Parse user-supplied GPU task assignment only when needed
[gromacs.git] / src / gromacs / hardware / hardwaretopology.cpp
blob44a8a120381d2f3559f057871d5eaf5fce2a5e78
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 2012,2013,2014,2015,2016,2017, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
36 /*! \internal \file
37 * \brief
38 * Implements gmx::HardwareTopology.
40 * \author Erik Lindahl <erik.lindahl@gmail.com>
41 * \ingroup module_hardware
44 #include "gmxpre.h"
46 #include "hardwaretopology.h"
48 #include "config.h"
50 #include <cstdio>
52 #include <algorithm>
53 #include <vector>
55 #if GMX_HWLOC
56 # include <hwloc.h>
57 #endif
59 #include "gromacs/hardware/cpuinfo.h"
60 #include "gromacs/utility/gmxassert.h"
62 #ifdef HAVE_UNISTD_H
63 # include <unistd.h> // sysconf()
64 #endif
65 #if GMX_NATIVE_WINDOWS
66 # include <windows.h> // GetSystemInfo()
67 #endif
69 //! Convenience macro to help us avoid ifdefs each time we use sysconf
70 #if !defined(_SC_NPROCESSORS_ONLN) && defined(_SC_NPROC_ONLN)
71 # define _SC_NPROCESSORS_ONLN _SC_NPROC_ONLN
72 #endif
74 namespace gmx
77 namespace
80 /*****************************************************************************
81 * *
82 * Utility functions for extracting hardware topology from CpuInfo object *
83 * *
84 *****************************************************************************/
86 /*! \brief Initialize machine data from basic information in cpuinfo
88 * \param machine Machine tree structure where information will be assigned
89 * if the cpuinfo object contains topology information.
90 * \param supportLevel If topology information is available in CpuInfo,
91 * this will be updated to reflect the amount of
92 * information written to the machine structure.
94 void
95 parseCpuInfo(HardwareTopology::Machine * machine,
96 HardwareTopology::SupportLevel * supportLevel)
98 CpuInfo cpuInfo(CpuInfo::detect());
100 if (!cpuInfo.logicalProcessors().empty())
102 int nSockets = 0;
103 int nCores = 0;
104 int nHwThreads = 0;
106 // Copy the logical processor information from cpuinfo
107 for (auto &l : cpuInfo.logicalProcessors())
109 machine->logicalProcessors.push_back( { l.socketRankInMachine, l.coreRankInSocket, l.hwThreadRankInCore, -1 } );
110 nSockets = std::max(nSockets, l.socketRankInMachine);
111 nCores = std::max(nCores, l.coreRankInSocket);
112 nHwThreads = std::max(nHwThreads, l.hwThreadRankInCore);
115 // Fill info form sockets/cores/hwthreads
116 int socketId = 0;
117 int coreId = 0;
118 int hwThreadId = 0;
120 machine->sockets.resize(nSockets + 1);
121 for (auto &s : machine->sockets)
123 s.id = socketId++;
124 s.cores.resize(nCores + 1);
125 for (auto &c : s.cores)
127 c.id = coreId++;
128 c.numaNodeId = -1; // No numa information
129 c.hwThreads.resize(nHwThreads + 1);
130 for (auto &t : c.hwThreads)
132 t.id = hwThreadId++;
133 t.logicalProcessorId = -1; // set as unassigned for now
138 // Fill the logical processor id in the right place
139 for (std::size_t i = 0; i < machine->logicalProcessors.size(); i++)
141 const HardwareTopology::LogicalProcessor &l = machine->logicalProcessors[i];
142 machine->sockets[l.socketRankInMachine].cores[l.coreRankInSocket].hwThreads[l.hwThreadRankInCore].logicalProcessorId = static_cast<int>(i);
144 machine->logicalProcessorCount = machine->logicalProcessors.size();
145 *supportLevel = HardwareTopology::SupportLevel::Basic;
147 else
149 *supportLevel = HardwareTopology::SupportLevel::None;
153 #if GMX_HWLOC
155 #if HWLOC_API_VERSION < 0x00010b00
156 # define HWLOC_OBJ_PACKAGE HWLOC_OBJ_SOCKET
157 # define HWLOC_OBJ_NUMANODE HWLOC_OBJ_NODE
158 #endif
160 /*****************************************************************************
162 * Utility functions for extracting hardware topology from hwloc library *
164 *****************************************************************************/
166 /*! \brief Return vector of all descendants of a given type in hwloc topology
168 * \param obj Non-null hwloc object.
169 * \param type hwloc object type to find. The routine will only search
170 * on levels below obj.
172 * \return vector containing all the objects of given type that are
173 * descendants of the provided object. If no objects of this type
174 * were found, the vector will be empty.
176 const std::vector<hwloc_obj_t>
177 getHwLocDescendantsByType(const hwloc_obj_t obj, const hwloc_obj_type_t type)
179 GMX_RELEASE_ASSERT(obj, "NULL hwloc object provided to getHwLocDescendantsByType()");
181 std::vector<hwloc_obj_t> v;
183 // Go through children; if this object has no children obj->arity is 0,
184 // and we'll return an empty vector.
185 for (std::size_t i = 0; i < obj->arity; i++)
187 // If the child is the type we're looking for, add it directly.
188 // Otherwise call this routine recursively for each child.
189 if (obj->children[i]->type == type)
191 v.push_back(obj->children[i]);
193 else
195 std::vector<hwloc_obj_t> v2 = getHwLocDescendantsByType(obj->children[i], type);
196 v.insert(v.end(), v2.begin(), v2.end());
199 return v;
202 /*! \brief Read information about sockets, cores and threads from hwloc topology
204 * \param topo hwloc topology handle that has been initialized and loaded
205 * \param machine Pointer to the machine structure in the HardwareTopology
206 * class, where the tree of sockets/cores/threads will be written.
208 * \return If all the data is found the return value is 0, otherwise non-zero.
211 parseHwLocSocketsCoresThreads(const hwloc_topology_t topo,
212 HardwareTopology::Machine * machine)
214 const hwloc_obj_t root = hwloc_get_root_obj(topo);
215 std::vector<hwloc_obj_t> hwlocSockets = getHwLocDescendantsByType(root, HWLOC_OBJ_PACKAGE);
217 machine->logicalProcessorCount = hwloc_get_nbobjs_by_type(topo, HWLOC_OBJ_PU);
218 machine->logicalProcessors.resize(machine->logicalProcessorCount);
219 machine->sockets.resize(hwlocSockets.size());
221 bool topologyOk = !hwlocSockets.empty(); // Fail if we have no sockets in machine
223 for (std::size_t i = 0; i < hwlocSockets.size() && topologyOk; i++)
225 // Assign information about this socket
226 machine->sockets[i].id = hwlocSockets[i]->logical_index;
228 // Get children (cores)
229 std::vector<hwloc_obj_t> hwlocCores = getHwLocDescendantsByType(hwlocSockets[i], HWLOC_OBJ_CORE);
230 machine->sockets[i].cores.resize(hwlocCores.size());
232 topologyOk = topologyOk && !hwlocCores.empty(); // Fail if we have no cores in socket
234 // Loop over child cores
235 for (std::size_t j = 0; j < hwlocCores.size() && topologyOk; j++)
237 // Assign information about this core
238 machine->sockets[i].cores[j].id = hwlocCores[j]->logical_index;
239 machine->sockets[i].cores[j].numaNodeId = -1;
241 // Get children (hwthreads)
242 std::vector<hwloc_obj_t> hwlocPUs = getHwLocDescendantsByType(hwlocCores[j], HWLOC_OBJ_PU);
243 machine->sockets[i].cores[j].hwThreads.resize(hwlocPUs.size());
245 topologyOk = topologyOk && !hwlocPUs.empty(); // Fail if we have no hwthreads in core
247 // Loop over child hwthreads
248 for (std::size_t k = 0; k < hwlocPUs.size() && topologyOk; k++)
250 // Assign information about this hwthread
251 std::size_t logicalProcessorId = hwlocPUs[k]->os_index;
252 machine->sockets[i].cores[j].hwThreads[k].id = hwlocPUs[k]->logical_index;
253 machine->sockets[i].cores[j].hwThreads[k].logicalProcessorId = logicalProcessorId;
255 if (logicalProcessorId < machine->logicalProcessors.size())
257 // Cross-assign data for this hwthread to the logicalprocess vector
258 machine->logicalProcessors[logicalProcessorId].socketRankInMachine = static_cast<int>(i);
259 machine->logicalProcessors[logicalProcessorId].coreRankInSocket = static_cast<int>(j);
260 machine->logicalProcessors[logicalProcessorId].hwThreadRankInCore = static_cast<int>(k);
261 machine->logicalProcessors[logicalProcessorId].numaNodeId = -1;
263 else
265 topologyOk = false;
271 if (topologyOk)
273 return 0;
275 else
277 machine->logicalProcessors.clear();
278 machine->sockets.clear();
279 return -1;
283 /*! \brief Read cache information from hwloc topology
285 * \param topo hwloc topology handle that has been initialized and loaded
286 * \param machine Pointer to the machine structure in the HardwareTopology
287 * class, where cache data will be filled.
289 * \return If any cache data is found the return value is 0, otherwise non-zero.
292 parseHwLocCache(const hwloc_topology_t topo,
293 HardwareTopology::Machine * machine)
295 // Parse caches up to L5
296 for (int cachelevel : { 1, 2, 3, 4, 5})
298 int depth = hwloc_get_cache_type_depth(topo, cachelevel, HWLOC_OBJ_CACHE_DATA);
300 if (depth >= 0)
302 hwloc_obj_t cache = hwloc_get_next_obj_by_depth(topo, depth, nullptr);
303 if (cache != nullptr)
305 std::vector<hwloc_obj_t> hwThreads = getHwLocDescendantsByType(cache, HWLOC_OBJ_PU);
307 machine->caches.push_back( {
308 static_cast<int>(cache->attr->cache.depth),
309 static_cast<std::size_t>(cache->attr->cache.size),
310 static_cast<int>(cache->attr->cache.linesize),
311 static_cast<int>(cache->attr->cache.associativity),
312 std::max(static_cast<int>(hwThreads.size()), 1)
313 } );
317 return machine->caches.empty();
321 /*! \brief Read numa information from hwloc topology
323 * \param topo hwloc topology handle that has been initialized and loaded
324 * \param machine Pointer to the machine structure in the HardwareTopology
325 * class, where numa information will be filled.
327 * Hwloc should virtually always be able to detect numa information, but if
328 * there is only a single numa node in the system it is not reported at all.
329 * In this case we create a single numa node covering all cores.
331 * This function uses the basic socket/core/thread information detected by
332 * parseHwLocSocketsCoresThreads(), which means that routine must have
333 * completed successfully before calling this one. If this is not the case,
334 * you will get an error return code.
336 * \return If the data found makes sense (either in the numa node or the
337 * entire machine) the return value is 0, otherwise non-zero.
340 parseHwLocNuma(const hwloc_topology_t topo,
341 HardwareTopology::Machine * machine)
343 const hwloc_obj_t root = hwloc_get_root_obj(topo);
344 std::vector<hwloc_obj_t> hwlocNumaNodes = getHwLocDescendantsByType(root, HWLOC_OBJ_NUMANODE);
345 bool topologyOk = true;
347 if (!hwlocNumaNodes.empty())
349 machine->numa.nodes.resize(hwlocNumaNodes.size());
351 for (std::size_t i = 0; i < hwlocNumaNodes.size(); i++)
353 machine->numa.nodes[i].id = hwlocNumaNodes[i]->logical_index;
354 machine->numa.nodes[i].memory = hwlocNumaNodes[i]->memory.total_memory;
355 machine->numa.nodes[i].logicalProcessorId.clear();
357 // Get list of PUs in this numa node
358 std::vector<hwloc_obj_t> hwlocPUs = getHwLocDescendantsByType(hwlocNumaNodes[i], HWLOC_OBJ_PU);
360 for (auto &p : hwlocPUs)
362 machine->numa.nodes[i].logicalProcessorId.push_back(p->os_index);
364 GMX_RELEASE_ASSERT(p->os_index < machine->logicalProcessors.size(), "OS index of PU in hwloc larger than processor count");
366 machine->logicalProcessors[p->os_index].numaNodeId = static_cast<int>(i);
367 std::size_t s = machine->logicalProcessors[p->os_index].socketRankInMachine;
368 std::size_t c = machine->logicalProcessors[p->os_index].coreRankInSocket;
370 GMX_RELEASE_ASSERT(s < machine->sockets.size(), "Socket index in logicalProcessors larger than socket count");
371 GMX_RELEASE_ASSERT(c < machine->sockets[s].cores.size(), "Core index in logicalProcessors larger than core count");
372 // Set numaNodeId in core too
373 machine->sockets[s].cores[c].numaNodeId = i;
377 int depth = hwloc_get_type_depth(topo, HWLOC_OBJ_NUMANODE);
378 const struct hwloc_distances_s * dist = hwloc_get_whole_distance_matrix_by_depth(topo, depth);
379 if (dist != nullptr && dist->nbobjs == hwlocNumaNodes.size())
381 machine->numa.baseLatency = dist->latency_base;
382 machine->numa.maxRelativeLatency = dist->latency_max;
383 machine->numa.relativeLatency.resize(dist->nbobjs);
384 for (std::size_t i = 0; i < dist->nbobjs; i++)
386 machine->numa.relativeLatency[i].resize(dist->nbobjs);
387 for (std::size_t j = 0; j < dist->nbobjs; j++)
389 machine->numa.relativeLatency[i][j] = dist->latency[i*dist->nbobjs+j];
393 else
395 topologyOk = false;
398 else
400 // No numa nodes found. Use the entire machine as a numa node.
401 const hwloc_obj_t hwlocMachine = hwloc_get_next_obj_by_type(topo, HWLOC_OBJ_MACHINE, nullptr);
403 if (hwlocMachine != nullptr)
405 machine->numa.nodes.resize(1);
406 machine->numa.nodes[0].id = 0;
407 machine->numa.nodes[0].memory = hwlocMachine->memory.total_memory;
408 machine->numa.baseLatency = 10;
409 machine->numa.maxRelativeLatency = 1;
410 machine->numa.relativeLatency = { { 1.0 } };
412 for (int i = 0; i < machine->logicalProcessorCount; i++)
414 machine->numa.nodes[0].logicalProcessorId.push_back(i);
416 for (auto &l : machine->logicalProcessors)
418 l.numaNodeId = 0;
420 for (auto &s : machine->sockets)
422 for (auto &c : s.cores)
424 c.numaNodeId = 0;
428 else
430 topologyOk = false;
434 if (topologyOk)
436 return 0;
438 else
440 machine->numa.nodes.clear();
441 return -1;
446 /*! \brief Read PCI device information from hwloc topology
448 * \param topo hwloc topology handle that has been initialized and loaded
449 * \param machine Pointer to the machine structure in the HardwareTopology
450 * class, where PCI device information will be filled.
452 * \return If any devices were found the return value is 0, otherwise non-zero.
455 parseHwLocDevices(const hwloc_topology_t topo,
456 HardwareTopology::Machine * machine)
458 const hwloc_obj_t root = hwloc_get_root_obj(topo);
459 std::vector<hwloc_obj_t> pcidevs = getHwLocDescendantsByType(root, HWLOC_OBJ_PCI_DEVICE);
461 for (auto &p : pcidevs)
463 const hwloc_obj_t ancestor = hwloc_get_ancestor_obj_by_type(topo, HWLOC_OBJ_NUMANODE, p);
464 int numaId;
465 if (ancestor != nullptr)
467 numaId = ancestor->logical_index;
469 else
471 // If we only have a single numa node we belong to it, otherwise set it to -1 (unknown)
472 numaId = (machine->numa.nodes.size() == 1) ? 0 : -1;
475 GMX_RELEASE_ASSERT(p->attr, "Attributes should not be NULL for hwloc PCI object");
477 machine->devices.push_back( {
478 p->attr->pcidev.vendor_id,
479 p->attr->pcidev.device_id,
480 p->attr->pcidev.class_id,
481 p->attr->pcidev.domain,
482 p->attr->pcidev.bus,
483 p->attr->pcidev.dev,
484 p->attr->pcidev.func,
485 numaId
486 } );
488 return pcidevs.empty();
491 void
492 parseHwLoc(HardwareTopology::Machine * machine,
493 HardwareTopology::SupportLevel * supportLevel,
494 bool * isThisSystem)
496 hwloc_topology_t topo;
498 // Initialize a hwloc object, set flags to request IO device information too,
499 // try to load the topology, and get the root object. If either step fails,
500 // return that we do not have any support at all from hwloc.
501 if (hwloc_topology_init(&topo) != 0)
503 hwloc_topology_destroy(topo);
504 return; // SupportLevel::None.
507 hwloc_topology_set_flags(topo, HWLOC_TOPOLOGY_FLAG_IO_DEVICES);
509 if (hwloc_topology_load(topo) != 0 || hwloc_get_root_obj(topo) == nullptr)
511 hwloc_topology_destroy(topo);
512 return; // SupportLevel::None.
515 // If we get here, we can get a valid root object for the topology
516 *isThisSystem = hwloc_topology_is_thissystem(topo);
518 // Parse basic information about sockets, cores, and hardware threads
519 if (parseHwLocSocketsCoresThreads(topo, machine) == 0)
521 *supportLevel = HardwareTopology::SupportLevel::Basic;
523 else
525 hwloc_topology_destroy(topo);
526 return; // SupportLevel::None.
529 // Get information about cache and numa nodes
530 if (parseHwLocCache(topo, machine) == 0 && parseHwLocNuma(topo, machine) == 0)
532 *supportLevel = HardwareTopology::SupportLevel::Full;
534 else
536 hwloc_topology_destroy(topo);
537 return; // SupportLevel::Basic.
540 // PCI devices
541 if (parseHwLocDevices(topo, machine) == 0)
543 *supportLevel = HardwareTopology::SupportLevel::FullWithDevices;
546 hwloc_topology_destroy(topo);
547 return; // SupportLevel::Full or SupportLevel::FullWithDevices.
550 #endif
552 /*! \brief Try to detect the number of logical processors.
554 * \return The number of hardware processing units, or 0 if it fails.
557 detectLogicalProcessorCount()
559 int count = 0;
562 #if GMX_NATIVE_WINDOWS
563 // Windows
564 SYSTEM_INFO sysinfo;
565 GetSystemInfo( &sysinfo );
566 count = sysinfo.dwNumberOfProcessors;
567 #elif defined(HAVE_SYSCONF) && defined(_SC_NPROCESSORS_ONLN)
568 // We are probably on Unix. Check if we have the argument to use before executing any calls
569 count = sysconf(_SC_NPROCESSORS_ONLN);
570 #else
571 count = 0; // Neither windows nor Unix.
572 #endif
575 return count;
578 } // namespace anonymous
580 // static
581 HardwareTopology HardwareTopology::detect()
583 HardwareTopology result;
585 #if GMX_HWLOC
586 parseHwLoc(&result.machine_, &result.supportLevel_, &result.isThisSystem_);
587 #endif
589 // If something went wrong in hwloc (or if it was not present) we might
590 // have more information in cpuInfo
591 if (result.supportLevel_ < SupportLevel::Basic)
593 // There might be topology information in cpuInfo
594 parseCpuInfo(&result.machine_, &result.supportLevel_);
596 // If we did not manage to get anything from either hwloc or cpuInfo, find the cpu count at least
597 if (result.supportLevel_ == SupportLevel::None)
599 // No topology information; try to detect the number of logical processors at least
600 result.machine_.logicalProcessorCount = detectLogicalProcessorCount();
601 if (result.machine_.logicalProcessorCount > 0)
603 result.supportLevel_ = SupportLevel::LogicalProcessorCount;
606 return result;
609 HardwareTopology::Machine::Machine()
611 logicalProcessorCount = 0;
612 numa.baseLatency = 0.0;
613 numa.maxRelativeLatency = 0.0;
617 HardwareTopology::HardwareTopology()
618 : supportLevel_(SupportLevel::None),
619 machine_(),
620 isThisSystem_(true)
624 HardwareTopology::HardwareTopology(int logicalProcessorCount)
625 : supportLevel_(SupportLevel::None),
626 machine_(),
627 isThisSystem_(true)
629 if (logicalProcessorCount > 0)
631 machine_.logicalProcessorCount = logicalProcessorCount;
632 supportLevel_ = SupportLevel::LogicalProcessorCount;
636 int HardwareTopology::numberOfCores() const
638 if (supportLevel() >= SupportLevel::Basic)
640 // We assume all sockets have the same number of cores as socket 0.
641 // Since topology information is present, we can assume there is at least one socket.
642 return machine().sockets.size() * machine().sockets[0].cores.size();
644 else if (supportLevel() >= SupportLevel::LogicalProcessorCount)
646 return machine().logicalProcessorCount;
648 else
650 return 0;
654 } // namespace gmx