Modernize syntax of enable_if and traits to use _t helpers
[gromacs.git] / src / gromacs / ewald / pme_gather.cpp
blobd4cc6772ef36fe4e79f60c4c823f3f1b8a112a87
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
5 * Copyright (c) 2001-2004, The GROMACS development team.
6 * Copyright (c) 2013,2014,2015,2017,2018,2019, by the GROMACS development team, led by
7 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
8 * and including many others, as listed in the AUTHORS file in the
9 * top-level source directory and at http://www.gromacs.org.
11 * GROMACS is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public License
13 * as published by the Free Software Foundation; either version 2.1
14 * of the License, or (at your option) any later version.
16 * GROMACS is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * Lesser General Public License for more details.
21 * You should have received a copy of the GNU Lesser General Public
22 * License along with GROMACS; if not, see
23 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
24 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
26 * If you want to redistribute modifications to GROMACS, please
27 * consider that scientific software is very special. Version
28 * control is crucial - bugs must be traceable. We will be happy to
29 * consider code for inclusion in the official distribution, but
30 * derived work must not be called official GROMACS. Details are found
31 * in the README & COPYING files - if they are missing, get the
32 * official version at http://www.gromacs.org.
34 * To help us fund GROMACS development, we humbly ask that you cite
35 * the research papers on the package. Check out http://www.gromacs.org.
38 #include "gmxpre.h"
40 #include "pme_gather.h"
42 #include "gromacs/math/vec.h"
43 #include "gromacs/simd/simd.h"
44 #include "gromacs/utility/basedefinitions.h"
45 #include "gromacs/utility/gmxassert.h"
46 #include "gromacs/utility/smalloc.h"
47 #include "gromacs/utility/typetraits.h"
49 #include "pme_internal.h"
50 #include "pme_simd.h"
51 #include "pme_spline_work.h"
53 using namespace gmx; // TODO: Remove when this file is moved into gmx namespace
55 /* Spline function. Goals: 1) Force compiler to instantiate function separately
56 for each compile-time value of order and once more for any possible (runtime)
57 value. 2) Allow overloading for specific compile-time values.
58 The Int template argument can be either int (runtime) or an object of type
59 integral_constant<int, N> (compile-time). Common runtime values can be
60 converted to compile-time values with a switch statement. For the compile
61 value the compiler is required to instantiate the function separately for
62 each value. The function can be overloaded for specific compile-time values
63 using integral_constant<int, N> where N is either a specific value or an
64 enable_if constrained non-type template parameter. The most specific overload
65 (specific value > int template parameter > general function) is called. Inside
66 the function the order argument can be used as regular int because
67 integral_constant has a proper conversion.
69 SIMD do_fspline() template funtions will be used for PME order 4 and 5
70 when the SIMD module has support for SIMD4 for the architecture used.
71 For SIMD4 without unaligned load/store support:
72 order 4 and 5 use the order 4+5 aligned SIMD template
73 For SIMD4 with unaligned load/store support:
74 order 4 uses the order 4 unaligned SIMD template
75 order 5 uses the order 4+5 aligned SIMD template
77 struct do_fspline
79 do_fspline (
80 const gmx_pme_t * pme,
81 const real * gmx_restrict grid,
82 const PmeAtomComm * gmx_restrict atc,
83 const splinedata_t * gmx_restrict spline,
84 int nn)
85 : pme(pme), grid(grid), atc(atc), spline(spline), nn(nn) {}
87 template <typename Int>
88 RVec operator()(Int order) const
90 static_assert(isIntegralConstant<Int, int>::value || std::is_same<Int, int>::value,
91 "'order' needs to be either of type integral_constant<int,N> or int.");
93 const int norder = nn*order;
95 /* Pointer arithmetic alert, next six statements */
96 const real *const gmx_restrict thx = spline->theta.coefficients[XX] + norder;
97 const real *const gmx_restrict thy = spline->theta.coefficients[YY] + norder;
98 const real *const gmx_restrict thz = spline->theta.coefficients[ZZ] + norder;
99 const real *const gmx_restrict dthx = spline->dtheta.coefficients[XX] + norder;
100 const real *const gmx_restrict dthy = spline->dtheta.coefficients[YY] + norder;
101 const real *const gmx_restrict dthz = spline->dtheta.coefficients[ZZ] + norder;
103 RVec f(0, 0, 0);
105 for (int ithx = 0; (ithx < order); ithx++)
107 const int index_x = (idxX + ithx)*gridNY*gridNZ;
108 const real tx = thx[ithx];
109 const real dx = dthx[ithx];
111 for (int ithy = 0; (ithy < order); ithy++)
113 const int index_xy = index_x + (idxY + ithy)*gridNZ;
114 const real ty = thy[ithy];
115 const real dy = dthy[ithy];
116 real fxy1 = 0, fz1 = 0;
118 for (int ithz = 0; (ithz < order); ithz++)
120 const real gval = grid[index_xy + (idxZ + ithz)];
121 fxy1 += thz[ithz]*gval;
122 fz1 += dthz[ithz]*gval;
124 f[XX] += dx*ty*fxy1;
125 f[YY] += tx*dy*fxy1;
126 f[ZZ] += tx*ty*fz1;
130 return f;
133 //TODO: Consider always have at least a dummy implementation of Simd (enough for first phase of two-phase lookup) and then use enable_if instead of #ifdef
134 #if PME_4NSIMD_GATHER
135 /* Gather for one charge with pme_order=4 with unaligned SIMD4 load+store.
136 * Uses 4N SIMD where N is SIMD_WIDTH/4 to operate on all of z and N of y.
137 * This code does not assume any memory alignment for the grid.
139 RVec
140 operator()(std::integral_constant<int, 4> /*unused*/) const
142 const int norder = nn*4;
143 /* Pointer arithmetic alert, next six statements */
144 const real *const gmx_restrict thx = spline->theta.coefficients[XX] + norder;
145 const real *const gmx_restrict thy = spline->theta.coefficients[YY] + norder;
146 const real *const gmx_restrict thz = spline->theta.coefficients[ZZ] + norder;
147 const real *const gmx_restrict dthx = spline->dtheta.coefficients[XX] + norder;
148 const real *const gmx_restrict dthy = spline->dtheta.coefficients[YY] + norder;
149 const real *const gmx_restrict dthz = spline->dtheta.coefficients[ZZ] + norder;
151 Simd4NReal fx_S = setZero();
152 Simd4NReal fy_S = setZero();
153 Simd4NReal fz_S = setZero();
155 /* With order 4 the z-spline is actually aligned */
156 const Simd4NReal tz_S = load4DuplicateN(thz);
157 const Simd4NReal dz_S = load4DuplicateN(dthz);
159 for (int ithx = 0; ithx < 4; ithx++)
161 const int index_x = (idxX + ithx)*gridNY*gridNZ;
162 const Simd4NReal tx_S = Simd4NReal(thx[ithx]);
163 const Simd4NReal dx_S = Simd4NReal(dthx[ithx]);
165 for (int ithy = 0; ithy < 4; ithy += GMX_SIMD4N_REAL_WIDTH/4)
167 const int index_xy = index_x + (idxY+ithy)*gridNZ;
169 const Simd4NReal ty_S = loadUNDuplicate4(thy +ithy);
170 const Simd4NReal dy_S = loadUNDuplicate4(dthy+ithy);
172 const Simd4NReal gval_S = loadU4NOffset(grid+index_xy+idxZ, gridNZ);
175 const Simd4NReal fxy1_S = tz_S * gval_S;
176 const Simd4NReal fz1_S = dz_S * gval_S;
178 fx_S = fma(dx_S * ty_S, fxy1_S, fx_S);
179 fy_S = fma(tx_S * dy_S, fxy1_S, fy_S);
180 fz_S = fma(tx_S * ty_S, fz1_S, fz_S);
184 return {
185 reduce(fx_S), reduce(fy_S), reduce(fz_S)
188 #endif
190 #ifdef PME_SIMD4_SPREAD_GATHER
191 /* Load order elements from unaligned memory into two 4-wide SIMD */
192 template<int order>
193 static inline void loadOrderU(const real* data, std::integral_constant<int, order> /*unused*/,
194 int offset, Simd4Real* S0, Simd4Real* S1)
196 #ifdef PME_SIMD4_UNALIGNED
197 *S0 = load4U(data-offset);
198 *S1 = load4U(data-offset+4);
199 #else
200 alignas(GMX_SIMD_ALIGNMENT) real buf_aligned[GMX_SIMD4_WIDTH*2];
201 /* Copy data to an aligned buffer */
202 for (int i = 0; i < order; i++)
204 buf_aligned[offset+i] = data[i];
206 *S0 = load4(buf_aligned);
207 *S1 = load4(buf_aligned+4);
208 #endif
210 #endif
212 #ifdef PME_SIMD4_SPREAD_GATHER
213 /* This code assumes that the grid is allocated 4-real aligned
214 * and that pme->pmegrid_nz is a multiple of 4.
215 * This code supports pme_order <= 5.
217 template <int Order>
218 std::enable_if_t<Order == 4 || Order == 5, RVec>
219 operator()(std::integral_constant<int, Order> order) const
221 const int norder = nn*order;
222 GMX_ASSERT(gridNZ % 4 == 0, "For aligned SIMD4 operations the grid size has to be padded up to a multiple of 4");
223 /* Pointer arithmetic alert, next six statements */
224 const real *const gmx_restrict thx = spline->theta.coefficients[XX] + norder;
225 const real *const gmx_restrict thy = spline->theta.coefficients[YY] + norder;
226 const real *const gmx_restrict thz = spline->theta.coefficients[ZZ] + norder;
227 const real *const gmx_restrict dthx = spline->dtheta.coefficients[XX] + norder;
228 const real *const gmx_restrict dthy = spline->dtheta.coefficients[YY] + norder;
229 const real *const gmx_restrict dthz = spline->dtheta.coefficients[ZZ] + norder;
231 struct pme_spline_work *const work = pme->spline_work;
233 const int offset = idxZ & 3;
235 Simd4Real fx_S = setZero();
236 Simd4Real fy_S = setZero();
237 Simd4Real fz_S = setZero();
239 Simd4Real tz_S0, tz_S1, dz_S0, dz_S1;
240 loadOrderU(thz, order, offset, &tz_S0, &tz_S1);
241 loadOrderU(dthz, order, offset, &dz_S0, &dz_S1);
243 tz_S0 = selectByMask(tz_S0, work->mask_S0[offset]);
244 dz_S0 = selectByMask(dz_S0, work->mask_S0[offset]);
245 tz_S1 = selectByMask(tz_S1, work->mask_S1[offset]);
246 dz_S1 = selectByMask(dz_S1, work->mask_S1[offset]);
248 for (int ithx = 0; (ithx < order); ithx++)
250 const int index_x = (idxX + ithx)*gridNY*gridNZ;
251 const Simd4Real tx_S = Simd4Real(thx[ithx]);
252 const Simd4Real dx_S = Simd4Real(dthx[ithx]);
254 for (int ithy = 0; (ithy < order); ithy++)
256 const int index_xy = index_x + (idxY + ithy)*gridNZ;
257 const Simd4Real ty_S = Simd4Real(thy[ithy]);
258 const Simd4Real dy_S = Simd4Real(dthy[ithy]);
260 const Simd4Real gval_S0 = load4(grid + index_xy + idxZ - offset);
261 const Simd4Real gval_S1 = load4(grid + index_xy + idxZ - offset + 4);
263 const Simd4Real fxy1_S0 = tz_S0 * gval_S0;
264 const Simd4Real fz1_S0 = dz_S0 * gval_S0;
265 const Simd4Real fxy1_S1 = tz_S1 * gval_S1;
266 const Simd4Real fz1_S1 = dz_S1 * gval_S1;
268 const Simd4Real fxy1_S = fxy1_S0 + fxy1_S1;
269 const Simd4Real fz1_S = fz1_S0 + fz1_S1;
271 fx_S = fma(dx_S * ty_S, fxy1_S, fx_S);
272 fy_S = fma(tx_S * dy_S, fxy1_S, fy_S);
273 fz_S = fma(tx_S * ty_S, fz1_S, fz_S);
277 return {
278 reduce(fx_S), reduce(fy_S), reduce(fz_S)
281 #endif
282 private:
283 const gmx_pme_t *const pme;
284 const real *const gmx_restrict grid;
285 const PmeAtomComm *const gmx_restrict atc;
286 const splinedata_t *const gmx_restrict spline;
287 const int nn;
289 const int gridNY = pme->pmegrid_ny;
290 const int gridNZ = pme->pmegrid_nz;
292 const int *const idxptr = atc->idx[spline->ind[nn]];
293 const int idxX = idxptr[XX];
294 const int idxY = idxptr[YY];
295 const int idxZ = idxptr[ZZ];
299 void gather_f_bsplines(const gmx_pme_t *pme, const real *grid,
300 gmx_bool bClearF, const PmeAtomComm *atc,
301 const splinedata_t *spline,
302 real scale)
304 /* sum forces for local particles */
306 const int order = pme->pme_order;
307 const int nx = pme->nkx;
308 const int ny = pme->nky;
309 const int nz = pme->nkz;
311 const real rxx = pme->recipbox[XX][XX];
312 const real ryx = pme->recipbox[YY][XX];
313 const real ryy = pme->recipbox[YY][YY];
314 const real rzx = pme->recipbox[ZZ][XX];
315 const real rzy = pme->recipbox[ZZ][YY];
316 const real rzz = pme->recipbox[ZZ][ZZ];
318 /* Extract the buffer for force output */
319 rvec * gmx_restrict force = as_rvec_array(atc->f.data());
321 /* Note that unrolling this loop by templating this function on order
322 * deteriorates performance significantly with gcc5/6/7.
324 for (int nn = 0; nn < spline->n; nn++)
326 const int n = spline->ind[nn];
327 const real coefficient = scale*atc->coefficient[n];
329 if (bClearF)
331 force[n][XX] = 0;
332 force[n][YY] = 0;
333 force[n][ZZ] = 0;
335 if (coefficient != 0)
337 RVec f;
338 const auto spline_func = do_fspline(pme, grid, atc, spline, nn);
340 switch (order)
342 case 4:
343 f = spline_func(std::integral_constant<int, 4>());
344 break;
345 case 5:
346 f = spline_func(std::integral_constant<int, 5>());
347 break;
348 default:
349 f = spline_func(order);
350 break;
353 force[n][XX] += -coefficient*( f[XX]*nx*rxx );
354 force[n][YY] += -coefficient*( f[XX]*nx*ryx + f[YY]*ny*ryy );
355 force[n][ZZ] += -coefficient*( f[XX]*nx*rzx + f[YY]*ny*rzy + f[ZZ]*nz*rzz );
358 /* Since the energy and not forces are interpolated
359 * the net force might not be exactly zero.
360 * This can be solved by also interpolating F, but
361 * that comes at a cost.
362 * A better hack is to remove the net force every
363 * step, but that must be done at a higher level
364 * since this routine doesn't see all atoms if running
365 * in parallel. Don't know how important it is? EL 990726
370 real gather_energy_bsplines(gmx_pme_t *pme, const real *grid,
371 PmeAtomComm *atc)
373 splinedata_t *spline;
374 int ithx, ithy, ithz, i0, j0, k0;
375 int index_x, index_xy;
376 int *idxptr;
377 real energy, pot, tx, ty, coefficient, gval;
378 real *thx, *thy, *thz;
379 int norder;
380 int order;
382 spline = &atc->spline[0];
384 order = pme->pme_order;
386 energy = 0;
387 for (int n = 0; n < atc->numAtoms(); n++)
389 coefficient = atc->coefficient[n];
391 if (coefficient != 0)
393 idxptr = atc->idx[n];
394 norder = n*order;
396 i0 = idxptr[XX];
397 j0 = idxptr[YY];
398 k0 = idxptr[ZZ];
400 /* Pointer arithmetic alert, next three statements */
401 thx = spline->theta.coefficients[XX] + norder;
402 thy = spline->theta.coefficients[YY] + norder;
403 thz = spline->theta.coefficients[ZZ] + norder;
405 pot = 0;
406 for (ithx = 0; (ithx < order); ithx++)
408 index_x = (i0+ithx)*pme->pmegrid_ny*pme->pmegrid_nz;
409 tx = thx[ithx];
411 for (ithy = 0; (ithy < order); ithy++)
413 index_xy = index_x+(j0+ithy)*pme->pmegrid_nz;
414 ty = thy[ithy];
416 for (ithz = 0; (ithz < order); ithz++)
418 gval = grid[index_xy+(k0+ithz)];
419 pot += tx*ty*thz[ithz]*gval;
425 energy += pot*coefficient;
429 return energy;