Fixed typos in GB inner dielectric commit for some kernels.
[gromacs.git] / src / mdlib / tpi.c
blob78bb75043a04e4521bcbb0291759c9f479373836
1 /* -*- mode: c; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4; c-file-style: "stroustrup"; -*-
3 *
4 * This source code is part of
5 *
6 * G R O M A C S
7 *
8 * GROningen MAchine for Chemical Simulations
9 *
10 * VERSION 3.2.0
11 * Written by David van der Spoel, Erik Lindahl, Berk Hess, and others.
12 * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
13 * Copyright (c) 2001-2004, The GROMACS development team,
14 * check out http://www.gromacs.org for more information.
16 * This program is free software; you can redistribute it and/or
17 * modify it under the terms of the GNU General Public License
18 * as published by the Free Software Foundation; either version 2
19 * of the License, or (at your option) any later version.
21 * If you want to redistribute modifications, please consider that
22 * scientific software is very special. Version control is crucial -
23 * bugs must be traceable. We will be happy to consider code for
24 * inclusion in the official distribution, but derived work must not
25 * be called official GROMACS. Details are found in the README & COPYING
26 * files - if they are missing, get the official version at www.gromacs.org.
28 * To help us fund GROMACS development, we humbly ask that you cite
29 * the papers on the package - you can find them in the top README file.
31 * For more info, check our website at http://www.gromacs.org
33 * And Hey:
34 * GROwing Monsters And Cloning Shrimps
36 #ifdef HAVE_CONFIG_H
37 #include <config.h>
38 #endif
40 #include <string.h>
41 #include <time.h>
42 #include <math.h>
43 #include "sysstuff.h"
44 #include "string2.h"
45 #include "network.h"
46 #include "confio.h"
47 #include "copyrite.h"
48 #include "smalloc.h"
49 #include "nrnb.h"
50 #include "main.h"
51 #include "chargegroup.h"
52 #include "force.h"
53 #include "macros.h"
54 #include "random.h"
55 #include "names.h"
56 #include "gmx_fatal.h"
57 #include "txtdump.h"
58 #include "typedefs.h"
59 #include "update.h"
60 #include "random.h"
61 #include "constr.h"
62 #include "vec.h"
63 #include "statutil.h"
64 #include "tgroup.h"
65 #include "mdebin.h"
66 #include "vsite.h"
67 #include "force.h"
68 #include "mdrun.h"
69 #include "domdec.h"
70 #include "partdec.h"
71 #include "gmx_random.h"
72 #include "physics.h"
73 #include "xvgr.h"
74 #include "mdatoms.h"
75 #include "ns.h"
76 #include "gmx_wallcycle.h"
77 #include "mtop_util.h"
78 #include "gmxfio.h"
79 #include "pme.h"
80 #include "gbutil.h"
83 static void global_max(t_commrec *cr,int *n)
85 int *sum,i;
87 snew(sum,cr->nnodes);
88 sum[cr->nodeid] = *n;
89 gmx_sumi(cr->nnodes,sum,cr);
90 for(i=0; i<cr->nnodes; i++)
91 *n = max(*n,sum[i]);
93 sfree(sum);
96 static void realloc_bins(double **bin,int *nbin,int nbin_new)
98 int i;
100 if (nbin_new != *nbin) {
101 srenew(*bin,nbin_new);
102 for(i=*nbin; i<nbin_new; i++)
103 (*bin)[i] = 0;
104 *nbin = nbin_new;
108 double do_tpi(FILE *fplog,t_commrec *cr,
109 int nfile, const t_filenm fnm[],
110 const output_env_t oenv, bool bVerbose,bool bCompact,
111 int nstglobalcomm,
112 gmx_vsite_t *vsite,gmx_constr_t constr,
113 int stepout,
114 t_inputrec *inputrec,
115 gmx_mtop_t *top_global,t_fcdata *fcd,
116 t_state *state,
117 t_mdatoms *mdatoms,
118 t_nrnb *nrnb,gmx_wallcycle_t wcycle,
119 gmx_edsam_t ed,
120 t_forcerec *fr,
121 int repl_ex_nst,int repl_ex_seed,
122 real cpt_period,real max_hours,
123 const char *deviceOptions,
124 unsigned long Flags,
125 gmx_runtime_t *runtime)
127 const char *TPI="Test Particle Insertion";
128 gmx_localtop_t *top;
129 gmx_groups_t *groups;
130 gmx_enerdata_t *enerd;
131 rvec *f;
132 real lambda,t,temp,beta,drmax,epot;
133 double embU,sum_embU,*sum_UgembU,V,V_all,VembU_all;
134 int status;
135 t_trxframe rerun_fr;
136 bool bDispCorr,bCharge,bRFExcl,bNotLastFrame,bStateChanged,bNS,bOurStep;
137 tensor force_vir,shake_vir,vir,pres;
138 int cg_tp,a_tp0,a_tp1,ngid,gid_tp,nener,e;
139 rvec *x_mol;
140 rvec mu_tot,x_init,dx,x_tp;
141 int nnodes,frame,nsteps,step;
142 int i,start,end;
143 gmx_rng_t tpi_rand;
144 FILE *fp_tpi=NULL;
145 char *ptr,*dump_pdb,**leg,str[STRLEN],str2[STRLEN];
146 double dbl,dump_ener;
147 bool bCavity;
148 int nat_cavity=0,d;
149 real *mass_cavity=NULL,mass_tot;
150 int nbin;
151 double invbinw,*bin,refvolshift,logV,bUlogV;
152 real dvdl,prescorr,enercorr,dvdlcorr;
153 const char *tpid_leg[2]={"direct","reweighted"};
155 /* Since numerical problems can lead to extreme negative energies
156 * when atoms overlap, we need to set a lower limit for beta*U.
158 real bU_neg_limit = -50;
160 /* Since there is no upper limit to the insertion energies,
161 * we need to set an upper limit for the distribution output.
163 real bU_bin_limit = 50;
164 real bU_logV_bin_limit = bU_bin_limit + 10;
166 nnodes = cr->nnodes;
168 top = gmx_mtop_generate_local_top(top_global,inputrec);
170 groups = &top_global->groups;
172 bCavity = (inputrec->eI == eiTPIC);
173 if (bCavity) {
174 ptr = getenv("GMX_TPIC_MASSES");
175 if (ptr == NULL) {
176 nat_cavity = 1;
177 } else {
178 /* Read (multiple) masses from env var GMX_TPIC_MASSES,
179 * The center of mass of the last atoms is then used for TPIC.
181 nat_cavity = 0;
182 while (sscanf(ptr,"%lf%n",&dbl,&i) > 0) {
183 srenew(mass_cavity,nat_cavity+1);
184 mass_cavity[nat_cavity] = dbl;
185 fprintf(fplog,"mass[%d] = %f\n",
186 nat_cavity+1,mass_cavity[nat_cavity]);
187 nat_cavity++;
188 ptr += i;
190 if (nat_cavity == 0)
191 gmx_fatal(FARGS,"Found %d masses in GMX_TPIC_MASSES",nat_cavity);
196 init_em(fplog,TPI,inputrec,&lambda,nrnb,mu_tot,
197 state->box,fr,mdatoms,top,cr,nfile,fnm,NULL,NULL);*/
198 /* We never need full pbc for TPI */
199 fr->ePBC = epbcXYZ;
200 /* Determine the temperature for the Boltzmann weighting */
201 temp = inputrec->opts.ref_t[0];
202 if (fplog) {
203 for(i=1; (i<inputrec->opts.ngtc); i++) {
204 if (inputrec->opts.ref_t[i] != temp) {
205 fprintf(fplog,"\nWARNING: The temperatures of the different temperature coupling groups are not identical\n\n");
206 fprintf(stderr,"\nWARNING: The temperatures of the different temperature coupling groups are not identical\n\n");
209 fprintf(fplog,
210 "\n The temperature for test particle insertion is %.3f K\n\n",
211 temp);
213 beta = 1.0/(BOLTZ*temp);
215 /* Number of insertions per frame */
216 nsteps = inputrec->nsteps;
218 /* Use the same neighborlist with more insertions points
219 * in a sphere of radius drmax around the initial point
221 /* This should be a proper mdp parameter */
222 drmax = inputrec->rtpi;
224 /* An environment variable can be set to dump all configurations
225 * to pdb with an insertion energy <= this value.
227 dump_pdb = getenv("GMX_TPI_DUMP");
228 dump_ener = 0;
229 if (dump_pdb)
230 sscanf(dump_pdb,"%lf",&dump_ener);
232 atoms2md(top_global,inputrec,0,NULL,0,top_global->natoms,mdatoms);
233 update_mdatoms(mdatoms,inputrec->init_lambda);
235 snew(enerd,1);
236 init_enerdata(groups->grps[egcENER].nr,inputrec->n_flambda,enerd);
237 snew(f,top_global->natoms);
239 /* Print to log file */
240 runtime_start(runtime);
241 print_date_and_time(fplog,cr->nodeid,
242 "Started Test Particle Insertion",runtime);
243 wallcycle_start(wcycle,ewcRUN);
245 /* The last charge group is the group to be inserted */
246 cg_tp = top->cgs.nr - 1;
247 a_tp0 = top->cgs.index[cg_tp];
248 a_tp1 = top->cgs.index[cg_tp+1];
249 if (debug)
250 fprintf(debug,"TPI cg %d, atoms %d-%d\n",cg_tp,a_tp0,a_tp1);
251 if (a_tp1 - a_tp0 > 1 &&
252 (inputrec->rlist < inputrec->rcoulomb ||
253 inputrec->rlist < inputrec->rvdw))
254 gmx_fatal(FARGS,"Can not do TPI for multi-atom molecule with a twin-range cut-off");
255 snew(x_mol,a_tp1-a_tp0);
257 bDispCorr = (inputrec->eDispCorr != edispcNO);
258 bCharge = FALSE;
259 for(i=a_tp0; i<a_tp1; i++) {
260 /* Copy the coordinates of the molecule to be insterted */
261 copy_rvec(state->x[i],x_mol[i-a_tp0]);
262 /* Check if we need to print electrostatic energies */
263 bCharge |= (mdatoms->chargeA[i] != 0 ||
264 (mdatoms->chargeB && mdatoms->chargeB[i] != 0));
266 bRFExcl = (bCharge && EEL_RF(fr->eeltype) && fr->eeltype!=eelRF_NEC);
268 calc_cgcm(fplog,cg_tp,cg_tp+1,&(top->cgs),state->x,fr->cg_cm);
269 if (bCavity) {
270 if (norm(fr->cg_cm[cg_tp]) > 0.5*inputrec->rlist && fplog) {
271 fprintf(fplog, "WARNING: Your TPI molecule is not centered at 0,0,0\n");
272 fprintf(stderr,"WARNING: Your TPI molecule is not centered at 0,0,0\n");
274 } else {
275 /* Center the molecule to be inserted at zero */
276 for(i=0; i<a_tp1-a_tp0; i++)
277 rvec_dec(x_mol[i],fr->cg_cm[cg_tp]);
280 if (fplog) {
281 fprintf(fplog,"\nWill insert %d atoms %s partial charges\n",
282 a_tp1-a_tp0,bCharge ? "with" : "without");
284 fprintf(fplog,"\nWill insert %d times in each frame of %s\n",
285 nsteps,opt2fn("-rerun",nfile,fnm));
288 if (!bCavity)
290 if (inputrec->nstlist > 1)
292 if (drmax==0 && a_tp1-a_tp0==1)
294 gmx_fatal(FARGS,"Re-using the neighborlist %d times for insertions of a single atom in a sphere of radius %f does not make sense",inputrec->nstlist,drmax);
296 if (fplog)
298 fprintf(fplog,"Will use the same neighborlist for %d insertions in a sphere of radius %f\n",inputrec->nstlist,drmax);
302 else
304 if (fplog)
306 fprintf(fplog,"Will insert randomly in a sphere of radius %f around the center of the cavity\n",drmax);
310 ngid = groups->grps[egcENER].nr;
311 gid_tp = GET_CGINFO_GID(fr->cginfo[cg_tp]);
312 nener = 1 + ngid;
313 if (bDispCorr)
314 nener += 1;
315 if (bCharge) {
316 nener += ngid;
317 if (bRFExcl)
318 nener += 1;
319 if (EEL_FULL(fr->eeltype))
320 nener += 1;
322 snew(sum_UgembU,nener);
324 /* Initialize random generator */
325 tpi_rand = gmx_rng_init(inputrec->ld_seed);
327 if (MASTER(cr)) {
328 fp_tpi = xvgropen(opt2fn("-tpi",nfile,fnm),
329 "TPI energies","Time (ps)",
330 "(kJ mol\\S-1\\N) / (nm\\S3\\N)",oenv);
331 xvgr_subtitle(fp_tpi,"f. are averages over one frame",oenv);
332 snew(leg,4+nener);
333 e = 0;
334 sprintf(str,"-kT log(<Ve\\S-\\betaU\\N>/<V>)");
335 leg[e++] = strdup(str);
336 sprintf(str,"f. -kT log<e\\S-\\betaU\\N>");
337 leg[e++] = strdup(str);
338 sprintf(str,"f. <e\\S-\\betaU\\N>");
339 leg[e++] = strdup(str);
340 sprintf(str,"f. V");
341 leg[e++] = strdup(str);
342 sprintf(str,"f. <Ue\\S-\\betaU\\N>");
343 leg[e++] = strdup(str);
344 for(i=0; i<ngid; i++) {
345 sprintf(str,"f. <U\\sVdW %s\\Ne\\S-\\betaU\\N>",
346 *(groups->grpname[groups->grps[egcENER].nm_ind[i]]));
347 leg[e++] = strdup(str);
349 if (bDispCorr) {
350 sprintf(str,"f. <U\\sdisp c\\Ne\\S-\\betaU\\N>");
351 leg[e++] = strdup(str);
353 if (bCharge) {
354 for(i=0; i<ngid; i++) {
355 sprintf(str,"f. <U\\sCoul %s\\Ne\\S-\\betaU\\N>",
356 *(groups->grpname[groups->grps[egcENER].nm_ind[i]]));
357 leg[e++] = strdup(str);
359 if (bRFExcl) {
360 sprintf(str,"f. <U\\sRF excl\\Ne\\S-\\betaU\\N>");
361 leg[e++] = strdup(str);
363 if (EEL_FULL(fr->eeltype)) {
364 sprintf(str,"f. <U\\sCoul recip\\Ne\\S-\\betaU\\N>");
365 leg[e++] = strdup(str);
368 xvgr_legend(fp_tpi,4+nener,leg,oenv);
369 for(i=0; i<4+nener; i++)
370 sfree(leg[i]);
371 sfree(leg);
373 clear_rvec(x_init);
374 V_all = 0;
375 VembU_all = 0;
377 invbinw = 10;
378 nbin = 10;
379 snew(bin,nbin);
381 bNotLastFrame = read_first_frame(oenv,&status,opt2fn("-rerun",nfile,fnm),
382 &rerun_fr,TRX_NEED_X);
383 frame = 0;
385 if (rerun_fr.natoms - (bCavity ? nat_cavity : 0) !=
386 mdatoms->nr - (a_tp1 - a_tp0))
387 gmx_fatal(FARGS,"Number of atoms in trajectory (%d)%s "
388 "is not equal the number in the run input file (%d) "
389 "minus the number of atoms to insert (%d)\n",
390 rerun_fr.natoms,bCavity ? " minus one" : "",
391 mdatoms->nr,a_tp1-a_tp0);
393 refvolshift = log(det(rerun_fr.box));
395 while (bNotLastFrame)
397 lambda = rerun_fr.lambda;
398 t = rerun_fr.time;
400 sum_embU = 0;
401 for(e=0; e<nener; e++)
403 sum_UgembU[e] = 0;
406 /* Copy the coordinates from the input trajectory */
407 for(i=0; i<rerun_fr.natoms; i++)
409 copy_rvec(rerun_fr.x[i],state->x[i]);
412 V = det(rerun_fr.box);
413 logV = log(V);
415 bStateChanged = TRUE;
416 bNS = TRUE;
417 for(step=0; step<nsteps; step++)
419 /* In parallel all nodes generate all random configurations.
420 * In that way the result is identical to a single cpu tpi run.
422 if (!bCavity)
424 /* Random insertion in the whole volume */
425 bNS = (step % inputrec->nstlist == 0);
426 if (bNS)
428 /* Generate a random position in the box */
429 x_init[XX] = gmx_rng_uniform_real(tpi_rand)*state->box[XX][XX];
430 x_init[YY] = gmx_rng_uniform_real(tpi_rand)*state->box[YY][YY];
431 x_init[ZZ] = gmx_rng_uniform_real(tpi_rand)*state->box[ZZ][ZZ];
433 if (inputrec->nstlist == 1)
435 copy_rvec(x_init,x_tp);
437 else
439 /* Generate coordinates within |dx|=drmax of x_init */
442 dx[XX] = (2*gmx_rng_uniform_real(tpi_rand) - 1)*drmax;
443 dx[YY] = (2*gmx_rng_uniform_real(tpi_rand) - 1)*drmax;
444 dx[ZZ] = (2*gmx_rng_uniform_real(tpi_rand) - 1)*drmax;
446 while (norm2(dx) > drmax*drmax);
447 rvec_add(x_init,dx,x_tp);
450 else
452 /* Random insertion around a cavity location
453 * given by the last coordinate of the trajectory.
455 if (step == 0)
457 if (nat_cavity == 1)
459 /* Copy the location of the cavity */
460 copy_rvec(rerun_fr.x[rerun_fr.natoms-1],x_init);
462 else
464 /* Determine the center of mass of the last molecule */
465 clear_rvec(x_init);
466 mass_tot = 0;
467 for(i=0; i<nat_cavity; i++)
469 for(d=0; d<DIM; d++)
471 x_init[d] +=
472 mass_cavity[i]*rerun_fr.x[rerun_fr.natoms-nat_cavity+i][d];
474 mass_tot += mass_cavity[i];
476 for(d=0; d<DIM; d++)
478 x_init[d] /= mass_tot;
482 /* Generate coordinates within |dx|=drmax of x_init */
485 dx[XX] = (2*gmx_rng_uniform_real(tpi_rand) - 1)*drmax;
486 dx[YY] = (2*gmx_rng_uniform_real(tpi_rand) - 1)*drmax;
487 dx[ZZ] = (2*gmx_rng_uniform_real(tpi_rand) - 1)*drmax;
489 while (norm2(dx) > drmax*drmax);
490 rvec_add(x_init,dx,x_tp);
493 if (a_tp1 - a_tp0 == 1)
495 /* Insert a single atom, just copy the insertion location */
496 copy_rvec(x_tp,state->x[a_tp0]);
498 else
500 /* Copy the coordinates from the top file */
501 for(i=a_tp0; i<a_tp1; i++)
503 copy_rvec(x_mol[i-a_tp0],state->x[i]);
505 /* Rotate the molecule randomly */
506 rotate_conf(a_tp1-a_tp0,state->x+a_tp0,NULL,
507 2*M_PI*gmx_rng_uniform_real(tpi_rand),
508 2*M_PI*gmx_rng_uniform_real(tpi_rand),
509 2*M_PI*gmx_rng_uniform_real(tpi_rand));
510 /* Shift to the insertion location */
511 for(i=a_tp0; i<a_tp1; i++)
513 rvec_inc(state->x[i],x_tp);
517 /* Check if this insertion belongs to this node */
518 bOurStep = TRUE;
519 if (PAR(cr))
521 switch (inputrec->eI)
523 case eiTPI:
524 bOurStep = ((step / inputrec->nstlist) % nnodes == cr->nodeid);
525 break;
526 case eiTPIC:
527 bOurStep = (step % nnodes == cr->nodeid);
528 break;
529 default:
530 gmx_fatal(FARGS,"Unknown integrator %s",ei_names[inputrec->eI]);
533 if (bOurStep)
535 /* Clear some matrix variables */
536 clear_mat(force_vir);
537 clear_mat(shake_vir);
538 clear_mat(vir);
539 clear_mat(pres);
541 /* Set the charge group center of mass of the test particle */
542 copy_rvec(x_init,fr->cg_cm[top->cgs.nr-1]);
544 /* Calc energy (no forces) on new positions.
545 * Since we only need the intermolecular energy
546 * and the RF exclusion terms of the inserted molecule occur
547 * within a single charge group we can pass NULL for the graph.
548 * This also avoids shifts that would move charge groups
549 * out of the box.
551 * Some checks above ensure than we can not have
552 * twin-range interactions together with nstlist > 1,
553 * therefore we do not need to remember the LR energies.
555 /* Make do_force do a single node force calculation */
556 cr->nnodes = 1;
557 do_force(fplog,cr,inputrec,
558 step,nrnb,wcycle,top,top_global,&top_global->groups,
559 rerun_fr.box,state->x,&state->hist,
560 f,force_vir,mdatoms,enerd,fcd,
561 lambda,NULL,fr,NULL,mu_tot,t,NULL,NULL,FALSE,
562 GMX_FORCE_NONBONDED |
563 (bNS ? GMX_FORCE_NS | GMX_FORCE_DOLR : 0) |
564 (bStateChanged ? GMX_FORCE_STATECHANGED : 0));
565 cr->nnodes = nnodes;
566 bStateChanged = FALSE;
567 bNS = FALSE;
569 /* Calculate long range corrections to pressure and energy */
570 calc_dispcorr(fplog,inputrec,fr,step,top_global->natoms,rerun_fr.box,
571 lambda,pres,vir,&prescorr,&enercorr,&dvdlcorr);
572 /* figure out how to rearrange the next 4 lines MRS 8/4/2009 */
573 enerd->term[F_DISPCORR] = enercorr;
574 enerd->term[F_EPOT] += enercorr;
575 enerd->term[F_PRES] += prescorr;
576 enerd->term[F_DVDL] += dvdlcorr;
578 /* If the compiler doesn't optimize this check away
579 * we catch the NAN energies. With tables extreme negative
580 * energies might occur close to r=0.
582 epot = enerd->term[F_EPOT];
583 if (epot != epot || epot*beta < bU_neg_limit)
585 if (debug)
587 fprintf(debug,"\n time %.3f, step %d: non-finite energy %f, using exp(-bU)=0\n",t,step,epot);
589 embU = 0;
591 else
593 embU = exp(-beta*epot);
594 sum_embU += embU;
595 /* Determine the weighted energy contributions of each energy group */
596 e = 0;
597 sum_UgembU[e++] += epot*embU;
598 if (fr->bBHAM)
600 for(i=0; i<ngid; i++)
602 sum_UgembU[e++] +=
603 (enerd->grpp.ener[egBHAMSR][GID(i,gid_tp,ngid)] +
604 enerd->grpp.ener[egBHAMLR][GID(i,gid_tp,ngid)])*embU;
607 else
609 for(i=0; i<ngid; i++)
611 sum_UgembU[e++] +=
612 (enerd->grpp.ener[egLJSR][GID(i,gid_tp,ngid)] +
613 enerd->grpp.ener[egLJLR][GID(i,gid_tp,ngid)])*embU;
616 if (bDispCorr)
618 sum_UgembU[e++] += enerd->term[F_DISPCORR]*embU;
620 if (bCharge)
622 for(i=0; i<ngid; i++)
624 sum_UgembU[e++] +=
625 (enerd->grpp.ener[egCOULSR][GID(i,gid_tp,ngid)] +
626 enerd->grpp.ener[egCOULLR][GID(i,gid_tp,ngid)])*embU;
628 if (bRFExcl)
630 sum_UgembU[e++] += enerd->term[F_RF_EXCL]*embU;
632 if (EEL_FULL(fr->eeltype))
634 sum_UgembU[e++] += enerd->term[F_COUL_RECIP]*embU;
639 if (embU == 0 || beta*epot > bU_bin_limit)
641 bin[0]++;
643 else
645 i = (int)((bU_logV_bin_limit
646 - (beta*epot - logV + refvolshift))*invbinw
647 + 0.5);
648 if (i < 0)
650 i = 0;
652 if (i >= nbin)
654 realloc_bins(&bin,&nbin,i+10);
656 bin[i]++;
659 if (debug)
661 fprintf(debug,"TPI %7d %12.5e %12.5f %12.5f %12.5f\n",
662 step,epot,x_tp[XX],x_tp[YY],x_tp[ZZ]);
665 if (dump_pdb && epot <= dump_ener)
667 sprintf(str,"t%g_step%d.pdb",t,step);
668 sprintf(str2,"t: %f step %d ener: %f",t,step,epot);
669 write_sto_conf_mtop(str,str2,top_global,state->x,state->v,
670 inputrec->ePBC,state->box);
675 if (PAR(cr))
677 /* When running in parallel sum the energies over the processes */
678 gmx_sumd(1, &sum_embU, cr);
679 gmx_sumd(nener,sum_UgembU,cr);
682 frame++;
683 V_all += V;
684 VembU_all += V*sum_embU/nsteps;
686 if (fp_tpi)
688 if (bVerbose || frame%10==0 || frame<10)
690 fprintf(stderr,"mu %10.3e <mu> %10.3e\n",
691 -log(sum_embU/nsteps)/beta,-log(VembU_all/V_all)/beta);
694 fprintf(fp_tpi,"%10.3f %12.5e %12.5e %12.5e %12.5e",
696 VembU_all==0 ? 20/beta : -log(VembU_all/V_all)/beta,
697 sum_embU==0 ? 20/beta : -log(sum_embU/nsteps)/beta,
698 sum_embU/nsteps,V);
699 for(e=0; e<nener; e++)
701 fprintf(fp_tpi," %12.5e",sum_UgembU[e]/nsteps);
703 fprintf(fp_tpi,"\n");
704 fflush(fp_tpi);
707 bNotLastFrame = read_next_frame(oenv, status,&rerun_fr);
708 } /* End of the loop */
709 runtime_end(runtime);
711 close_trj(status);
713 if (fp_tpi)
714 gmx_fio_fclose(fp_tpi);
716 if (fplog) {
717 fprintf(fplog,"\n");
718 fprintf(fplog," <V> = %12.5e nm^3\n",V_all/frame);
719 fprintf(fplog," <mu> = %12.5e kJ/mol\n",-log(VembU_all/V_all)/beta);
722 /* Write the Boltzmann factor histogram */
723 if (PAR(cr)) {
724 /* When running in parallel sum the bins over the processes */
725 i = nbin;
726 global_max(cr,&i);
727 realloc_bins(&bin,&nbin,i);
728 gmx_sumd(nbin,bin,cr);
730 fp_tpi = xvgropen(opt2fn("-tpid",nfile,fnm),
731 "TPI energy distribution",
732 "\\betaU - log(V/<V>)","count",oenv);
733 sprintf(str,"number \\betaU > %g: %9.3e",bU_bin_limit,bin[0]);
734 xvgr_subtitle(fp_tpi,str,oenv);
735 xvgr_legend(fp_tpi,2,(char **)tpid_leg,oenv);
736 for(i=nbin-1; i>0; i--) {
737 bUlogV = -i/invbinw + bU_logV_bin_limit - refvolshift + log(V_all/frame);
738 fprintf(fp_tpi,"%6.2f %10d %12.5e\n",
739 bUlogV,
740 (int)(bin[i]+0.5),
741 bin[i]*exp(-bUlogV)*V_all/VembU_all);
743 gmx_fio_fclose(fp_tpi);
744 sfree(bin);
746 sfree(sum_UgembU);
748 runtime->nsteps_done = frame*inputrec->nsteps;
750 return 0;