->pres
, ms
);
278 /* Make an index for increasing replica order */
279 /* only makes sense if one or the other is varying, not both!
280 if both are varying, we trust the order the person gave. */
281 snew(re
->ind
, re
->nrepl
);
282 for (i
= 0; i
< re
->nrepl
; i
++)
287 if (re
->type
< ereENDSINGLE
)
290 for (i
= 0; i
< re
->nrepl
; i
++)
292 for (j
= i
+1; j
< re
->nrepl
; j
++)
294 if (re
->q
[re
->type
][re
->ind
[j
]] < re
->q
[re
->type
][re
->ind
[i
]])
296 /* Unordered replicas are supposed to work, but there
297 * is still an issues somewhere.
298 * Note that at this point still re->ind[i]=i.
300 gmx_fatal(FARGS
, "Replicas with indices %d < %d have %ss %g > %g, please order your replicas on increasing %s",
303 re
->q
[re
->type
][i
], re
->q
[re
->type
][j
],
307 re
->ind
[i
] = re
->ind
[j
];
310 else if (re
->q
[re
->type
][re
->ind
[j
]] == re
->q
[re
->type
][re
->ind
[i
]])
312 gmx_fatal(FARGS
, "Two replicas have identical %ss", erename
[re
->type
]);
318 /* keep track of all the swaps, starting with the initial placement. */
319 snew(re
->allswaps
, re
->nrepl
);
320 for (i
= 0; i
< re
->nrepl
; i
++)
322 re
->allswaps
[i
] = re
->ind
[i
];
328 fprintf(fplog
, "\nReplica exchange in temperature\n");
329 for (i
= 0; i
< re
->nrepl
; i
++)
331 fprintf(fplog
, " %5.1f", re
->q
[re
->type
][re
->ind
[i
]]);
333 fprintf(fplog
, "\n");
336 fprintf(fplog
, "\nReplica exchange in lambda\n");
337 for (i
= 0; i
< re
->nrepl
; i
++)
339 fprintf(fplog
, " %3d", (int)re
->q
[re
->type
][re
->ind
[i
]]);
341 fprintf(fplog
, "\n");
344 fprintf(fplog
, "\nReplica exchange in temperature and lambda state\n");
345 for (i
= 0; i
< re
->nrepl
; i
++)
347 fprintf(fplog
, " %5.1f", re
->q
[ereTEMP
][re
->ind
[i
]]);
349 fprintf(fplog
, "\n");
350 for (i
= 0; i
< re
->nrepl
; i
++)
352 fprintf(fplog
, " %5d", (int)re
->q
[ereLAMBDA
][re
->ind
[i
]]);
354 fprintf(fplog
, "\n");
357 gmx_incons("Unknown replica exchange quantity");
361 fprintf(fplog
, "\nRepl p");
362 for (i
= 0; i
< re
->nrepl
; i
++)
364 fprintf(fplog
, " %5.2f", re
->pres
[re
->ind
[i
]]);
367 for (i
= 0; i
< re
->nrepl
; i
++)
369 if ((i
> 0) && (re
->pres
[re
->ind
[i
]] < re
->pres
[re
->ind
[i
-1]]))
371 fprintf(fplog
, "\nWARNING: The reference pressures decrease with increasing temperatures\n\n");
372 fprintf(stderr
, "\nWARNING: The reference pressures decrease with increasing temperatures\n\n");
377 if (replExParams
.randomSeed
== -1)
381 re
->seed
= static_cast<int>(gmx::makeRandomSeed());
387 gmx_sumi_sim(1, &(re
->seed
), ms
);
391 re
->seed
= replExParams
.randomSeed
;
393 fprintf(fplog
, "\nReplica exchange interval: %d\n", re
->nst
);
394 fprintf(fplog
, "\nReplica random seed: %d\n", re
->seed
);
399 snew(re
->prob_sum
, re
->nrepl
);
400 snew(re
->nexchange
, re
->nrepl
);
401 snew(re
->nmoves
, re
->nrepl
);
402 for (i
= 0; i
< re
->nrepl
; i
++)
404 snew(re
->nmoves
[i
], re
->nrepl
);
406 fprintf(fplog
, "Replica exchange information below: ex and x = exchange, pr = probability\n");
408 /* generate space for the helper functions so we don't have to snew each time */
410 snew(re
->destinations
, re
->nrepl
);
411 snew(re
->incycle
, re
->nrepl
);
412 snew(re
->tmpswap
, re
->nrepl
);
413 snew(re
->cyclic
, re
->nrepl
);
414 snew(re
->order
, re
->nrepl
);
415 for (i
= 0; i
< re
->nrepl
; i
++)
417 snew(re
->cyclic
[i
], re
->nrepl
+1);
418 snew(re
->order
[i
], re
->nrepl
);
420 /* allocate space for the functions storing the data for the replicas */
421 /* not all of these arrays needed in all cases, but they don't take
422 up much space, since the max size is nrepl**2 */
423 snew(re
->prob
, re
->nrepl
);
424 snew(re
->bEx
, re
->nrepl
);
425 snew(re
->beta
, re
->nrepl
);
426 snew(re
->Vol
, re
->nrepl
);
427 snew(re
->Epot
, re
->nrepl
);
428 snew(re
->de
, re
->nrepl
);
429 for (i
= 0; i
< re
->nrepl
; i
++)
431 snew(re
->de
[i
], re
->nrepl
);
433 re
->nex
= replExParams
.numExchanges
;
437 static void exchange_reals(const gmx_multisim_t gmx_unused
*ms
, int gmx_unused b
, real
*v
, int n
)
447 MPI_Sendrecv(v, n*sizeof(real),MPI_BYTE,MSRANK(ms,b),0,
448 buf,n*sizeof(real),MPI_BYTE,MSRANK(ms,b),0,
449 ms->mpi_comm_masters,MPI_STATUS_IGNORE);
454 MPI_Isend(v
, n
*sizeof(real
), MPI_BYTE
, MSRANK(ms
, b
), 0,
455 ms
->mpi_comm_masters
, &mpi_req
);
456 MPI_Recv(buf
, n
*sizeof(real
), MPI_BYTE
, MSRANK(ms
, b
), 0,
457 ms
->mpi_comm_masters
, MPI_STATUS_IGNORE
);
458 MPI_Wait(&mpi_req
, MPI_STATUS_IGNORE
);
461 for (i
= 0; i
< n
; i
++)
470 static void exchange_doubles(const gmx_multisim_t gmx_unused
*ms
, int gmx_unused b
, double *v
, int n
)
480 MPI_Sendrecv(v, n*sizeof(double),MPI_BYTE,MSRANK(ms,b),0,
481 buf,n*sizeof(double),MPI_BYTE,MSRANK(ms,b),0,
482 ms->mpi_comm_masters,MPI_STATUS_IGNORE);
487 MPI_Isend(v
, n
*sizeof(double), MPI_BYTE
, MSRANK(ms
, b
), 0,
488 ms
->mpi_comm_masters
, &mpi_req
);
489 MPI_Recv(buf
, n
*sizeof(double), MPI_BYTE
, MSRANK(ms
, b
), 0,
490 ms
->mpi_comm_masters
, MPI_STATUS_IGNORE
);
491 MPI_Wait(&mpi_req
, MPI_STATUS_IGNORE
);
494 for (i
= 0; i
< n
; i
++)
502 static void exchange_rvecs(const gmx_multisim_t gmx_unused
*ms
, int gmx_unused b
, rvec
*v
, int n
)
512 MPI_Sendrecv(v[0], n*sizeof(rvec),MPI_BYTE,MSRANK(ms,b),0,
513 buf[0],n*sizeof(rvec),MPI_BYTE,MSRANK(ms,b),0,
514 ms->mpi_comm_masters,MPI_STATUS_IGNORE);
519 MPI_Isend(v
[0], n
*sizeof(rvec
), MPI_BYTE
, MSRANK(ms
, b
), 0,
520 ms
->mpi_comm_masters
, &mpi_req
);
521 MPI_Recv(buf
[0], n
*sizeof(rvec
), MPI_BYTE
, MSRANK(ms
, b
), 0,
522 ms
->mpi_comm_masters
, MPI_STATUS_IGNORE
);
523 MPI_Wait(&mpi_req
, MPI_STATUS_IGNORE
);
526 for (i
= 0; i
< n
; i
++)
528 copy_rvec(buf
[i
], v
[i
]);
534 static void exchange_state(const gmx_multisim_t
*ms
, int b
, t_state
*state
)
536 /* When t_state changes, this code should be updated. */
538 ngtc
= state
->ngtc
* state
->nhchainlength
;
539 nnhpres
= state
->nnhpres
* state
->nhchainlength
;
540 exchange_rvecs(ms
, b
, state
->box
, DIM
);
541 exchange_rvecs(ms
, b
, state
->box_rel
, DIM
);
542 exchange_rvecs(ms
, b
, state
->boxv
, DIM
);
543 exchange_reals(ms
, b
, &(state
->veta
), 1);
544 exchange_reals(ms
, b
, &(state
->vol0
), 1);
545 exchange_rvecs(ms
, b
, state
->svir_prev
, DIM
);
546 exchange_rvecs(ms
, b
, state
->fvir_prev
, DIM
);
547 exchange_rvecs(ms
, b
, state
->pres_prev
, DIM
);
548 exchange_doubles(ms
, b
, state
->nosehoover_xi
.data(), ngtc
);
549 exchange_doubles(ms
, b
, state
->nosehoover_vxi
.data(), ngtc
);
550 exchange_doubles(ms
, b
, state
->nhpres_xi
.data(), nnhpres
);
551 exchange_doubles(ms
, b
, state
->nhpres_vxi
.data(), nnhpres
);
552 exchange_doubles(ms
, b
, state
->therm_integral
.data(), state
->ngtc
);
553 exchange_doubles(ms
, b
, &state
->baros_integral
, 1);
554 exchange_rvecs(ms
, b
, as_rvec_array(state
->x
.data()), state
->natoms
);
555 exchange_rvecs(ms
, b
, as_rvec_array(state
->v
.data()), state
->natoms
);
558 static void copy_state_serial(const t_state
*src
, t_state
*dest
)
562 /* Currently the local state is always a pointer to the global
563 * in serial, so we should never end up here.
564 * TODO: Implement a (trivial) t_state copy once converted to C++.
566 GMX_RELEASE_ASSERT(false, "State copying is currently not implemented in replica exchange");
570 static void scale_velocities(t_state
*state
, real fac
)
574 if (as_rvec_array(state
->v
.data()))
576 for (i
= 0; i
< state
->natoms
; i
++)
578 svmul(fac
, state
->v
[i
], state
->v
[i
]);
583 static void print_transition_matrix(FILE *fplog
, int n
, int **nmoves
, int *nattempt
)
588 ntot
= nattempt
[0] + nattempt
[1];
589 fprintf(fplog
, "\n");
590 fprintf(fplog
, "Repl");
591 for (i
= 0; i
< n
; i
++)
593 fprintf(fplog
, " "); /* put the title closer to the center */
595 fprintf(fplog
, "Empirical Transition Matrix\n");
597 fprintf(fplog
, "Repl");
598 for (i
= 0; i
< n
; i
++)
600 fprintf(fplog
, "%8d", (i
+1));
602 fprintf(fplog
, "\n");
604 for (i
= 0; i
< n
; i
++)
606 fprintf(fplog
, "Repl");
607 for (j
= 0; j
< n
; j
++)
610 if (nmoves
[i
][j
] > 0)
612 Tprint
= nmoves
[i
][j
]/(2.0*ntot
);
614 fprintf(fplog
, "%8.4f", Tprint
);
616 fprintf(fplog
, "%3d\n", i
);
620 static void print_ind(FILE *fplog
, const char *leg
, int n
, int *ind
, gmx_bool
*bEx
)
624 fprintf(fplog
, "Repl %2s %2d", leg
, ind
[0]);
625 for (i
= 1; i
< n
; i
++)
627 fprintf(fplog
, " %c %2d", (bEx
!= nullptr && bEx
[i
]) ? 'x' : ' ', ind
[i
]);
629 fprintf(fplog
, "\n");
632 static void print_allswitchind(FILE *fplog
, int n
, int *pind
, int *allswaps
, int *tmpswap
)
636 for (i
= 0; i
< n
; i
++)
638 tmpswap
[i
] = allswaps
[i
];
640 for (i
= 0; i
< n
; i
++)
642 allswaps
[i
] = tmpswap
[pind
[i
]];
645 fprintf(fplog
, "\nAccepted Exchanges: ");
646 for (i
= 0; i
< n
; i
++)
648 fprintf(fplog
, "%d ", pind
[i
]);
650 fprintf(fplog
, "\n");
652 /* the "Order After Exchange" is the state label corresponding to the configuration that
653 started in state listed in order, i.e.
658 configuration starting in simulation 3 is now in simulation 0,
659 configuration starting in simulation 0 is now in simulation 1,
660 configuration starting in simulation 1 is now in simulation 2,
661 configuration starting in simulation 2 is now in simulation 3
663 fprintf(fplog
, "Order After Exchange: ");
664 for (i
= 0; i
< n
; i
++)
666 fprintf(fplog
, "%d ", allswaps
[i
]);
668 fprintf(fplog
, "\n\n");
671 static void print_prob(FILE *fplog
, const char *leg
, int n
, real
*prob
)
676 fprintf(fplog
, "Repl %2s ", leg
);
677 for (i
= 1; i
< n
; i
++)
681 sprintf(buf
, "%4.2f", prob
[i
]);
682 fprintf(fplog
, " %3s", buf
[0] == '1' ? "1.0" : buf
+1);
689 fprintf(fplog
, "\n");
692 static void print_count(FILE *fplog
, const char *leg
, int n
, int *count
)
696 fprintf(fplog
, "Repl %2s ", leg
);
697 for (i
= 1; i
< n
; i
++)
699 fprintf(fplog
, " %4d", count
[i
]);
701 fprintf(fplog
, "\n");
704 static real
calc_delta(FILE *fplog
, gmx_bool bPrint
, struct gmx_repl_ex
*re
, int a
, int b
, int ap
, int bp
)
707 real ediff
, dpV
, delta
= 0;
708 real
*Epot
= re
->Epot
;
711 real
*beta
= re
->beta
;
713 /* Two cases; we are permuted and not. In all cases, setting ap = a and bp = b will reduce
714 to the non permuted case */
720 * Okabe et. al. Chem. Phys. Lett. 335 (2001) 435-439
722 ediff
= Epot
[b
] - Epot
[a
];
723 delta
= -(beta
[bp
] - beta
[ap
])*ediff
;
726 /* two cases: when we are permuted, and not. */
728 ediff = E_new - E_old
729 = [H_b(x_a) + H_a(x_b)] - [H_b(x_b) + H_a(x_a)]
730 = [H_b(x_a) - H_a(x_a)] + [H_a(x_b) - H_b(x_b)]
731 = de[b][a] + de[a][b] */
734 ediff = E_new - E_old
735 = [H_bp(x_a) + H_ap(x_b)] - [H_bp(x_b) + H_ap(x_a)]
736 = [H_bp(x_a) - H_ap(x_a)] + [H_ap(x_b) - H_bp(x_b)]
737 = [H_bp(x_a) - H_a(x_a) + H_a(x_a) - H_ap(x_a)] + [H_ap(x_b) - H_b(x_b) + H_b(x_b) - H_bp(x_b)]
738 = [H_bp(x_a) - H_a(x_a)] - [H_ap(x_a) - H_a(x_a)] + [H_ap(x_b) - H_b(x_b)] - H_bp(x_b) - H_b(x_b)]
739 = (de[bp][a] - de[ap][a]) + (de[ap][b] - de[bp][b]) */
740 /* but, in the current code implementation, we flip configurations, not indices . . .
741 So let's examine that.
742 = [H_b(x_ap) - H_a(x_a)] - [H_a(x_ap) - H_a(x_a)] + [H_a(x_bp) - H_b(x_b)] - H_b(x_bp) - H_b(x_b)]
743 = [H_b(x_ap) - H_a(x_ap)] + [H_a(x_bp) - H_b(x_pb)]
744 = (de[b][ap] - de[a][ap]) + (de[a][bp] - de[b][bp]
745 So, if we exchange b<=> bp and a<=> ap, we return to the same result.
746 So the simple solution is to flip the
747 position of perturbed and original indices in the tests.
750 ediff
= (de
[bp
][a
] - de
[ap
][a
]) + (de
[ap
][b
] - de
[bp
][b
]);
751 delta
= ediff
*beta
[a
]; /* assume all same temperature in this case */
755 /* delta = reduced E_new - reduced E_old
756 = [beta_b H_b(x_a) + beta_a H_a(x_b)] - [beta_b H_b(x_b) + beta_a H_a(x_a)]
757 = [beta_b H_b(x_a) - beta_a H_a(x_a)] + [beta_a H_a(x_b) - beta_b H_b(x_b)]
758 = [beta_b dH_b(x_a) + beta_b H_a(x_a) - beta_a H_a(x_a)] +
759 [beta_a dH_a(x_b) + beta_a H_b(x_b) - beta_b H_b(x_b)]
760 = [beta_b dH_b(x_a) + [beta_a dH_a(x_b) +
761 beta_b (H_a(x_a) - H_b(x_b)]) - beta_a (H_a(x_a) - H_b(x_b))
762 = beta_b dH_b(x_a) + beta_a dH_a(x_b) - (beta_b - beta_a)(H_b(x_b) - H_a(x_a) */
763 /* delta = beta[b]*de[b][a] + beta[a]*de[a][b] - (beta[b] - beta[a])*(Epot[b] - Epot[a]; */
764 /* permuted (big breath!) */
765 /* delta = reduced E_new - reduced E_old
766 = [beta_bp H_bp(x_a) + beta_ap H_ap(x_b)] - [beta_bp H_bp(x_b) + beta_ap H_ap(x_a)]
767 = [beta_bp H_bp(x_a) - beta_ap H_ap(x_a)] + [beta_ap H_ap(x_b) - beta_bp H_bp(x_b)]
768 = [beta_bp H_bp(x_a) - beta_ap H_ap(x_a)] + [beta_ap H_ap(x_b) - beta_bp H_bp(x_b)]
769 - beta_pb H_a(x_a) + beta_ap H_a(x_a) + beta_pb H_a(x_a) - beta_ap H_a(x_a)
770 - beta_ap H_b(x_b) + beta_bp H_b(x_b) + beta_ap H_b(x_b) - beta_bp H_b(x_b)
771 = [(beta_bp H_bp(x_a) - beta_bp H_a(x_a)) - (beta_ap H_ap(x_a) - beta_ap H_a(x_a))] +
772 [(beta_ap H_ap(x_b) - beta_ap H_b(x_b)) - (beta_bp H_bp(x_b) - beta_bp H_b(x_b))]
773 + beta_pb H_a(x_a) - beta_ap H_a(x_a) + beta_ap H_b(x_b) - beta_bp H_b(x_b)
774 = [beta_bp (H_bp(x_a) - H_a(x_a)) - beta_ap (H_ap(x_a) - H_a(x_a))] +
775 [beta_ap (H_ap(x_b) - H_b(x_b)) - beta_bp (H_bp(x_b) - H_b(x_b))]
776 + beta_pb (H_a(x_a) - H_b(x_b)) - beta_ap (H_a(x_a) - H_b(x_b))
777 = ([beta_bp de[bp][a] - beta_ap de[ap][a]) + beta_ap de[ap][b] - beta_bp de[bp][b])
778 + (beta_pb-beta_ap)(H_a(x_a) - H_b(x_b)) */
779 delta
= beta
[bp
]*(de
[bp
][a
] - de
[bp
][b
]) + beta
[ap
]*(de
[ap
][b
] - de
[ap
][a
]) - (beta
[bp
]-beta
[ap
])*(Epot
[b
]-Epot
[a
]);
782 gmx_incons("Unknown replica exchange quantity");
786 fprintf(fplog
, "Repl %d <-> %d dE_term = %10.3e (kT)\n", a
, b
, delta
);
790 /* revist the calculation for 5.0. Might be some improvements. */
791 dpV
= (beta
[ap
]*re
->pres
[ap
]-beta
[bp
]*re
->pres
[bp
])*(Vol
[b
]-Vol
[a
])/PRESFAC
;
794 fprintf(fplog
, " dpV = %10.3e d = %10.3e\n", dpV
, delta
+ dpV
);
802 test_for_replica_exchange(FILE *fplog
,
803 const gmx_multisim_t
*ms
,
804 struct gmx_repl_ex
*re
,
805 gmx_enerdata_t
*enerd
,
810 int m
, i
, j
, a
, b
, ap
, bp
, i0
, i1
, tmp
;
812 gmx_bool bPrint
, bMultiEx
;
813 gmx_bool
*bEx
= re
->bEx
;
814 real
*prob
= re
->prob
;
815 int *pind
= re
->destinations
; /* permuted index */
816 gmx_bool bEpot
= FALSE
;
817 gmx_bool bDLambda
= FALSE
;
818 gmx_bool bVol
= FALSE
;
819 gmx::ThreeFry2x64
<64> rng(re
->seed
, gmx::RandomDomain::ReplicaExchange
);
820 gmx::UniformRealDistribution
<real
> uniformRealDist
;
821 gmx::UniformIntDistribution
<int> uniformNreplDist(0, re
->nrepl
-1);
823 bMultiEx
= (re
->nex
> 1); /* multiple exchanges at each state */
824 fprintf(fplog
, "Replica exchange at step %" GMX_PRId64
" time %.5f\n", step
, time
);
828 for (i
= 0; i
< re
->nrepl
; i
++)
833 re
->Vol
[re
->repl
] = vol
;
835 if ((re
->type
== ereTEMP
|| re
->type
== ereTL
))
837 for (i
= 0; i
< re
->nrepl
; i
++)
842 re
->Epot
[re
->repl
] = enerd
->term
[F_EPOT
];
843 /* temperatures of different states*/
844 for (i
= 0; i
< re
->nrepl
; i
++)
846 re
->beta
[i
] = 1.0/(re
->q
[ereTEMP
][i
]*BOLTZ
);
851 for (i
= 0; i
< re
->nrepl
; i
++)
853 re
->beta
[i
] = 1.0/(re
->temp
*BOLTZ
); /* we have a single temperature */
856 if (re
->type
== ereLAMBDA
|| re
->type
== ereTL
)
859 /* lambda differences. */
860 /* de[i][j] is the energy of the jth simulation in the ith Hamiltonian
861 minus the energy of the jth simulation in the jth Hamiltonian */
862 for (i
= 0; i
< re
->nrepl
; i
++)
864 for (j
= 0; j
< re
->nrepl
; j
++)
869 for (i
= 0; i
< re
->nrepl
; i
++)
871 re
->de
[i
][re
->repl
] = (enerd
->enerpart_lambda
[(int)re
->q
[ereLAMBDA
][i
]+1]-enerd
->enerpart_lambda
[0]);
875 /* now actually do the communication */
878 gmx_sum_sim(re
->nrepl
, re
->Vol
, ms
);
882 gmx_sum_sim(re
->nrepl
, re
->Epot
, ms
);
886 for (i
= 0; i
< re
->nrepl
; i
++)
888 gmx_sum_sim(re
->nrepl
, re
->de
[i
], ms
);
892 /* make a duplicate set of indices for shuffling */
893 for (i
= 0; i
< re
->nrepl
; i
++)
895 pind
[i
] = re
->ind
[i
];
898 rng
.restart( step
, 0 );
902 /* multiple random switch exchange */
906 for (i
= 0; i
< re
->nex
+ nself
; i
++)
908 // For now this is superfluous, but just in case we ever add more
909 // calls in different branches it is safer to always reset the distribution.
910 uniformNreplDist
.reset();
912 /* randomly select a pair */
913 /* in theory, could reduce this by identifying only which switches had a nonneglibible
914 probability of occurring (log p > -100) and only operate on those switches */
915 /* find out which state it is from, and what label that state currently has. Likely
916 more work that useful. */
917 i0
= uniformNreplDist(rng
);
918 i1
= uniformNreplDist(rng
);
922 continue; /* self-exchange, back up and do it again */
925 a
= re
->ind
[i0
]; /* what are the indices of these states? */
930 bPrint
= FALSE
; /* too noisy */
931 /* calculate the energy difference */
932 /* if the code changes to flip the STATES, rather than the configurations,
933 use the commented version of the code */
934 /* delta = calc_delta(fplog,bPrint,re,a,b,ap,bp); */
935 delta
= calc_delta(fplog
, bPrint
, re
, ap
, bp
, a
, b
);
937 /* we actually only use the first space in the prob and bEx array,
938 since there are actually many switches between pairs. */
948 if (delta
> PROBABILITYCUTOFF
)
954 prob
[0] = exp(-delta
);
956 // roll a number to determine if accepted. For now it is superfluous to
957 // reset, but just in case we ever add more calls in different branches
958 // it is safer to always reset the distribution.
959 uniformRealDist
.reset();
960 bEx
[0] = uniformRealDist(rng
) < prob
[0];
962 re
->prob_sum
[0] += prob
[0];
966 /* swap the states */
972 re
->nattempt
[0]++; /* keep track of total permutation trials here */
973 print_allswitchind(fplog
, re
->nrepl
, pind
, re
->allswaps
, re
->tmpswap
);
977 /* standard nearest neighbor replica exchange */
979 m
= (step
/ re
->nst
) % 2;
980 for (i
= 1; i
< re
->nrepl
; i
++)
985 bPrint
= (re
->repl
== a
|| re
->repl
== b
);
988 delta
= calc_delta(fplog
, bPrint
, re
, a
, b
, a
, b
);
997 if (delta
> PROBABILITYCUTOFF
)
1003 prob
[i
] = exp(-delta
);
1005 // roll a number to determine if accepted. For now it is superfluous to
1006 // reset, but just in case we ever add more calls in different branches
1007 // it is safer to always reset the distribution.
1008 uniformRealDist
.reset();
1009 bEx
[i
] = uniformRealDist(rng
) < prob
[i
];
1011 re
->prob_sum
[i
] += prob
[i
];
1015 /* swap these two */
1017 pind
[i
-1] = pind
[i
];
1019 re
->nexchange
[i
]++; /* statistics for back compatibility */
1028 /* print some statistics */
1029 print_ind(fplog
, "ex", re
->nrepl
, re
->ind
, bEx
);
1030 print_prob(fplog
, "pr", re
->nrepl
, prob
);
1031 fprintf(fplog
, "\n");
1035 /* record which moves were made and accepted */
1036 for (i
= 0; i
< re
->nrepl
; i
++)
1038 re
->nmoves
[re
->ind
[i
]][pind
[i
]] += 1;
1039 re
->nmoves
[pind
[i
]][re
->ind
[i
]] += 1;
1041 fflush(fplog
); /* make sure we can see what the last exchange was */
1045 cyclic_decomposition(const int *destinations
,
1054 for (i
= 0; i
< nrepl
; i
++)
1058 for (i
= 0; i
< nrepl
; i
++) /* one cycle for each replica */
1069 for (j
= 0; j
< nrepl
; j
++) /* potentially all cycles are part, but we will break first */
1071 p
= destinations
[p
]; /* start permuting */
1079 break; /* we've reached the original element, the cycle is complete, and we marked the end. */
1083 cyclic
[i
][c
] = p
; /* each permutation gives a new member of the cycle */
1089 *nswap
= maxlen
- 1;
1093 for (i
= 0; i
< nrepl
; i
++)
1095 fprintf(debug
, "Cycle %d:", i
);
1096 for (j
= 0; j
< nrepl
; j
++)
1098 if (cyclic
[i
][j
] < 0)
1102 fprintf(debug
, "%2d", cyclic
[i
][j
]);
1104 fprintf(debug
, "\n");
1111 compute_exchange_order(int **cyclic
,
1118 for (j
= 0; j
< maxswap
; j
++)
1120 for (i
= 0; i
< nrepl
; i
++)
1122 if (cyclic
[i
][j
+1] >= 0)
1124 order
[cyclic
[i
][j
+1]][j
] = cyclic
[i
][j
];
1125 order
[cyclic
[i
][j
]][j
] = cyclic
[i
][j
+1];
1128 for (i
= 0; i
< nrepl
; i
++)
1130 if (order
[i
][j
] < 0)
1132 order
[i
][j
] = i
; /* if it's not exchanging, it should stay this round*/
1139 fprintf(debug
, "Replica Exchange Order\n");
1140 for (i
= 0; i
< nrepl
; i
++)
1142 fprintf(debug
, "Replica %d:", i
);
1143 for (j
= 0; j
< maxswap
; j
++)
1145 if (order
[i
][j
] < 0)
1149 fprintf(debug
, "%2d", order
[i
][j
]);
1151 fprintf(debug
, "\n");
1158 prepare_to_do_exchange(struct gmx_repl_ex
*re
,
1159 const int replica_id
,
1161 gmx_bool
*bThisReplicaExchanged
)
1164 /* Hold the cyclic decomposition of the (multiple) replica
1166 gmx_bool bAnyReplicaExchanged
= FALSE
;
1167 *bThisReplicaExchanged
= FALSE
;
1169 for (i
= 0; i
< re
->nrepl
; i
++)
1171 if (re
->destinations
[i
] != re
->ind
[i
])
1173 /* only mark as exchanged if the index has been shuffled */
1174 bAnyReplicaExchanged
= TRUE
;
1178 if (bAnyReplicaExchanged
)
1180 /* reinitialize the placeholder arrays */
1181 for (i
= 0; i
< re
->nrepl
; i
++)
1183 for (j
= 0; j
< re
->nrepl
; j
++)
1185 re
->cyclic
[i
][j
] = -1;
1186 re
->order
[i
][j
] = -1;
1190 /* Identify the cyclic decomposition of the permutation (very
1191 * fast if neighbor replica exchange). */
1192 cyclic_decomposition(re
->destinations
, re
->cyclic
, re
->incycle
, re
->nrepl
, maxswap
);
1194 /* Now translate the decomposition into a replica exchange
1195 * order at each step. */
1196 compute_exchange_order(re
->cyclic
, re
->order
, re
->nrepl
, *maxswap
);
1198 /* Did this replica do any exchange at any point? */
1199 for (j
= 0; j
< *maxswap
; j
++)
1201 if (replica_id
!= re
->order
[replica_id
][j
])
1203 *bThisReplicaExchanged
= TRUE
;
1210 gmx_bool
replica_exchange(FILE *fplog
, const t_commrec
*cr
, struct gmx_repl_ex
*re
,
1211 t_state
*state
, gmx_enerdata_t
*enerd
,
1212 t_state
*state_local
, gmx_int64_t step
, real time
)
1216 int exchange_partner
;
1218 /* Number of rounds of exchanges needed to deal with any multiple
1220 /* Where each replica ends up after the exchange attempt(s). */
1221 /* The order in which multiple exchanges will occur. */
1222 gmx_bool bThisReplicaExchanged
= FALSE
;
1226 replica_id
= re
->repl
;
1227 test_for_replica_exchange(fplog
, cr
->ms
, re
, enerd
, det(state_local
->box
), step
, time
);
1228 prepare_to_do_exchange(re
, replica_id
, &maxswap
, &bThisReplicaExchanged
);
1230 /* Do intra-simulation broadcast so all processors belonging to
1231 * each simulation know whether they need to participate in
1232 * collecting the state. Otherwise, they might as well get on with
1233 * the next thing to do. */
1234 if (DOMAINDECOMP(cr
))
1237 MPI_Bcast(&bThisReplicaExchanged
, sizeof(gmx_bool
), MPI_BYTE
, MASTERRANK(cr
),
1238 cr
->mpi_comm_mygroup
);
1242 if (bThisReplicaExchanged
)
1244 /* Exchange the states */
1245 /* Collect the global state on the master node */
1246 if (DOMAINDECOMP(cr
))
1248 dd_collect_state(cr
->dd
, state_local
, state
);
1252 copy_state_serial(state_local
, state
);
1257 /* There will be only one swap cycle with standard replica
1258 * exchange, but there may be multiple swap cycles if we
1259 * allow multiple swaps. */
1261 for (j
= 0; j
< maxswap
; j
++)
1263 exchange_partner
= re
->order
[replica_id
][j
];
1265 if (exchange_partner
!= replica_id
)
1267 /* Exchange the global states between the master nodes */
1270 fprintf(debug
, "Exchanging %d with %d\n", replica_id
, exchange_partner
);
1272 exchange_state(cr
->ms
, exchange_partner
, state
);
1275 /* For temperature-type replica exchange, we need to scale
1276 * the velocities. */
1277 if (re
->type
== ereTEMP
|| re
->type
== ereTL
)
1279 scale_velocities(state
, sqrt(re
->q
[ereTEMP
][replica_id
]/re
->q
[ereTEMP
][re
->destinations
[replica_id
]]));
1284 /* With domain decomposition the global state is distributed later */
1285 if (!DOMAINDECOMP(cr
))
1287 /* Copy the global state to the local state data structure */
1288 copy_state_serial(state
, state_local
);
1292 return bThisReplicaExchanged
;
1295 void print_replica_exchange_statistics(FILE *fplog
, struct gmx_repl_ex
*re
)
1299 fprintf(fplog
, "\nReplica exchange statistics\n");
1303 fprintf(fplog
, "Repl %d attempts, %d odd, %d even\n",
1304 re
->nattempt
[0]+re
->nattempt
[1], re
->nattempt
[1], re
->nattempt
[0]);
1306 fprintf(fplog
, "Repl average probabilities:\n");
1307 for (i
= 1; i
< re
->nrepl
; i
++)
1309 if (re
->nattempt
[i
%2] == 0)
1315 re
->prob
[i
] = re
->prob_sum
[i
]/re
->nattempt
[i
%2];
1318 print_ind(fplog
, "", re
->nrepl
, re
->ind
, nullptr);
1319 print_prob(fplog
, "", re
->nrepl
, re
->prob
);
1321 fprintf(fplog
, "Repl number of exchanges:\n");
1322 print_ind(fplog
, "", re
->nrepl
, re
->ind
, nullptr);
1323 print_count(fplog
, "", re
->nrepl
, re
->nexchange
);
1325 fprintf(fplog
, "Repl average number of exchanges:\n");
1326 for (i
= 1; i
< re
->nrepl
; i
++)
1328 if (re
->nattempt
[i
%2] == 0)
1334 re
->prob
[i
] = ((real
)re
->nexchange
[i
])/re
->nattempt
[i
%2];
1337 print_ind(fplog
, "", re
->nrepl
, re
->ind
, nullptr);
1338 print_prob(fplog
, "", re
->nrepl
, re
->prob
);
1340 fprintf(fplog
, "\n");
1342 /* print the transition matrix */
1343 print_transition_matrix(fplog
, re
->nrepl
, re
->nmoves
, re
->nattempt
);