Introduce PpForceWorkload
[gromacs.git] / src / gromacs / mdrun / tpi.cpp
bloba6aa1ec01ba733fb7634d61e17da6fde586ee0c2
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
5 * Copyright (c) 2001-2004, The GROMACS development team.
6 * Copyright (c) 2013,2014,2015,2016,2017,2018, by the GROMACS development team, led by
7 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
8 * and including many others, as listed in the AUTHORS file in the
9 * top-level source directory and at http://www.gromacs.org.
11 * GROMACS is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public License
13 * as published by the Free Software Foundation; either version 2.1
14 * of the License, or (at your option) any later version.
16 * GROMACS is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * Lesser General Public License for more details.
21 * You should have received a copy of the GNU Lesser General Public
22 * License along with GROMACS; if not, see
23 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
24 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
26 * If you want to redistribute modifications to GROMACS, please
27 * consider that scientific software is very special. Version
28 * control is crucial - bugs must be traceable. We will be happy to
29 * consider code for inclusion in the official distribution, but
30 * derived work must not be called official GROMACS. Details are found
31 * in the README & COPYING files - if they are missing, get the
32 * official version at http://www.gromacs.org.
34 * To help us fund GROMACS development, we humbly ask that you cite
35 * the research papers on the package. Check out http://www.gromacs.org.
37 /*! \internal \file
39 * \brief This file defines the integrator for test particle insertion
41 * \author Berk Hess <hess@kth.se>
42 * \ingroup module_mdrun
44 #include "gmxpre.h"
46 #include <cmath>
47 #include <cstdlib>
48 #include <cstring>
49 #include <ctime>
51 #include <algorithm>
53 #include <cfenv>
55 #include "gromacs/commandline/filenm.h"
56 #include "gromacs/domdec/domdec.h"
57 #include "gromacs/ewald/pme.h"
58 #include "gromacs/fileio/confio.h"
59 #include "gromacs/fileio/trxio.h"
60 #include "gromacs/fileio/xvgr.h"
61 #include "gromacs/gmxlib/chargegroup.h"
62 #include "gromacs/gmxlib/conformation-utilities.h"
63 #include "gromacs/gmxlib/network.h"
64 #include "gromacs/gmxlib/nrnb.h"
65 #include "gromacs/math/units.h"
66 #include "gromacs/math/vec.h"
67 #include "gromacs/mdlib/constr.h"
68 #include "gromacs/mdlib/force.h"
69 #include "gromacs/mdlib/force_flags.h"
70 #include "gromacs/mdlib/mdatoms.h"
71 #include "gromacs/mdlib/mdebin.h"
72 #include "gromacs/mdlib/mdrun.h"
73 #include "gromacs/mdlib/ns.h"
74 #include "gromacs/mdlib/sim_util.h"
75 #include "gromacs/mdlib/tgroup.h"
76 #include "gromacs/mdlib/update.h"
77 #include "gromacs/mdlib/vsite.h"
78 #include "gromacs/mdtypes/commrec.h"
79 #include "gromacs/mdtypes/forcerec.h"
80 #include "gromacs/mdtypes/group.h"
81 #include "gromacs/mdtypes/inputrec.h"
82 #include "gromacs/mdtypes/md_enums.h"
83 #include "gromacs/mdtypes/state.h"
84 #include "gromacs/pbcutil/pbc.h"
85 #include "gromacs/random/threefry.h"
86 #include "gromacs/random/uniformrealdistribution.h"
87 #include "gromacs/timing/wallcycle.h"
88 #include "gromacs/timing/walltime_accounting.h"
89 #include "gromacs/topology/mtop_util.h"
90 #include "gromacs/trajectory/trajectoryframe.h"
91 #include "gromacs/utility/cstringutil.h"
92 #include "gromacs/utility/fatalerror.h"
93 #include "gromacs/utility/gmxassert.h"
94 #include "gromacs/utility/logger.h"
95 #include "gromacs/utility/smalloc.h"
97 #include "integrator.h"
99 //! Global max algorithm
100 static void global_max(t_commrec *cr, int *n)
102 int *sum, i;
104 snew(sum, cr->nnodes);
105 sum[cr->nodeid] = *n;
106 gmx_sumi(cr->nnodes, sum, cr);
107 for (i = 0; i < cr->nnodes; i++)
109 *n = std::max(*n, sum[i]);
112 sfree(sum);
115 //! Reallocate arrays.
116 static void realloc_bins(double **bin, int *nbin, int nbin_new)
118 int i;
120 if (nbin_new != *nbin)
122 srenew(*bin, nbin_new);
123 for (i = *nbin; i < nbin_new; i++)
125 (*bin)[i] = 0;
127 *nbin = nbin_new;
131 namespace gmx
134 void
135 Integrator::do_tpi()
137 gmx_localtop_t *top;
138 gmx_groups_t *groups;
139 gmx_enerdata_t *enerd;
140 PaddedVector<gmx::RVec> f {};
141 real lambda, t, temp, beta, drmax, epot;
142 double embU, sum_embU, *sum_UgembU, V, V_all, VembU_all;
143 t_trxstatus *status;
144 t_trxframe rerun_fr;
145 gmx_bool bDispCorr, bCharge, bRFExcl, bNotLastFrame, bStateChanged, bNS;
146 tensor force_vir, shake_vir, vir, pres;
147 int cg_tp, a_tp0, a_tp1, ngid, gid_tp, nener, e;
148 rvec *x_mol;
149 rvec mu_tot, x_init, dx, x_tp;
150 int nnodes, frame;
151 int64_t frame_step_prev, frame_step;
152 int64_t nsteps, stepblocksize = 0, step;
153 int64_t seed;
154 int i;
155 FILE *fp_tpi = nullptr;
156 char *ptr, *dump_pdb, **leg, str[STRLEN], str2[STRLEN];
157 double dbl, dump_ener;
158 gmx_bool bCavity;
159 int nat_cavity = 0, d;
160 real *mass_cavity = nullptr, mass_tot;
161 int nbin;
162 double invbinw, *bin, refvolshift, logV, bUlogV;
163 real prescorr, enercorr, dvdlcorr;
164 gmx_bool bEnergyOutOfBounds;
165 const char *tpid_leg[2] = {"direct", "reweighted"};
166 auto mdatoms = mdAtoms->mdatoms();
168 GMX_UNUSED_VALUE(outputProvider);
170 GMX_LOG(mdlog.info).asParagraph().
171 appendText("Note that it is planned to change the command gmx mdrun -tpi "
172 "(and -tpic) to make the functionality available in a different "
173 "form in a future version of GROMACS, e.g. gmx test-particle-insertion.");
175 /* Since there is no upper limit to the insertion energies,
176 * we need to set an upper limit for the distribution output.
178 real bU_bin_limit = 50;
179 real bU_logV_bin_limit = bU_bin_limit + 10;
181 if (inputrec->cutoff_scheme == ecutsVERLET)
183 gmx_fatal(FARGS, "TPI does not work (yet) with the Verlet cut-off scheme");
186 nnodes = cr->nnodes;
188 top = gmx_mtop_generate_local_top(top_global, inputrec->efep != efepNO);
190 groups = &top_global->groups;
192 bCavity = (inputrec->eI == eiTPIC);
193 if (bCavity)
195 ptr = getenv("GMX_TPIC_MASSES");
196 if (ptr == nullptr)
198 nat_cavity = 1;
200 else
202 /* Read (multiple) masses from env var GMX_TPIC_MASSES,
203 * The center of mass of the last atoms is then used for TPIC.
205 nat_cavity = 0;
206 while (sscanf(ptr, "%20lf%n", &dbl, &i) > 0)
208 srenew(mass_cavity, nat_cavity+1);
209 mass_cavity[nat_cavity] = dbl;
210 fprintf(fplog, "mass[%d] = %f\n",
211 nat_cavity+1, mass_cavity[nat_cavity]);
212 nat_cavity++;
213 ptr += i;
215 if (nat_cavity == 0)
217 gmx_fatal(FARGS, "Found %d masses in GMX_TPIC_MASSES", nat_cavity);
223 init_em(fplog,TPI,inputrec,&lambda,nrnb,mu_tot,
224 state_global->box,fr,mdatoms,top,cr,nfile,fnm,NULL,NULL);*/
225 /* We never need full pbc for TPI */
226 fr->ePBC = epbcXYZ;
227 /* Determine the temperature for the Boltzmann weighting */
228 temp = inputrec->opts.ref_t[0];
229 if (fplog)
231 for (i = 1; (i < inputrec->opts.ngtc); i++)
233 if (inputrec->opts.ref_t[i] != temp)
235 fprintf(fplog, "\nWARNING: The temperatures of the different temperature coupling groups are not identical\n\n");
236 fprintf(stderr, "\nWARNING: The temperatures of the different temperature coupling groups are not identical\n\n");
239 fprintf(fplog,
240 "\n The temperature for test particle insertion is %.3f K\n\n",
241 temp);
243 beta = 1.0/(BOLTZ*temp);
245 /* Number of insertions per frame */
246 nsteps = inputrec->nsteps;
248 /* Use the same neighborlist with more insertions points
249 * in a sphere of radius drmax around the initial point
251 /* This should be a proper mdp parameter */
252 drmax = inputrec->rtpi;
254 /* An environment variable can be set to dump all configurations
255 * to pdb with an insertion energy <= this value.
257 dump_pdb = getenv("GMX_TPI_DUMP");
258 dump_ener = 0;
259 if (dump_pdb)
261 sscanf(dump_pdb, "%20lf", &dump_ener);
264 atoms2md(top_global, inputrec, -1, nullptr, top_global->natoms, mdAtoms);
265 update_mdatoms(mdatoms, inputrec->fepvals->init_lambda);
267 snew(enerd, 1);
268 init_enerdata(groups->grps[egcENER].nr, inputrec->fepvals->n_lambda, enerd);
269 f.resizeWithPadding(top_global->natoms);
271 /* Print to log file */
272 walltime_accounting_start_time(walltime_accounting);
273 wallcycle_start(wcycle, ewcRUN);
274 print_start(fplog, cr, walltime_accounting, "Test Particle Insertion");
276 /* The last charge group is the group to be inserted */
277 cg_tp = top->cgs.nr - 1;
278 a_tp0 = top->cgs.index[cg_tp];
279 a_tp1 = top->cgs.index[cg_tp+1];
280 if (debug)
282 fprintf(debug, "TPI cg %d, atoms %d-%d\n", cg_tp, a_tp0, a_tp1);
285 GMX_RELEASE_ASSERT(inputrec->rcoulomb <= inputrec->rlist && inputrec->rvdw <= inputrec->rlist, "Twin-range interactions are not supported with TPI");
287 snew(x_mol, a_tp1-a_tp0);
289 bDispCorr = (inputrec->eDispCorr != edispcNO);
290 bCharge = FALSE;
291 auto x = makeArrayRef(state_global->x);
292 for (i = a_tp0; i < a_tp1; i++)
294 /* Copy the coordinates of the molecule to be insterted */
295 copy_rvec(x[i], x_mol[i-a_tp0]);
296 /* Check if we need to print electrostatic energies */
297 bCharge |= (mdatoms->chargeA[i] != 0 ||
298 ((mdatoms->chargeB != nullptr) && mdatoms->chargeB[i] != 0));
300 bRFExcl = (bCharge && EEL_RF(fr->ic->eeltype));
302 calc_cgcm(fplog, cg_tp, cg_tp+1, &(top->cgs), state_global->x.rvec_array(), fr->cg_cm);
303 if (bCavity)
305 if (norm(fr->cg_cm[cg_tp]) > 0.5*inputrec->rlist && fplog)
307 fprintf(fplog, "WARNING: Your TPI molecule is not centered at 0,0,0\n");
308 fprintf(stderr, "WARNING: Your TPI molecule is not centered at 0,0,0\n");
311 else
313 /* Center the molecule to be inserted at zero */
314 for (i = 0; i < a_tp1-a_tp0; i++)
316 rvec_dec(x_mol[i], fr->cg_cm[cg_tp]);
320 if (fplog)
322 fprintf(fplog, "\nWill insert %d atoms %s partial charges\n",
323 a_tp1-a_tp0, bCharge ? "with" : "without");
325 fprintf(fplog, "\nWill insert %" PRId64 " times in each frame of %s\n",
326 nsteps, opt2fn("-rerun", nfile, fnm));
329 if (!bCavity)
331 if (inputrec->nstlist > 1)
333 if (drmax == 0 && a_tp1-a_tp0 == 1)
335 gmx_fatal(FARGS, "Re-using the neighborlist %d times for insertions of a single atom in a sphere of radius %f does not make sense", inputrec->nstlist, drmax);
337 if (fplog)
339 fprintf(fplog, "Will use the same neighborlist for %d insertions in a sphere of radius %f\n", inputrec->nstlist, drmax);
343 else
345 if (fplog)
347 fprintf(fplog, "Will insert randomly in a sphere of radius %f around the center of the cavity\n", drmax);
351 ngid = groups->grps[egcENER].nr;
352 gid_tp = GET_CGINFO_GID(fr->cginfo[cg_tp]);
353 nener = 1 + ngid;
354 if (bDispCorr)
356 nener += 1;
358 if (bCharge)
360 nener += ngid;
361 if (bRFExcl)
363 nener += 1;
365 if (EEL_FULL(fr->ic->eeltype))
367 nener += 1;
370 snew(sum_UgembU, nener);
372 /* Copy the random seed set by the user */
373 seed = inputrec->ld_seed;
375 gmx::ThreeFry2x64<16> rng(seed, gmx::RandomDomain::TestParticleInsertion); // 16 bits internal counter => 2^16 * 2 = 131072 values per stream
376 gmx::UniformRealDistribution<real> dist;
378 if (MASTER(cr))
380 fp_tpi = xvgropen(opt2fn("-tpi", nfile, fnm),
381 "TPI energies", "Time (ps)",
382 "(kJ mol\\S-1\\N) / (nm\\S3\\N)", oenv);
383 xvgr_subtitle(fp_tpi, "f. are averages over one frame", oenv);
384 snew(leg, 4+nener);
385 e = 0;
386 sprintf(str, "-kT log(<Ve\\S-\\betaU\\N>/<V>)");
387 leg[e++] = gmx_strdup(str);
388 sprintf(str, "f. -kT log<e\\S-\\betaU\\N>");
389 leg[e++] = gmx_strdup(str);
390 sprintf(str, "f. <e\\S-\\betaU\\N>");
391 leg[e++] = gmx_strdup(str);
392 sprintf(str, "f. V");
393 leg[e++] = gmx_strdup(str);
394 sprintf(str, "f. <Ue\\S-\\betaU\\N>");
395 leg[e++] = gmx_strdup(str);
396 for (i = 0; i < ngid; i++)
398 sprintf(str, "f. <U\\sVdW %s\\Ne\\S-\\betaU\\N>",
399 *(groups->grpname[groups->grps[egcENER].nm_ind[i]]));
400 leg[e++] = gmx_strdup(str);
402 if (bDispCorr)
404 sprintf(str, "f. <U\\sdisp c\\Ne\\S-\\betaU\\N>");
405 leg[e++] = gmx_strdup(str);
407 if (bCharge)
409 for (i = 0; i < ngid; i++)
411 sprintf(str, "f. <U\\sCoul %s\\Ne\\S-\\betaU\\N>",
412 *(groups->grpname[groups->grps[egcENER].nm_ind[i]]));
413 leg[e++] = gmx_strdup(str);
415 if (bRFExcl)
417 sprintf(str, "f. <U\\sRF excl\\Ne\\S-\\betaU\\N>");
418 leg[e++] = gmx_strdup(str);
420 if (EEL_FULL(fr->ic->eeltype))
422 sprintf(str, "f. <U\\sCoul recip\\Ne\\S-\\betaU\\N>");
423 leg[e++] = gmx_strdup(str);
426 xvgr_legend(fp_tpi, 4+nener, leg, oenv);
427 for (i = 0; i < 4+nener; i++)
429 sfree(leg[i]);
431 sfree(leg);
433 clear_rvec(x_init);
434 V_all = 0;
435 VembU_all = 0;
437 invbinw = 10;
438 nbin = 10;
439 snew(bin, nbin);
441 /* Avoid frame step numbers <= -1 */
442 frame_step_prev = -1;
444 bNotLastFrame = read_first_frame(oenv, &status, opt2fn("-rerun", nfile, fnm),
445 &rerun_fr, TRX_NEED_X);
446 frame = 0;
448 if (rerun_fr.natoms - (bCavity ? nat_cavity : 0) !=
449 mdatoms->nr - (a_tp1 - a_tp0))
451 gmx_fatal(FARGS, "Number of atoms in trajectory (%d)%s "
452 "is not equal the number in the run input file (%d) "
453 "minus the number of atoms to insert (%d)\n",
454 rerun_fr.natoms, bCavity ? " minus one" : "",
455 mdatoms->nr, a_tp1-a_tp0);
458 refvolshift = log(det(rerun_fr.box));
460 switch (inputrec->eI)
462 case eiTPI:
463 stepblocksize = inputrec->nstlist;
464 break;
465 case eiTPIC:
466 stepblocksize = 1;
467 break;
468 default:
469 gmx_fatal(FARGS, "Unknown integrator %s", ei_names[inputrec->eI]);
472 while (bNotLastFrame)
474 frame_step = rerun_fr.step;
475 if (frame_step <= frame_step_prev)
477 /* We don't have step number in the trajectory file,
478 * or we have constant or decreasing step numbers.
479 * Ensure we have increasing step numbers, since we use
480 * the step numbers as a counter for random numbers.
482 frame_step = frame_step_prev + 1;
484 frame_step_prev = frame_step;
486 lambda = rerun_fr.lambda;
487 t = rerun_fr.time;
489 sum_embU = 0;
490 for (e = 0; e < nener; e++)
492 sum_UgembU[e] = 0;
495 /* Copy the coordinates from the input trajectory */
496 auto x = makeArrayRef(state_global->x);
497 for (i = 0; i < rerun_fr.natoms; i++)
499 copy_rvec(rerun_fr.x[i], x[i]);
501 copy_mat(rerun_fr.box, state_global->box);
503 V = det(state_global->box);
504 logV = log(V);
506 bStateChanged = TRUE;
507 bNS = TRUE;
509 step = cr->nodeid*stepblocksize;
510 while (step < nsteps)
512 /* Restart random engine using the frame and insertion step
513 * as counters.
514 * Note that we need to draw several random values per iteration,
515 * but by using the internal subcounter functionality of ThreeFry2x64
516 * we can draw 131072 unique 64-bit values before exhausting
517 * the stream. This is a huge margin, and if something still goes
518 * wrong you will get an exception when the stream is exhausted.
520 rng.restart(frame_step, step);
521 dist.reset(); // erase any memory in the distribution
523 if (!bCavity)
525 /* Random insertion in the whole volume */
526 bNS = (step % inputrec->nstlist == 0);
527 if (bNS)
529 /* Generate a random position in the box */
530 for (d = 0; d < DIM; d++)
532 x_init[d] = dist(rng)*state_global->box[d][d];
536 if (inputrec->nstlist == 1)
538 copy_rvec(x_init, x_tp);
540 else
542 /* Generate coordinates within |dx|=drmax of x_init */
545 for (d = 0; d < DIM; d++)
547 dx[d] = (2*dist(rng) - 1)*drmax;
550 while (norm2(dx) > drmax*drmax);
551 rvec_add(x_init, dx, x_tp);
554 else
556 /* Random insertion around a cavity location
557 * given by the last coordinate of the trajectory.
559 if (step == 0)
561 if (nat_cavity == 1)
563 /* Copy the location of the cavity */
564 copy_rvec(rerun_fr.x[rerun_fr.natoms-1], x_init);
566 else
568 /* Determine the center of mass of the last molecule */
569 clear_rvec(x_init);
570 mass_tot = 0;
571 for (i = 0; i < nat_cavity; i++)
573 for (d = 0; d < DIM; d++)
575 x_init[d] +=
576 mass_cavity[i]*rerun_fr.x[rerun_fr.natoms-nat_cavity+i][d];
578 mass_tot += mass_cavity[i];
580 for (d = 0; d < DIM; d++)
582 x_init[d] /= mass_tot;
586 /* Generate coordinates within |dx|=drmax of x_init */
589 for (d = 0; d < DIM; d++)
591 dx[d] = (2*dist(rng) - 1)*drmax;
594 while (norm2(dx) > drmax*drmax);
595 rvec_add(x_init, dx, x_tp);
598 if (a_tp1 - a_tp0 == 1)
600 /* Insert a single atom, just copy the insertion location */
601 copy_rvec(x_tp, x[a_tp0]);
603 else
605 /* Copy the coordinates from the top file */
606 for (i = a_tp0; i < a_tp1; i++)
608 copy_rvec(x_mol[i-a_tp0], x[i]);
610 /* Rotate the molecule randomly */
611 real angleX = 2*M_PI*dist(rng);
612 real angleY = 2*M_PI*dist(rng);
613 real angleZ = 2*M_PI*dist(rng);
614 rotate_conf(a_tp1-a_tp0, state_global->x.rvec_array()+a_tp0, nullptr,
615 angleX, angleY, angleZ);
616 /* Shift to the insertion location */
617 for (i = a_tp0; i < a_tp1; i++)
619 rvec_inc(x[i], x_tp);
623 /* Clear some matrix variables */
624 clear_mat(force_vir);
625 clear_mat(shake_vir);
626 clear_mat(vir);
627 clear_mat(pres);
629 /* Set the charge group center of mass of the test particle */
630 copy_rvec(x_init, fr->cg_cm[top->cgs.nr-1]);
632 /* Calc energy (no forces) on new positions.
633 * Since we only need the intermolecular energy
634 * and the RF exclusion terms of the inserted molecule occur
635 * within a single charge group we can pass NULL for the graph.
636 * This also avoids shifts that would move charge groups
637 * out of the box. */
638 /* Make do_force do a single node force calculation */
639 cr->nnodes = 1;
641 // TPI might place a particle so close that the potential
642 // is infinite. Since this is intended to happen, we
643 // temporarily suppress any exceptions that the processor
644 // might raise, then restore the old behaviour.
645 std::fenv_t floatingPointEnvironment;
646 std::feholdexcept(&floatingPointEnvironment);
647 do_force(fplog, cr, ms, inputrec, nullptr, nullptr,
648 step, nrnb, wcycle, top, &top_global->groups,
649 state_global->box, state_global->x.arrayRefWithPadding(), &state_global->hist,
650 f.arrayRefWithPadding(), force_vir, mdatoms, enerd, fcd,
651 state_global->lambda,
652 nullptr, fr, ppForceWorkload, nullptr, mu_tot, t, nullptr,
653 GMX_FORCE_NONBONDED | GMX_FORCE_ENERGY |
654 (bNS ? GMX_FORCE_DYNAMICBOX | GMX_FORCE_NS : 0) |
655 (bStateChanged ? GMX_FORCE_STATECHANGED : 0),
656 DdOpenBalanceRegionBeforeForceComputation::no,
657 DdCloseBalanceRegionAfterForceComputation::no);
658 std::feclearexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW);
659 std::feupdateenv(&floatingPointEnvironment);
661 cr->nnodes = nnodes;
662 bStateChanged = FALSE;
663 bNS = FALSE;
665 /* Calculate long range corrections to pressure and energy */
666 calc_dispcorr(inputrec, fr, state_global->box,
667 lambda, pres, vir, &prescorr, &enercorr, &dvdlcorr);
668 /* figure out how to rearrange the next 4 lines MRS 8/4/2009 */
669 enerd->term[F_DISPCORR] = enercorr;
670 enerd->term[F_EPOT] += enercorr;
671 enerd->term[F_PRES] += prescorr;
672 enerd->term[F_DVDL_VDW] += dvdlcorr;
674 epot = enerd->term[F_EPOT];
675 bEnergyOutOfBounds = FALSE;
677 /* If the compiler doesn't optimize this check away
678 * we catch the NAN energies.
679 * The epot>GMX_REAL_MAX check catches inf values,
680 * which should nicely result in embU=0 through the exp below,
681 * but it does not hurt to check anyhow.
683 /* Non-bonded Interaction usually diverge at r=0.
684 * With tabulated interaction functions the first few entries
685 * should be capped in a consistent fashion between
686 * repulsion, dispersion and Coulomb to avoid accidental
687 * negative values in the total energy.
688 * The table generation code in tables.c does this.
689 * With user tbales the user should take care of this.
691 if (epot != epot || epot > GMX_REAL_MAX)
693 bEnergyOutOfBounds = TRUE;
695 if (bEnergyOutOfBounds)
697 if (debug)
699 fprintf(debug, "\n time %.3f, step %d: non-finite energy %f, using exp(-bU)=0\n", t, static_cast<int>(step), epot);
701 embU = 0;
703 else
705 // Exponent argument is fine in SP range, but output can be in DP range
706 embU = exp(static_cast<double>(-beta*epot));
707 sum_embU += embU;
708 /* Determine the weighted energy contributions of each energy group */
709 e = 0;
710 sum_UgembU[e++] += epot*embU;
711 if (fr->bBHAM)
713 for (i = 0; i < ngid; i++)
715 sum_UgembU[e++] +=
716 enerd->grpp.ener[egBHAMSR][GID(i, gid_tp, ngid)]*embU;
719 else
721 for (i = 0; i < ngid; i++)
723 sum_UgembU[e++] +=
724 enerd->grpp.ener[egLJSR][GID(i, gid_tp, ngid)]*embU;
727 if (bDispCorr)
729 sum_UgembU[e++] += enerd->term[F_DISPCORR]*embU;
731 if (bCharge)
733 for (i = 0; i < ngid; i++)
735 sum_UgembU[e++] += enerd->grpp.ener[egCOULSR][GID(i, gid_tp, ngid)] * embU;
737 if (bRFExcl)
739 sum_UgembU[e++] += enerd->term[F_RF_EXCL]*embU;
741 if (EEL_FULL(fr->ic->eeltype))
743 sum_UgembU[e++] += enerd->term[F_COUL_RECIP]*embU;
748 if (embU == 0 || beta*epot > bU_bin_limit)
750 bin[0]++;
752 else
754 i = gmx::roundToInt((bU_logV_bin_limit
755 - (beta*epot - logV + refvolshift))*invbinw);
756 if (i < 0)
758 i = 0;
760 if (i >= nbin)
762 realloc_bins(&bin, &nbin, i+10);
764 bin[i]++;
767 if (debug)
769 fprintf(debug, "TPI %7d %12.5e %12.5f %12.5f %12.5f\n",
770 static_cast<int>(step), epot, x_tp[XX], x_tp[YY], x_tp[ZZ]);
773 if (dump_pdb && epot <= dump_ener)
775 sprintf(str, "t%g_step%d.pdb", t, static_cast<int>(step));
776 sprintf(str2, "t: %f step %d ener: %f", t, static_cast<int>(step), epot);
777 write_sto_conf_mtop(str, str2, top_global, state_global->x.rvec_array(), state_global->v.rvec_array(),
778 inputrec->ePBC, state_global->box);
781 step++;
782 if ((step/stepblocksize) % cr->nnodes != cr->nodeid)
784 /* Skip all steps assigned to the other MPI ranks */
785 step += (cr->nnodes - 1)*stepblocksize;
789 if (PAR(cr))
791 /* When running in parallel sum the energies over the processes */
792 gmx_sumd(1, &sum_embU, cr);
793 gmx_sumd(nener, sum_UgembU, cr);
796 frame++;
797 V_all += V;
798 VembU_all += V*sum_embU/nsteps;
800 if (fp_tpi)
802 if (mdrunOptions.verbose || frame%10 == 0 || frame < 10)
804 fprintf(stderr, "mu %10.3e <mu> %10.3e\n",
805 -log(sum_embU/nsteps)/beta, -log(VembU_all/V_all)/beta);
808 fprintf(fp_tpi, "%10.3f %12.5e %12.5e %12.5e %12.5e",
810 VembU_all == 0 ? 20/beta : -log(VembU_all/V_all)/beta,
811 sum_embU == 0 ? 20/beta : -log(sum_embU/nsteps)/beta,
812 sum_embU/nsteps, V);
813 for (e = 0; e < nener; e++)
815 fprintf(fp_tpi, " %12.5e", sum_UgembU[e]/nsteps);
817 fprintf(fp_tpi, "\n");
818 fflush(fp_tpi);
821 bNotLastFrame = read_next_frame(oenv, status, &rerun_fr);
822 } /* End of the loop */
823 walltime_accounting_end_time(walltime_accounting);
825 close_trx(status);
827 if (fp_tpi != nullptr)
829 xvgrclose(fp_tpi);
832 if (fplog != nullptr)
834 fprintf(fplog, "\n");
835 fprintf(fplog, " <V> = %12.5e nm^3\n", V_all/frame);
836 const double mu = -log(VembU_all/V_all)/beta;
837 fprintf(fplog, " <mu> = %12.5e kJ/mol\n", mu);
839 if (!std::isfinite(mu))
841 fprintf(fplog, "\nThe computed chemical potential is not finite - consider increasing the number of steps and/or the number of frames to insert into.\n");
845 /* Write the Boltzmann factor histogram */
846 if (PAR(cr))
848 /* When running in parallel sum the bins over the processes */
849 i = nbin;
850 global_max(cr, &i);
851 realloc_bins(&bin, &nbin, i);
852 gmx_sumd(nbin, bin, cr);
854 if (MASTER(cr))
856 fp_tpi = xvgropen(opt2fn("-tpid", nfile, fnm),
857 "TPI energy distribution",
858 "\\betaU - log(V/<V>)", "count", oenv);
859 sprintf(str, "number \\betaU > %g: %9.3e", bU_bin_limit, bin[0]);
860 xvgr_subtitle(fp_tpi, str, oenv);
861 xvgr_legend(fp_tpi, 2, tpid_leg, oenv);
862 for (i = nbin-1; i > 0; i--)
864 bUlogV = -i/invbinw + bU_logV_bin_limit - refvolshift + log(V_all/frame);
865 fprintf(fp_tpi, "%6.2f %10d %12.5e\n",
866 bUlogV,
867 roundToInt(bin[i]),
868 bin[i]*exp(-bUlogV)*V_all/VembU_all);
870 xvgrclose(fp_tpi);
872 sfree(bin);
874 sfree(sum_UgembU);
876 walltime_accounting_set_nsteps_done(walltime_accounting, frame*inputrec->nsteps);
879 } // namespace gmx