1 /* -*- mode: c; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4; c-file-style: "stroustrup"; -*-
4 * This source code is part of
8 * GROningen MAchine for Chemical Simulations
11 * Written by David van der Spoel, Erik Lindahl, Berk Hess, and others.
12 * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
13 * Copyright (c) 2001-2004, The GROMACS development team,
14 * check out http://www.gromacs.org for more information.
16 * This program is free software; you can redistribute it and/or
17 * modify it under the terms of the GNU General Public License
18 * as published by the Free Software Foundation; either version 2
19 * of the License, or (at your option) any later version.
21 * If you want to redistribute modifications, please consider that
22 * scientific software is very special. Version control is crucial -
23 * bugs must be traceable. We will be happy to consider code for
24 * inclusion in the official distribution, but derived work must not
25 * be called official GROMACS. Details are found in the README & COPYING
26 * files - if they are missing, get the official version at www.gromacs.org.
28 * To help us fund GROMACS development, we humbly ask that you cite
29 * the papers on the package - you can find them in the top README file.
31 * For more info, check our website at http://www.gromacs.org
34 * GROwing Monsters And Cloning Shrimps
51 #include "chargegroup.h"
56 #include "gmx_fatal.h"
71 #include "gmx_random.h"
76 #include "gmx_wallcycle.h"
77 #include "mtop_util.h"
83 static void global_max(t_commrec
*cr
,int *n
)
89 gmx_sumi(cr
->nnodes
,sum
,cr
);
90 for(i
=0; i
<cr
->nnodes
; i
++)
96 static void realloc_bins(double **bin
,int *nbin
,int nbin_new
)
100 if (nbin_new
!= *nbin
) {
101 srenew(*bin
,nbin_new
);
102 for(i
=*nbin
; i
<nbin_new
; i
++)
108 double do_tpi(FILE *fplog
,t_commrec
*cr
,
109 int nfile
, const t_filenm fnm
[],
110 const output_env_t oenv
, bool bVerbose
,bool bCompact
,
112 gmx_vsite_t
*vsite
,gmx_constr_t constr
,
114 t_inputrec
*inputrec
,
115 gmx_mtop_t
*top_global
,t_fcdata
*fcd
,
118 t_nrnb
*nrnb
,gmx_wallcycle_t wcycle
,
121 int repl_ex_nst
,int repl_ex_seed
,
122 real cpt_period
,real max_hours
,
123 const char *deviceOptions
,
125 gmx_runtime_t
*runtime
)
127 const char *TPI
="Test Particle Insertion";
129 gmx_groups_t
*groups
;
130 gmx_enerdata_t
*enerd
;
132 real lambda
,t
,temp
,beta
,drmax
,epot
;
133 double embU
,sum_embU
,*sum_UgembU
,V
,V_all
,VembU_all
;
136 bool bDispCorr
,bCharge
,bRFExcl
,bNotLastFrame
,bStateChanged
,bNS
,bOurStep
;
137 tensor force_vir
,shake_vir
,vir
,pres
;
138 int cg_tp
,a_tp0
,a_tp1
,ngid
,gid_tp
,nener
,e
;
140 rvec mu_tot
,x_init
,dx
,x_tp
;
141 int nnodes
,frame
,nsteps
,step
;
145 char *ptr
,*dump_pdb
,**leg
,str
[STRLEN
],str2
[STRLEN
];
146 double dbl
,dump_ener
;
149 real
*mass_cavity
=NULL
,mass_tot
;
151 double invbinw
,*bin
,refvolshift
,logV
,bUlogV
;
152 real dvdl
,prescorr
,enercorr
,dvdlcorr
;
153 const char *tpid_leg
[2]={"direct","reweighted"};
155 /* Since numerical problems can lead to extreme negative energies
156 * when atoms overlap, we need to set a lower limit for beta*U.
158 real bU_neg_limit
= -50;
160 /* Since there is no upper limit to the insertion energies,
161 * we need to set an upper limit for the distribution output.
163 real bU_bin_limit
= 50;
164 real bU_logV_bin_limit
= bU_bin_limit
+ 10;
168 top
= gmx_mtop_generate_local_top(top_global
,inputrec
);
170 groups
= &top_global
->groups
;
172 bCavity
= (inputrec
->eI
== eiTPIC
);
174 ptr
= getenv("GMX_TPIC_MASSES");
178 /* Read (multiple) masses from env var GMX_TPIC_MASSES,
179 * The center of mass of the last atoms is then used for TPIC.
182 while (sscanf(ptr
,"%lf%n",&dbl
,&i
) > 0) {
183 srenew(mass_cavity
,nat_cavity
+1);
184 mass_cavity
[nat_cavity
] = dbl
;
185 fprintf(fplog
,"mass[%d] = %f\n",
186 nat_cavity
+1,mass_cavity
[nat_cavity
]);
191 gmx_fatal(FARGS
,"Found %d masses in GMX_TPIC_MASSES",nat_cavity
);
196 init_em(fplog,TPI,inputrec,&lambda,nrnb,mu_tot,
197 state->box,fr,mdatoms,top,cr,nfile,fnm,NULL,NULL);*/
198 /* We never need full pbc for TPI */
200 /* Determine the temperature for the Boltzmann weighting */
201 temp
= inputrec
->opts
.ref_t
[0];
203 for(i
=1; (i
<inputrec
->opts
.ngtc
); i
++) {
204 if (inputrec
->opts
.ref_t
[i
] != temp
) {
205 fprintf(fplog
,"\nWARNING: The temperatures of the different temperature coupling groups are not identical\n\n");
206 fprintf(stderr
,"\nWARNING: The temperatures of the different temperature coupling groups are not identical\n\n");
210 "\n The temperature for test particle insertion is %.3f K\n\n",
213 beta
= 1.0/(BOLTZ
*temp
);
215 /* Number of insertions per frame */
216 nsteps
= inputrec
->nsteps
;
218 /* Use the same neighborlist with more insertions points
219 * in a sphere of radius drmax around the initial point
221 /* This should be a proper mdp parameter */
222 drmax
= inputrec
->rtpi
;
224 /* An environment variable can be set to dump all configurations
225 * to pdb with an insertion energy <= this value.
227 dump_pdb
= getenv("GMX_TPI_DUMP");
230 sscanf(dump_pdb
,"%lf",&dump_ener
);
232 atoms2md(top_global
,inputrec
,0,NULL
,0,top_global
->natoms
,mdatoms
);
233 update_mdatoms(mdatoms
,inputrec
->init_lambda
);
236 init_enerdata(groups
->grps
[egcENER
].nr
,inputrec
->n_flambda
,enerd
);
237 snew(f
,top_global
->natoms
);
239 /* Print to log file */
240 runtime_start(runtime
);
241 print_date_and_time(fplog
,cr
->nodeid
,
242 "Started Test Particle Insertion",runtime
);
243 wallcycle_start(wcycle
,ewcRUN
);
245 /* The last charge group is the group to be inserted */
246 cg_tp
= top
->cgs
.nr
- 1;
247 a_tp0
= top
->cgs
.index
[cg_tp
];
248 a_tp1
= top
->cgs
.index
[cg_tp
+1];
250 fprintf(debug
,"TPI cg %d, atoms %d-%d\n",cg_tp
,a_tp0
,a_tp1
);
251 if (a_tp1
- a_tp0
> 1 &&
252 (inputrec
->rlist
< inputrec
->rcoulomb
||
253 inputrec
->rlist
< inputrec
->rvdw
))
254 gmx_fatal(FARGS
,"Can not do TPI for multi-atom molecule with a twin-range cut-off");
255 snew(x_mol
,a_tp1
-a_tp0
);
257 bDispCorr
= (inputrec
->eDispCorr
!= edispcNO
);
259 for(i
=a_tp0
; i
<a_tp1
; i
++) {
260 /* Copy the coordinates of the molecule to be insterted */
261 copy_rvec(state
->x
[i
],x_mol
[i
-a_tp0
]);
262 /* Check if we need to print electrostatic energies */
263 bCharge
|= (mdatoms
->chargeA
[i
] != 0 ||
264 (mdatoms
->chargeB
&& mdatoms
->chargeB
[i
] != 0));
266 bRFExcl
= (bCharge
&& EEL_RF(fr
->eeltype
) && fr
->eeltype
!=eelRF_NEC
);
268 calc_cgcm(fplog
,cg_tp
,cg_tp
+1,&(top
->cgs
),state
->x
,fr
->cg_cm
);
270 if (norm(fr
->cg_cm
[cg_tp
]) > 0.5*inputrec
->rlist
&& fplog
) {
271 fprintf(fplog
, "WARNING: Your TPI molecule is not centered at 0,0,0\n");
272 fprintf(stderr
,"WARNING: Your TPI molecule is not centered at 0,0,0\n");
275 /* Center the molecule to be inserted at zero */
276 for(i
=0; i
<a_tp1
-a_tp0
; i
++)
277 rvec_dec(x_mol
[i
],fr
->cg_cm
[cg_tp
]);
281 fprintf(fplog
,"\nWill insert %d atoms %s partial charges\n",
282 a_tp1
-a_tp0
,bCharge
? "with" : "without");
284 fprintf(fplog
,"\nWill insert %d times in each frame of %s\n",
285 nsteps
,opt2fn("-rerun",nfile
,fnm
));
290 if (inputrec
->nstlist
> 1)
292 if (drmax
==0 && a_tp1
-a_tp0
==1)
294 gmx_fatal(FARGS
,"Re-using the neighborlist %d times for insertions of a single atom in a sphere of radius %f does not make sense",inputrec
->nstlist
,drmax
);
298 fprintf(fplog
,"Will use the same neighborlist for %d insertions in a sphere of radius %f\n",inputrec
->nstlist
,drmax
);
306 fprintf(fplog
,"Will insert randomly in a sphere of radius %f around the center of the cavity\n",drmax
);
310 ngid
= groups
->grps
[egcENER
].nr
;
311 gid_tp
= GET_CGINFO_GID(fr
->cginfo
[cg_tp
]);
319 if (EEL_FULL(fr
->eeltype
))
322 snew(sum_UgembU
,nener
);
324 /* Initialize random generator */
325 tpi_rand
= gmx_rng_init(inputrec
->ld_seed
);
328 fp_tpi
= xvgropen(opt2fn("-tpi",nfile
,fnm
),
329 "TPI energies","Time (ps)",
330 "(kJ mol\\S-1\\N) / (nm\\S3\\N)",oenv
);
331 xvgr_subtitle(fp_tpi
,"f. are averages over one frame",oenv
);
334 sprintf(str
,"-kT log(<Ve\\S-\\betaU\\N>/<V>)");
335 leg
[e
++] = strdup(str
);
336 sprintf(str
,"f. -kT log<e\\S-\\betaU\\N>");
337 leg
[e
++] = strdup(str
);
338 sprintf(str
,"f. <e\\S-\\betaU\\N>");
339 leg
[e
++] = strdup(str
);
341 leg
[e
++] = strdup(str
);
342 sprintf(str
,"f. <Ue\\S-\\betaU\\N>");
343 leg
[e
++] = strdup(str
);
344 for(i
=0; i
<ngid
; i
++) {
345 sprintf(str
,"f. <U\\sVdW %s\\Ne\\S-\\betaU\\N>",
346 *(groups
->grpname
[groups
->grps
[egcENER
].nm_ind
[i
]]));
347 leg
[e
++] = strdup(str
);
350 sprintf(str
,"f. <U\\sdisp c\\Ne\\S-\\betaU\\N>");
351 leg
[e
++] = strdup(str
);
354 for(i
=0; i
<ngid
; i
++) {
355 sprintf(str
,"f. <U\\sCoul %s\\Ne\\S-\\betaU\\N>",
356 *(groups
->grpname
[groups
->grps
[egcENER
].nm_ind
[i
]]));
357 leg
[e
++] = strdup(str
);
360 sprintf(str
,"f. <U\\sRF excl\\Ne\\S-\\betaU\\N>");
361 leg
[e
++] = strdup(str
);
363 if (EEL_FULL(fr
->eeltype
)) {
364 sprintf(str
,"f. <U\\sCoul recip\\Ne\\S-\\betaU\\N>");
365 leg
[e
++] = strdup(str
);
368 xvgr_legend(fp_tpi
,4+nener
,leg
,oenv
);
369 for(i
=0; i
<4+nener
; i
++)
381 bNotLastFrame
= read_first_frame(oenv
,&status
,opt2fn("-rerun",nfile
,fnm
),
382 &rerun_fr
,TRX_NEED_X
);
385 if (rerun_fr
.natoms
- (bCavity
? nat_cavity
: 0) !=
386 mdatoms
->nr
- (a_tp1
- a_tp0
))
387 gmx_fatal(FARGS
,"Number of atoms in trajectory (%d)%s "
388 "is not equal the number in the run input file (%d) "
389 "minus the number of atoms to insert (%d)\n",
390 rerun_fr
.natoms
,bCavity
? " minus one" : "",
391 mdatoms
->nr
,a_tp1
-a_tp0
);
393 refvolshift
= log(det(rerun_fr
.box
));
395 while (bNotLastFrame
)
397 lambda
= rerun_fr
.lambda
;
401 for(e
=0; e
<nener
; e
++)
406 /* Copy the coordinates from the input trajectory */
407 for(i
=0; i
<rerun_fr
.natoms
; i
++)
409 copy_rvec(rerun_fr
.x
[i
],state
->x
[i
]);
412 V
= det(rerun_fr
.box
);
415 bStateChanged
= TRUE
;
417 for(step
=0; step
<nsteps
; step
++)
419 /* In parallel all nodes generate all random configurations.
420 * In that way the result is identical to a single cpu tpi run.
424 /* Random insertion in the whole volume */
425 bNS
= (step
% inputrec
->nstlist
== 0);
428 /* Generate a random position in the box */
429 x_init
[XX
] = gmx_rng_uniform_real(tpi_rand
)*state
->box
[XX
][XX
];
430 x_init
[YY
] = gmx_rng_uniform_real(tpi_rand
)*state
->box
[YY
][YY
];
431 x_init
[ZZ
] = gmx_rng_uniform_real(tpi_rand
)*state
->box
[ZZ
][ZZ
];
433 if (inputrec
->nstlist
== 1)
435 copy_rvec(x_init
,x_tp
);
439 /* Generate coordinates within |dx|=drmax of x_init */
442 dx
[XX
] = (2*gmx_rng_uniform_real(tpi_rand
) - 1)*drmax
;
443 dx
[YY
] = (2*gmx_rng_uniform_real(tpi_rand
) - 1)*drmax
;
444 dx
[ZZ
] = (2*gmx_rng_uniform_real(tpi_rand
) - 1)*drmax
;
446 while (norm2(dx
) > drmax
*drmax
);
447 rvec_add(x_init
,dx
,x_tp
);
452 /* Random insertion around a cavity location
453 * given by the last coordinate of the trajectory.
459 /* Copy the location of the cavity */
460 copy_rvec(rerun_fr
.x
[rerun_fr
.natoms
-1],x_init
);
464 /* Determine the center of mass of the last molecule */
467 for(i
=0; i
<nat_cavity
; i
++)
472 mass_cavity
[i
]*rerun_fr
.x
[rerun_fr
.natoms
-nat_cavity
+i
][d
];
474 mass_tot
+= mass_cavity
[i
];
478 x_init
[d
] /= mass_tot
;
482 /* Generate coordinates within |dx|=drmax of x_init */
485 dx
[XX
] = (2*gmx_rng_uniform_real(tpi_rand
) - 1)*drmax
;
486 dx
[YY
] = (2*gmx_rng_uniform_real(tpi_rand
) - 1)*drmax
;
487 dx
[ZZ
] = (2*gmx_rng_uniform_real(tpi_rand
) - 1)*drmax
;
489 while (norm2(dx
) > drmax
*drmax
);
490 rvec_add(x_init
,dx
,x_tp
);
493 if (a_tp1
- a_tp0
== 1)
495 /* Insert a single atom, just copy the insertion location */
496 copy_rvec(x_tp
,state
->x
[a_tp0
]);
500 /* Copy the coordinates from the top file */
501 for(i
=a_tp0
; i
<a_tp1
; i
++)
503 copy_rvec(x_mol
[i
-a_tp0
],state
->x
[i
]);
505 /* Rotate the molecule randomly */
506 rotate_conf(a_tp1
-a_tp0
,state
->x
+a_tp0
,NULL
,
507 2*M_PI
*gmx_rng_uniform_real(tpi_rand
),
508 2*M_PI
*gmx_rng_uniform_real(tpi_rand
),
509 2*M_PI
*gmx_rng_uniform_real(tpi_rand
));
510 /* Shift to the insertion location */
511 for(i
=a_tp0
; i
<a_tp1
; i
++)
513 rvec_inc(state
->x
[i
],x_tp
);
517 /* Check if this insertion belongs to this node */
521 switch (inputrec
->eI
)
524 bOurStep
= ((step
/ inputrec
->nstlist
) % nnodes
== cr
->nodeid
);
527 bOurStep
= (step
% nnodes
== cr
->nodeid
);
530 gmx_fatal(FARGS
,"Unknown integrator %s",ei_names
[inputrec
->eI
]);
535 /* Clear some matrix variables */
536 clear_mat(force_vir
);
537 clear_mat(shake_vir
);
541 /* Set the charge group center of mass of the test particle */
542 copy_rvec(x_init
,fr
->cg_cm
[top
->cgs
.nr
-1]);
544 /* Calc energy (no forces) on new positions.
545 * Since we only need the intermolecular energy
546 * and the RF exclusion terms of the inserted molecule occur
547 * within a single charge group we can pass NULL for the graph.
548 * This also avoids shifts that would move charge groups
551 * Some checks above ensure than we can not have
552 * twin-range interactions together with nstlist > 1,
553 * therefore we do not need to remember the LR energies.
555 /* Make do_force do a single node force calculation */
557 do_force(fplog
,cr
,inputrec
,
558 step
,nrnb
,wcycle
,top
,top_global
,&top_global
->groups
,
559 rerun_fr
.box
,state
->x
,&state
->hist
,
560 f
,force_vir
,mdatoms
,enerd
,fcd
,
561 lambda
,NULL
,fr
,NULL
,mu_tot
,t
,NULL
,NULL
,FALSE
,
562 GMX_FORCE_NONBONDED
|
563 (bNS
? GMX_FORCE_NS
| GMX_FORCE_DOLR
: 0) |
564 (bStateChanged
? GMX_FORCE_STATECHANGED
: 0));
566 bStateChanged
= FALSE
;
569 /* Calculate long range corrections to pressure and energy */
570 calc_dispcorr(fplog
,inputrec
,fr
,step
,top_global
->natoms
,rerun_fr
.box
,
571 lambda
,pres
,vir
,&prescorr
,&enercorr
,&dvdlcorr
);
572 /* figure out how to rearrange the next 4 lines MRS 8/4/2009 */
573 enerd
->term
[F_DISPCORR
] = enercorr
;
574 enerd
->term
[F_EPOT
] += enercorr
;
575 enerd
->term
[F_PRES
] += prescorr
;
576 enerd
->term
[F_DVDL
] += dvdlcorr
;
578 /* If the compiler doesn't optimize this check away
579 * we catch the NAN energies. With tables extreme negative
580 * energies might occur close to r=0.
582 epot
= enerd
->term
[F_EPOT
];
583 if (epot
!= epot
|| epot
*beta
< bU_neg_limit
)
587 fprintf(debug
,"\n time %.3f, step %d: non-finite energy %f, using exp(-bU)=0\n",t
,step
,epot
);
593 embU
= exp(-beta
*epot
);
595 /* Determine the weighted energy contributions of each energy group */
597 sum_UgembU
[e
++] += epot
*embU
;
600 for(i
=0; i
<ngid
; i
++)
603 (enerd
->grpp
.ener
[egBHAMSR
][GID(i
,gid_tp
,ngid
)] +
604 enerd
->grpp
.ener
[egBHAMLR
][GID(i
,gid_tp
,ngid
)])*embU
;
609 for(i
=0; i
<ngid
; i
++)
612 (enerd
->grpp
.ener
[egLJSR
][GID(i
,gid_tp
,ngid
)] +
613 enerd
->grpp
.ener
[egLJLR
][GID(i
,gid_tp
,ngid
)])*embU
;
618 sum_UgembU
[e
++] += enerd
->term
[F_DISPCORR
]*embU
;
622 for(i
=0; i
<ngid
; i
++)
625 (enerd
->grpp
.ener
[egCOULSR
][GID(i
,gid_tp
,ngid
)] +
626 enerd
->grpp
.ener
[egCOULLR
][GID(i
,gid_tp
,ngid
)])*embU
;
630 sum_UgembU
[e
++] += enerd
->term
[F_RF_EXCL
]*embU
;
632 if (EEL_FULL(fr
->eeltype
))
634 sum_UgembU
[e
++] += enerd
->term
[F_COUL_RECIP
]*embU
;
639 if (embU
== 0 || beta
*epot
> bU_bin_limit
)
645 i
= (int)((bU_logV_bin_limit
646 - (beta
*epot
- logV
+ refvolshift
))*invbinw
654 realloc_bins(&bin
,&nbin
,i
+10);
661 fprintf(debug
,"TPI %7d %12.5e %12.5f %12.5f %12.5f\n",
662 step
,epot
,x_tp
[XX
],x_tp
[YY
],x_tp
[ZZ
]);
665 if (dump_pdb
&& epot
<= dump_ener
)
667 sprintf(str
,"t%g_step%d.pdb",t
,step
);
668 sprintf(str2
,"t: %f step %d ener: %f",t
,step
,epot
);
669 write_sto_conf_mtop(str
,str2
,top_global
,state
->x
,state
->v
,
670 inputrec
->ePBC
,state
->box
);
677 /* When running in parallel sum the energies over the processes */
678 gmx_sumd(1, &sum_embU
, cr
);
679 gmx_sumd(nener
,sum_UgembU
,cr
);
684 VembU_all
+= V
*sum_embU
/nsteps
;
688 if (bVerbose
|| frame
%10==0 || frame
<10)
690 fprintf(stderr
,"mu %10.3e <mu> %10.3e\n",
691 -log(sum_embU
/nsteps
)/beta
,-log(VembU_all
/V_all
)/beta
);
694 fprintf(fp_tpi
,"%10.3f %12.5e %12.5e %12.5e %12.5e",
696 VembU_all
==0 ? 20/beta
: -log(VembU_all
/V_all
)/beta
,
697 sum_embU
==0 ? 20/beta
: -log(sum_embU
/nsteps
)/beta
,
699 for(e
=0; e
<nener
; e
++)
701 fprintf(fp_tpi
," %12.5e",sum_UgembU
[e
]/nsteps
);
703 fprintf(fp_tpi
,"\n");
707 bNotLastFrame
= read_next_frame(oenv
, status
,&rerun_fr
);
708 } /* End of the loop */
709 runtime_end(runtime
);
714 gmx_fio_fclose(fp_tpi
);
718 fprintf(fplog
," <V> = %12.5e nm^3\n",V_all
/frame
);
719 fprintf(fplog
," <mu> = %12.5e kJ/mol\n",-log(VembU_all
/V_all
)/beta
);
722 /* Write the Boltzmann factor histogram */
724 /* When running in parallel sum the bins over the processes */
727 realloc_bins(&bin
,&nbin
,i
);
728 gmx_sumd(nbin
,bin
,cr
);
730 fp_tpi
= xvgropen(opt2fn("-tpid",nfile
,fnm
),
731 "TPI energy distribution",
732 "\\betaU - log(V/<V>)","count",oenv
);
733 sprintf(str
,"number \\betaU > %g: %9.3e",bU_bin_limit
,bin
[0]);
734 xvgr_subtitle(fp_tpi
,str
,oenv
);
735 xvgr_legend(fp_tpi
,2,(char **)tpid_leg
,oenv
);
736 for(i
=nbin
-1; i
>0; i
--) {
737 bUlogV
= -i
/invbinw
+ bU_logV_bin_limit
- refvolshift
+ log(V_all
/frame
);
738 fprintf(fp_tpi
,"%6.2f %10d %12.5e\n",
741 bin
[i
]*exp(-bUlogV
)*V_all
/VembU_all
);
743 gmx_fio_fclose(fp_tpi
);
748 runtime
->nsteps_done
= frame
*inputrec
->nsteps
;