Improved state_change_natoms and used it more
[gromacs.git] / src / gromacs / mdlib / sim_util.cpp
blob09fe7ad85f00d249926dec220ea750381b254516
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
5 * Copyright (c) 2001-2004, The GROMACS development team.
6 * Copyright (c) 2013,2014,2015,2016,2017, by the GROMACS development team, led by
7 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
8 * and including many others, as listed in the AUTHORS file in the
9 * top-level source directory and at http://www.gromacs.org.
11 * GROMACS is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public License
13 * as published by the Free Software Foundation; either version 2.1
14 * of the License, or (at your option) any later version.
16 * GROMACS is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * Lesser General Public License for more details.
21 * You should have received a copy of the GNU Lesser General Public
22 * License along with GROMACS; if not, see
23 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
24 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
26 * If you want to redistribute modifications to GROMACS, please
27 * consider that scientific software is very special. Version
28 * control is crucial - bugs must be traceable. We will be happy to
29 * consider code for inclusion in the official distribution, but
30 * derived work must not be called official GROMACS. Details are found
31 * in the README & COPYING files - if they are missing, get the
32 * official version at http://www.gromacs.org.
34 * To help us fund GROMACS development, we humbly ask that you cite
35 * the research papers on the package. Check out http://www.gromacs.org.
37 #include "gmxpre.h"
39 #include "sim_util.h"
41 #include "config.h"
43 #include <assert.h>
44 #include <math.h>
45 #include <stdio.h>
46 #include <string.h>
48 #include <cstdint>
50 #include <array>
52 #include "gromacs/domdec/domdec.h"
53 #include "gromacs/domdec/domdec_struct.h"
54 #include "gromacs/essentialdynamics/edsam.h"
55 #include "gromacs/ewald/pme.h"
56 #include "gromacs/gmxlib/chargegroup.h"
57 #include "gromacs/gmxlib/network.h"
58 #include "gromacs/gmxlib/nrnb.h"
59 #include "gromacs/gmxlib/nonbonded/nb_free_energy.h"
60 #include "gromacs/gmxlib/nonbonded/nb_kernel.h"
61 #include "gromacs/gmxlib/nonbonded/nonbonded.h"
62 #include "gromacs/imd/imd.h"
63 #include "gromacs/listed-forces/bonded.h"
64 #include "gromacs/listed-forces/disre.h"
65 #include "gromacs/listed-forces/orires.h"
66 #include "gromacs/math/functions.h"
67 #include "gromacs/math/units.h"
68 #include "gromacs/math/vec.h"
69 #include "gromacs/math/vecdump.h"
70 #include "gromacs/mdlib/calcmu.h"
71 #include "gromacs/mdlib/constr.h"
72 #include "gromacs/mdlib/force.h"
73 #include "gromacs/mdlib/forcerec.h"
74 #include "gromacs/mdlib/genborn.h"
75 #include "gromacs/mdlib/gmx_omp_nthreads.h"
76 #include "gromacs/mdlib/mdrun.h"
77 #include "gromacs/mdlib/nb_verlet.h"
78 #include "gromacs/mdlib/nbnxn_atomdata.h"
79 #include "gromacs/mdlib/nbnxn_gpu_data_mgmt.h"
80 #include "gromacs/mdlib/nbnxn_grid.h"
81 #include "gromacs/mdlib/nbnxn_search.h"
82 #include "gromacs/mdlib/qmmm.h"
83 #include "gromacs/mdlib/update.h"
84 #include "gromacs/mdlib/nbnxn_kernels/nbnxn_kernel_gpu_ref.h"
85 #include "gromacs/mdlib/nbnxn_kernels/nbnxn_kernel_ref.h"
86 #include "gromacs/mdlib/nbnxn_kernels/simd_2xnn/nbnxn_kernel_simd_2xnn.h"
87 #include "gromacs/mdlib/nbnxn_kernels/simd_4xn/nbnxn_kernel_simd_4xn.h"
88 #include "gromacs/mdtypes/commrec.h"
89 #include "gromacs/mdtypes/inputrec.h"
90 #include "gromacs/mdtypes/md_enums.h"
91 #include "gromacs/mdtypes/state.h"
92 #include "gromacs/pbcutil/ishift.h"
93 #include "gromacs/pbcutil/mshift.h"
94 #include "gromacs/pbcutil/pbc.h"
95 #include "gromacs/pulling/pull.h"
96 #include "gromacs/pulling/pull_rotation.h"
97 #include "gromacs/timing/cyclecounter.h"
98 #include "gromacs/timing/gpu_timing.h"
99 #include "gromacs/timing/wallcycle.h"
100 #include "gromacs/timing/wallcyclereporting.h"
101 #include "gromacs/timing/walltime_accounting.h"
102 #include "gromacs/utility/arrayref.h"
103 #include "gromacs/utility/basedefinitions.h"
104 #include "gromacs/utility/cstringutil.h"
105 #include "gromacs/utility/exceptions.h"
106 #include "gromacs/utility/fatalerror.h"
107 #include "gromacs/utility/gmxassert.h"
108 #include "gromacs/utility/gmxmpi.h"
109 #include "gromacs/utility/logger.h"
110 #include "gromacs/utility/pleasecite.h"
111 #include "gromacs/utility/smalloc.h"
112 #include "gromacs/utility/sysinfo.h"
114 #include "nbnxn_gpu.h"
116 void print_time(FILE *out,
117 gmx_walltime_accounting_t walltime_accounting,
118 gmx_int64_t step,
119 t_inputrec *ir,
120 t_commrec gmx_unused *cr)
122 time_t finish;
123 char timebuf[STRLEN];
124 double dt, elapsed_seconds, time_per_step;
125 char buf[48];
127 #if !GMX_THREAD_MPI
128 if (!PAR(cr))
129 #endif
131 fprintf(out, "\r");
133 fprintf(out, "step %s", gmx_step_str(step, buf));
134 fflush(out);
136 if ((step >= ir->nstlist))
138 double seconds_since_epoch = gmx_gettime();
139 elapsed_seconds = seconds_since_epoch - walltime_accounting_get_start_time_stamp(walltime_accounting);
140 time_per_step = elapsed_seconds/(step - ir->init_step + 1);
141 dt = (ir->nsteps + ir->init_step - step) * time_per_step;
143 if (ir->nsteps >= 0)
145 if (dt >= 300)
147 finish = (time_t) (seconds_since_epoch + dt);
148 gmx_ctime_r(&finish, timebuf, STRLEN);
149 sprintf(buf, "%s", timebuf);
150 buf[strlen(buf)-1] = '\0';
151 fprintf(out, ", will finish %s", buf);
153 else
155 fprintf(out, ", remaining wall clock time: %5d s ", (int)dt);
158 else
160 fprintf(out, " performance: %.1f ns/day ",
161 ir->delta_t/1000*24*60*60/time_per_step);
164 #if !GMX_THREAD_MPI
165 if (PAR(cr))
167 fprintf(out, "\n");
169 #endif
171 fflush(out);
174 void print_date_and_time(FILE *fplog, int nodeid, const char *title,
175 double the_time)
177 char time_string[STRLEN];
179 if (!fplog)
181 return;
185 int i;
186 char timebuf[STRLEN];
187 time_t temp_time = (time_t) the_time;
189 gmx_ctime_r(&temp_time, timebuf, STRLEN);
190 for (i = 0; timebuf[i] >= ' '; i++)
192 time_string[i] = timebuf[i];
194 time_string[i] = '\0';
197 fprintf(fplog, "%s on rank %d %s\n", title, nodeid, time_string);
200 void print_start(FILE *fplog, t_commrec *cr,
201 gmx_walltime_accounting_t walltime_accounting,
202 const char *name)
204 char buf[STRLEN];
206 sprintf(buf, "Started %s", name);
207 print_date_and_time(fplog, cr->nodeid, buf,
208 walltime_accounting_get_start_time_stamp(walltime_accounting));
211 static void sum_forces(rvec f[], const PaddedRVecVector *forceToAdd)
213 /* TODO: remove this - 1 when padding is properly implemented */
214 int end = forceToAdd->size() - 1;
215 const rvec *fAdd = as_rvec_array(forceToAdd->data());
217 // cppcheck-suppress unreadVariable
218 int gmx_unused nt = gmx_omp_nthreads_get(emntDefault);
219 #pragma omp parallel for num_threads(nt) schedule(static)
220 for (int i = 0; i < end; i++)
222 rvec_inc(f[i], fAdd[i]);
226 static void calc_virial(int start, int homenr, rvec x[], rvec f[],
227 tensor vir_part, t_graph *graph, matrix box,
228 t_nrnb *nrnb, const t_forcerec *fr, int ePBC)
230 int i;
232 /* The short-range virial from surrounding boxes */
233 clear_mat(vir_part);
234 calc_vir(SHIFTS, fr->shift_vec, fr->fshift, vir_part, ePBC == epbcSCREW, box);
235 inc_nrnb(nrnb, eNR_VIRIAL, SHIFTS);
237 /* Calculate partial virial, for local atoms only, based on short range.
238 * Total virial is computed in global_stat, called from do_md
240 f_calc_vir(start, start+homenr, x, f, vir_part, graph, box);
241 inc_nrnb(nrnb, eNR_VIRIAL, homenr);
243 /* Add position restraint contribution */
244 for (i = 0; i < DIM; i++)
246 vir_part[i][i] += fr->vir_diag_posres[i];
249 /* Add wall contribution */
250 for (i = 0; i < DIM; i++)
252 vir_part[i][ZZ] += fr->vir_wall_z[i];
255 if (debug)
257 pr_rvecs(debug, 0, "vir_part", vir_part, DIM);
261 static void pull_potential_wrapper(t_commrec *cr,
262 t_inputrec *ir,
263 matrix box, rvec x[],
264 rvec f[],
265 tensor vir_force,
266 t_mdatoms *mdatoms,
267 gmx_enerdata_t *enerd,
268 real *lambda,
269 double t,
270 gmx_wallcycle_t wcycle)
272 t_pbc pbc;
273 real dvdl;
275 /* Calculate the center of mass forces, this requires communication,
276 * which is why pull_potential is called close to other communication.
277 * The virial contribution is calculated directly,
278 * which is why we call pull_potential after calc_virial.
280 wallcycle_start(wcycle, ewcPULLPOT);
281 set_pbc(&pbc, ir->ePBC, box);
282 dvdl = 0;
283 enerd->term[F_COM_PULL] +=
284 pull_potential(ir->pull_work, mdatoms, &pbc,
285 cr, t, lambda[efptRESTRAINT], x, f, vir_force, &dvdl);
286 enerd->dvdl_lin[efptRESTRAINT] += dvdl;
287 wallcycle_stop(wcycle, ewcPULLPOT);
290 static void pme_receive_force_ener(t_commrec *cr,
291 gmx_wallcycle_t wcycle,
292 gmx_enerdata_t *enerd,
293 t_forcerec *fr)
295 real e_q, e_lj, dvdl_q, dvdl_lj;
296 float cycles_ppdpme, cycles_seppme;
298 cycles_ppdpme = wallcycle_stop(wcycle, ewcPPDURINGPME);
299 dd_cycles_add(cr->dd, cycles_ppdpme, ddCyclPPduringPME);
301 /* In case of node-splitting, the PP nodes receive the long-range
302 * forces, virial and energy from the PME nodes here.
304 wallcycle_start(wcycle, ewcPP_PMEWAITRECVF);
305 dvdl_q = 0;
306 dvdl_lj = 0;
307 gmx_pme_receive_f(cr, as_rvec_array(fr->f_novirsum->data()), fr->vir_el_recip, &e_q,
308 fr->vir_lj_recip, &e_lj, &dvdl_q, &dvdl_lj,
309 &cycles_seppme);
310 enerd->term[F_COUL_RECIP] += e_q;
311 enerd->term[F_LJ_RECIP] += e_lj;
312 enerd->dvdl_lin[efptCOUL] += dvdl_q;
313 enerd->dvdl_lin[efptVDW] += dvdl_lj;
315 if (wcycle)
317 dd_cycles_add(cr->dd, cycles_seppme, ddCyclPME);
319 wallcycle_stop(wcycle, ewcPP_PMEWAITRECVF);
322 static void print_large_forces(FILE *fp, t_mdatoms *md, t_commrec *cr,
323 gmx_int64_t step, real forceTolerance,
324 const rvec *x, const rvec *f)
326 real force2Tolerance = gmx::square(forceTolerance);
327 std::uintmax_t numNonFinite = 0;
328 for (int i = 0; i < md->homenr; i++)
330 real force2 = norm2(f[i]);
331 bool nonFinite = !std::isfinite(force2);
332 if (force2 >= force2Tolerance || nonFinite)
334 fprintf(fp, "step %" GMX_PRId64 " atom %6d x %8.3f %8.3f %8.3f force %12.5e\n",
335 step,
336 ddglatnr(cr->dd, i), x[i][XX], x[i][YY], x[i][ZZ], std::sqrt(force2));
338 if (nonFinite)
340 numNonFinite++;
343 if (numNonFinite > 0)
345 /* Note that with MPI this fatal call on one rank might interrupt
346 * the printing on other ranks. But we can only avoid that with
347 * an expensive MPI barrier that we would need at each step.
349 gmx_fatal(FARGS, "At step %" GMX_PRId64 " detected non-finite forces on %ju atoms", step, numNonFinite);
353 static void post_process_forces(t_commrec *cr,
354 gmx_int64_t step,
355 t_nrnb *nrnb, gmx_wallcycle_t wcycle,
356 gmx_localtop_t *top,
357 matrix box, rvec x[],
358 rvec f[],
359 tensor vir_force,
360 t_mdatoms *mdatoms,
361 t_graph *graph,
362 t_forcerec *fr, gmx_vsite_t *vsite,
363 int flags)
365 if (fr->bF_NoVirSum)
367 if (vsite)
369 /* Spread the mesh force on virtual sites to the other particles...
370 * This is parallellized. MPI communication is performed
371 * if the constructing atoms aren't local.
373 wallcycle_start(wcycle, ewcVSITESPREAD);
374 spread_vsite_f(vsite, x, as_rvec_array(fr->f_novirsum->data()), nullptr,
375 (flags & GMX_FORCE_VIRIAL), fr->vir_el_recip,
376 nrnb,
377 &top->idef, fr->ePBC, fr->bMolPBC, graph, box, cr);
378 wallcycle_stop(wcycle, ewcVSITESPREAD);
380 if (flags & GMX_FORCE_VIRIAL)
382 /* Now add the forces, this is local */
383 sum_forces(f, fr->f_novirsum);
385 if (EEL_FULL(fr->eeltype))
387 /* Add the mesh contribution to the virial */
388 m_add(vir_force, fr->vir_el_recip, vir_force);
390 if (EVDW_PME(fr->vdwtype))
392 /* Add the mesh contribution to the virial */
393 m_add(vir_force, fr->vir_lj_recip, vir_force);
395 if (debug)
397 pr_rvecs(debug, 0, "vir_force", vir_force, DIM);
402 if (fr->print_force >= 0)
404 print_large_forces(stderr, mdatoms, cr, step, fr->print_force, x, f);
408 static void do_nb_verlet(t_forcerec *fr,
409 interaction_const_t *ic,
410 gmx_enerdata_t *enerd,
411 int flags, int ilocality,
412 int clearF,
413 t_nrnb *nrnb,
414 gmx_wallcycle_t wcycle)
416 int enr_nbnxn_kernel_ljc, enr_nbnxn_kernel_lj;
417 nonbonded_verlet_group_t *nbvg;
418 gmx_bool bUsingGpuKernels;
420 if (!(flags & GMX_FORCE_NONBONDED))
422 /* skip non-bonded calculation */
423 return;
426 nbvg = &fr->nbv->grp[ilocality];
428 /* GPU kernel launch overhead is already timed separately */
429 if (fr->cutoff_scheme != ecutsVERLET)
431 gmx_incons("Invalid cut-off scheme passed!");
434 bUsingGpuKernels = (nbvg->kernel_type == nbnxnk8x8x8_GPU);
436 if (!bUsingGpuKernels)
438 wallcycle_sub_start(wcycle, ewcsNONBONDED);
440 switch (nbvg->kernel_type)
442 case nbnxnk4x4_PlainC:
443 nbnxn_kernel_ref(&nbvg->nbl_lists,
444 nbvg->nbat, ic,
445 fr->shift_vec,
446 flags,
447 clearF,
448 fr->fshift[0],
449 enerd->grpp.ener[egCOULSR],
450 fr->bBHAM ?
451 enerd->grpp.ener[egBHAMSR] :
452 enerd->grpp.ener[egLJSR]);
453 break;
455 case nbnxnk4xN_SIMD_4xN:
456 nbnxn_kernel_simd_4xn(&nbvg->nbl_lists,
457 nbvg->nbat, ic,
458 nbvg->ewald_excl,
459 fr->shift_vec,
460 flags,
461 clearF,
462 fr->fshift[0],
463 enerd->grpp.ener[egCOULSR],
464 fr->bBHAM ?
465 enerd->grpp.ener[egBHAMSR] :
466 enerd->grpp.ener[egLJSR]);
467 break;
468 case nbnxnk4xN_SIMD_2xNN:
469 nbnxn_kernel_simd_2xnn(&nbvg->nbl_lists,
470 nbvg->nbat, ic,
471 nbvg->ewald_excl,
472 fr->shift_vec,
473 flags,
474 clearF,
475 fr->fshift[0],
476 enerd->grpp.ener[egCOULSR],
477 fr->bBHAM ?
478 enerd->grpp.ener[egBHAMSR] :
479 enerd->grpp.ener[egLJSR]);
480 break;
482 case nbnxnk8x8x8_GPU:
483 nbnxn_gpu_launch_kernel(fr->nbv->gpu_nbv, nbvg->nbat, flags, ilocality);
484 break;
486 case nbnxnk8x8x8_PlainC:
487 nbnxn_kernel_gpu_ref(nbvg->nbl_lists.nbl[0],
488 nbvg->nbat, ic,
489 fr->shift_vec,
490 flags,
491 clearF,
492 nbvg->nbat->out[0].f,
493 fr->fshift[0],
494 enerd->grpp.ener[egCOULSR],
495 fr->bBHAM ?
496 enerd->grpp.ener[egBHAMSR] :
497 enerd->grpp.ener[egLJSR]);
498 break;
500 default:
501 gmx_incons("Invalid nonbonded kernel type passed!");
504 if (!bUsingGpuKernels)
506 wallcycle_sub_stop(wcycle, ewcsNONBONDED);
509 if (EEL_RF(ic->eeltype) || ic->eeltype == eelCUT)
511 enr_nbnxn_kernel_ljc = eNR_NBNXN_LJ_RF;
513 else if ((!bUsingGpuKernels && nbvg->ewald_excl == ewaldexclAnalytical) ||
514 (bUsingGpuKernels && nbnxn_gpu_is_kernel_ewald_analytical(fr->nbv->gpu_nbv)))
516 enr_nbnxn_kernel_ljc = eNR_NBNXN_LJ_EWALD;
518 else
520 enr_nbnxn_kernel_ljc = eNR_NBNXN_LJ_TAB;
522 enr_nbnxn_kernel_lj = eNR_NBNXN_LJ;
523 if (flags & GMX_FORCE_ENERGY)
525 /* In eNR_??? the nbnxn F+E kernels are always the F kernel + 1 */
526 enr_nbnxn_kernel_ljc += 1;
527 enr_nbnxn_kernel_lj += 1;
530 inc_nrnb(nrnb, enr_nbnxn_kernel_ljc,
531 nbvg->nbl_lists.natpair_ljq);
532 inc_nrnb(nrnb, enr_nbnxn_kernel_lj,
533 nbvg->nbl_lists.natpair_lj);
534 /* The Coulomb-only kernels are offset -eNR_NBNXN_LJ_RF+eNR_NBNXN_RF */
535 inc_nrnb(nrnb, enr_nbnxn_kernel_ljc-eNR_NBNXN_LJ_RF+eNR_NBNXN_RF,
536 nbvg->nbl_lists.natpair_q);
538 if (ic->vdw_modifier == eintmodFORCESWITCH)
540 /* We add up the switch cost separately */
541 inc_nrnb(nrnb, eNR_NBNXN_ADD_LJ_FSW+((flags & GMX_FORCE_ENERGY) ? 1 : 0),
542 nbvg->nbl_lists.natpair_ljq + nbvg->nbl_lists.natpair_lj);
544 if (ic->vdw_modifier == eintmodPOTSWITCH)
546 /* We add up the switch cost separately */
547 inc_nrnb(nrnb, eNR_NBNXN_ADD_LJ_PSW+((flags & GMX_FORCE_ENERGY) ? 1 : 0),
548 nbvg->nbl_lists.natpair_ljq + nbvg->nbl_lists.natpair_lj);
550 if (ic->vdwtype == evdwPME)
552 /* We add up the LJ Ewald cost separately */
553 inc_nrnb(nrnb, eNR_NBNXN_ADD_LJ_EWALD+((flags & GMX_FORCE_ENERGY) ? 1 : 0),
554 nbvg->nbl_lists.natpair_ljq + nbvg->nbl_lists.natpair_lj);
558 static void do_nb_verlet_fep(nbnxn_pairlist_set_t *nbl_lists,
559 t_forcerec *fr,
560 rvec x[],
561 rvec f[],
562 t_mdatoms *mdatoms,
563 t_lambda *fepvals,
564 real *lambda,
565 gmx_enerdata_t *enerd,
566 int flags,
567 t_nrnb *nrnb,
568 gmx_wallcycle_t wcycle)
570 int donb_flags;
571 nb_kernel_data_t kernel_data;
572 real lam_i[efptNR];
573 real dvdl_nb[efptNR];
574 int th;
575 int i, j;
577 donb_flags = 0;
578 /* Add short-range interactions */
579 donb_flags |= GMX_NONBONDED_DO_SR;
581 /* Currently all group scheme kernels always calculate (shift-)forces */
582 if (flags & GMX_FORCE_FORCES)
584 donb_flags |= GMX_NONBONDED_DO_FORCE;
586 if (flags & GMX_FORCE_VIRIAL)
588 donb_flags |= GMX_NONBONDED_DO_SHIFTFORCE;
590 if (flags & GMX_FORCE_ENERGY)
592 donb_flags |= GMX_NONBONDED_DO_POTENTIAL;
595 kernel_data.flags = donb_flags;
596 kernel_data.lambda = lambda;
597 kernel_data.dvdl = dvdl_nb;
599 kernel_data.energygrp_elec = enerd->grpp.ener[egCOULSR];
600 kernel_data.energygrp_vdw = enerd->grpp.ener[egLJSR];
602 /* reset free energy components */
603 for (i = 0; i < efptNR; i++)
605 dvdl_nb[i] = 0;
608 assert(gmx_omp_nthreads_get(emntNonbonded) == nbl_lists->nnbl);
610 wallcycle_sub_start(wcycle, ewcsNONBONDED);
611 #pragma omp parallel for schedule(static) num_threads(nbl_lists->nnbl)
612 for (th = 0; th < nbl_lists->nnbl; th++)
616 gmx_nb_free_energy_kernel(nbl_lists->nbl_fep[th],
617 x, f, fr, mdatoms, &kernel_data, nrnb);
619 GMX_CATCH_ALL_AND_EXIT_WITH_FATAL_ERROR;
622 if (fepvals->sc_alpha != 0)
624 enerd->dvdl_nonlin[efptVDW] += dvdl_nb[efptVDW];
625 enerd->dvdl_nonlin[efptCOUL] += dvdl_nb[efptCOUL];
627 else
629 enerd->dvdl_lin[efptVDW] += dvdl_nb[efptVDW];
630 enerd->dvdl_lin[efptCOUL] += dvdl_nb[efptCOUL];
633 /* If we do foreign lambda and we have soft-core interactions
634 * we have to recalculate the (non-linear) energies contributions.
636 if (fepvals->n_lambda > 0 && (flags & GMX_FORCE_DHDL) && fepvals->sc_alpha != 0)
638 kernel_data.flags = (donb_flags & ~(GMX_NONBONDED_DO_FORCE | GMX_NONBONDED_DO_SHIFTFORCE)) | GMX_NONBONDED_DO_FOREIGNLAMBDA;
639 kernel_data.lambda = lam_i;
640 kernel_data.energygrp_elec = enerd->foreign_grpp.ener[egCOULSR];
641 kernel_data.energygrp_vdw = enerd->foreign_grpp.ener[egLJSR];
642 /* Note that we add to kernel_data.dvdl, but ignore the result */
644 for (i = 0; i < enerd->n_lambda; i++)
646 for (j = 0; j < efptNR; j++)
648 lam_i[j] = (i == 0 ? lambda[j] : fepvals->all_lambda[j][i-1]);
650 reset_foreign_enerdata(enerd);
651 #pragma omp parallel for schedule(static) num_threads(nbl_lists->nnbl)
652 for (th = 0; th < nbl_lists->nnbl; th++)
656 gmx_nb_free_energy_kernel(nbl_lists->nbl_fep[th],
657 x, f, fr, mdatoms, &kernel_data, nrnb);
659 GMX_CATCH_ALL_AND_EXIT_WITH_FATAL_ERROR;
662 sum_epot(&(enerd->foreign_grpp), enerd->foreign_term);
663 enerd->enerpart_lambda[i] += enerd->foreign_term[F_EPOT];
667 wallcycle_sub_stop(wcycle, ewcsNONBONDED);
670 gmx_bool use_GPU(const nonbonded_verlet_t *nbv)
672 return nbv != nullptr && nbv->bUseGPU;
675 static gmx_inline void clear_rvecs_omp(int n, rvec v[])
677 int nth = gmx_omp_nthreads_get_simple_rvec_task(emntDefault, n);
679 /* Note that we would like to avoid this conditional by putting it
680 * into the omp pragma instead, but then we still take the full
681 * omp parallel for overhead (at least with gcc5).
683 if (nth == 1)
685 for (int i = 0; i < n; i++)
687 clear_rvec(v[i]);
690 else
692 #pragma omp parallel for num_threads(nth) schedule(static)
693 for (int i = 0; i < n; i++)
695 clear_rvec(v[i]);
700 /*! \brief This routine checks if the potential energy is finite.
702 * Note that passing this check does not guarantee finite forces,
703 * since those use slightly different arithmetics. But in most cases
704 * there is just a narrow coordinate range where forces are not finite
705 * and energies are finite.
707 * \param[in] enerd The energy data; the non-bonded group energies need to be added in here before calling this routine
709 static void checkPotentialEnergyValidity(const gmx_enerdata_t *enerd)
711 if (!std::isfinite(enerd->term[F_EPOT]))
713 gmx_fatal(FARGS, "The total potential energy is %g, which is not finite. The LJ and electrostatic contributions to the energy are %g and %g, respectively. A non-finite potential energy can be caused by overlapping interactions in bonded interactions or very large or NaN coordinate values. Usually this is caused by a badly or non-equilibrated initial configuration or incorrect interactions or parameters in the topology.",
714 enerd->term[F_EPOT],
715 enerd->term[F_LJ],
716 enerd->term[F_COUL_SR]);
720 void do_force_cutsVERLET(FILE *fplog, t_commrec *cr,
721 t_inputrec *inputrec,
722 gmx_int64_t step, t_nrnb *nrnb, gmx_wallcycle_t wcycle,
723 gmx_localtop_t *top,
724 gmx_groups_t gmx_unused *groups,
725 matrix box, rvec x[], history_t *hist,
726 PaddedRVecVector *force,
727 tensor vir_force,
728 t_mdatoms *mdatoms,
729 gmx_enerdata_t *enerd, t_fcdata *fcd,
730 real *lambda, t_graph *graph,
731 t_forcerec *fr, interaction_const_t *ic,
732 gmx_vsite_t *vsite, rvec mu_tot,
733 double t, gmx_edsam_t ed,
734 gmx_bool bBornRadii,
735 int flags)
737 int cg1, i, j;
738 double mu[2*DIM];
739 gmx_bool bStateChanged, bNS, bFillGrid, bCalcCGCM;
740 gmx_bool bDoForces, bUseGPU, bUseOrEmulGPU;
741 gmx_bool bDiffKernels = FALSE;
742 rvec vzero, box_diag;
743 float cycles_pme, cycles_force, cycles_wait_gpu;
744 /* TODO To avoid loss of precision, float can't be used for a
745 * cycle count. Build an object that can do this right and perhaps
746 * also be used by gmx_wallcycle_t */
747 gmx_cycles_t cycleCountBeforeLocalWorkCompletes = 0;
748 nonbonded_verlet_t *nbv;
750 cycles_force = 0;
751 cycles_wait_gpu = 0;
752 nbv = fr->nbv;
754 const int start = 0;
755 const int homenr = mdatoms->homenr;
757 clear_mat(vir_force);
759 if (DOMAINDECOMP(cr))
761 cg1 = cr->dd->ncg_tot;
763 else
765 cg1 = top->cgs.nr;
767 if (fr->n_tpi > 0)
769 cg1--;
772 bStateChanged = (flags & GMX_FORCE_STATECHANGED);
773 bNS = (flags & GMX_FORCE_NS) && (fr->bAllvsAll == FALSE);
774 bFillGrid = (bNS && bStateChanged);
775 bCalcCGCM = (bFillGrid && !DOMAINDECOMP(cr));
776 bDoForces = (flags & GMX_FORCE_FORCES);
777 bUseGPU = fr->nbv->bUseGPU;
778 bUseOrEmulGPU = bUseGPU || (nbv->grp[0].kernel_type == nbnxnk8x8x8_PlainC);
780 if (bStateChanged)
782 update_forcerec(fr, box);
784 if (inputrecNeedMutot(inputrec))
786 /* Calculate total (local) dipole moment in a temporary common array.
787 * This makes it possible to sum them over nodes faster.
789 calc_mu(start, homenr,
790 x, mdatoms->chargeA, mdatoms->chargeB, mdatoms->nChargePerturbed,
791 mu, mu+DIM);
795 if (fr->ePBC != epbcNONE)
797 /* Compute shift vectors every step,
798 * because of pressure coupling or box deformation!
800 if ((flags & GMX_FORCE_DYNAMICBOX) && bStateChanged)
802 calc_shifts(box, fr->shift_vec);
805 if (bCalcCGCM)
807 put_atoms_in_box_omp(fr->ePBC, box, homenr, x);
808 inc_nrnb(nrnb, eNR_SHIFTX, homenr);
810 else if (EI_ENERGY_MINIMIZATION(inputrec->eI) && graph)
812 unshift_self(graph, box, x);
816 nbnxn_atomdata_copy_shiftvec(flags & GMX_FORCE_DYNAMICBOX,
817 fr->shift_vec, nbv->grp[0].nbat);
819 #if GMX_MPI
820 if (!(cr->duty & DUTY_PME))
822 gmx_bool bBS;
823 matrix boxs;
825 /* Send particle coordinates to the pme nodes.
826 * Since this is only implemented for domain decomposition
827 * and domain decomposition does not use the graph,
828 * we do not need to worry about shifting.
831 wallcycle_start(wcycle, ewcPP_PMESENDX);
833 bBS = (inputrec->nwall == 2);
834 if (bBS)
836 copy_mat(box, boxs);
837 svmul(inputrec->wall_ewald_zfac, boxs[ZZ], boxs[ZZ]);
840 gmx_pme_send_coordinates(cr, bBS ? boxs : box, x,
841 lambda[efptCOUL], lambda[efptVDW],
842 (flags & (GMX_FORCE_VIRIAL | GMX_FORCE_ENERGY)),
843 step);
845 wallcycle_stop(wcycle, ewcPP_PMESENDX);
847 #endif /* GMX_MPI */
849 /* do gridding for pair search */
850 if (bNS)
852 if (graph && bStateChanged)
854 /* Calculate intramolecular shift vectors to make molecules whole */
855 mk_mshift(fplog, graph, fr->ePBC, box, x);
858 clear_rvec(vzero);
859 box_diag[XX] = box[XX][XX];
860 box_diag[YY] = box[YY][YY];
861 box_diag[ZZ] = box[ZZ][ZZ];
863 wallcycle_start(wcycle, ewcNS);
864 if (!fr->bDomDec)
866 wallcycle_sub_start(wcycle, ewcsNBS_GRID_LOCAL);
867 nbnxn_put_on_grid(nbv->nbs, fr->ePBC, box,
868 0, vzero, box_diag,
869 0, mdatoms->homenr, -1, fr->cginfo, x,
870 0, nullptr,
871 nbv->grp[eintLocal].kernel_type,
872 nbv->grp[eintLocal].nbat);
873 wallcycle_sub_stop(wcycle, ewcsNBS_GRID_LOCAL);
875 else
877 wallcycle_sub_start(wcycle, ewcsNBS_GRID_NONLOCAL);
878 nbnxn_put_on_grid_nonlocal(nbv->nbs, domdec_zones(cr->dd),
879 fr->cginfo, x,
880 nbv->grp[eintNonlocal].kernel_type,
881 nbv->grp[eintNonlocal].nbat);
882 wallcycle_sub_stop(wcycle, ewcsNBS_GRID_NONLOCAL);
885 if (nbv->ngrp == 1 ||
886 nbv->grp[eintNonlocal].nbat == nbv->grp[eintLocal].nbat)
888 nbnxn_atomdata_set(nbv->grp[eintLocal].nbat, eatAll,
889 nbv->nbs, mdatoms, fr->cginfo);
891 else
893 nbnxn_atomdata_set(nbv->grp[eintLocal].nbat, eatLocal,
894 nbv->nbs, mdatoms, fr->cginfo);
895 nbnxn_atomdata_set(nbv->grp[eintNonlocal].nbat, eatAll,
896 nbv->nbs, mdatoms, fr->cginfo);
898 wallcycle_stop(wcycle, ewcNS);
901 /* initialize the GPU atom data and copy shift vector */
902 if (bUseGPU)
904 if (bNS)
906 wallcycle_start_nocount(wcycle, ewcLAUNCH_GPU_NB);
907 nbnxn_gpu_init_atomdata(nbv->gpu_nbv, nbv->grp[eintLocal].nbat);
908 wallcycle_stop(wcycle, ewcLAUNCH_GPU_NB);
911 wallcycle_start_nocount(wcycle, ewcLAUNCH_GPU_NB);
912 nbnxn_gpu_upload_shiftvec(nbv->gpu_nbv, nbv->grp[eintLocal].nbat);
913 wallcycle_stop(wcycle, ewcLAUNCH_GPU_NB);
916 /* do local pair search */
917 if (bNS)
919 wallcycle_start_nocount(wcycle, ewcNS);
920 wallcycle_sub_start(wcycle, ewcsNBS_SEARCH_LOCAL);
921 nbnxn_make_pairlist(nbv->nbs, nbv->grp[eintLocal].nbat,
922 &top->excls,
923 ic->rlist,
924 nbv->min_ci_balanced,
925 &nbv->grp[eintLocal].nbl_lists,
926 eintLocal,
927 nbv->grp[eintLocal].kernel_type,
928 nrnb);
929 wallcycle_sub_stop(wcycle, ewcsNBS_SEARCH_LOCAL);
931 if (bUseGPU)
933 /* initialize local pair-list on the GPU */
934 nbnxn_gpu_init_pairlist(nbv->gpu_nbv,
935 nbv->grp[eintLocal].nbl_lists.nbl[0],
936 eintLocal);
938 wallcycle_stop(wcycle, ewcNS);
940 else
942 wallcycle_start(wcycle, ewcNB_XF_BUF_OPS);
943 wallcycle_sub_start(wcycle, ewcsNB_X_BUF_OPS);
944 nbnxn_atomdata_copy_x_to_nbat_x(nbv->nbs, eatLocal, FALSE, x,
945 nbv->grp[eintLocal].nbat);
946 wallcycle_sub_stop(wcycle, ewcsNB_X_BUF_OPS);
947 wallcycle_stop(wcycle, ewcNB_XF_BUF_OPS);
950 if (bUseGPU)
952 wallcycle_start(wcycle, ewcLAUNCH_GPU_NB);
953 /* launch local nonbonded F on GPU */
954 do_nb_verlet(fr, ic, enerd, flags, eintLocal, enbvClearFNo,
955 nrnb, wcycle);
956 wallcycle_stop(wcycle, ewcLAUNCH_GPU_NB);
959 /* Communicate coordinates and sum dipole if necessary +
960 do non-local pair search */
961 if (DOMAINDECOMP(cr))
963 bDiffKernels = (nbv->grp[eintNonlocal].kernel_type !=
964 nbv->grp[eintLocal].kernel_type);
966 if (bDiffKernels)
968 /* With GPU+CPU non-bonded calculations we need to copy
969 * the local coordinates to the non-local nbat struct
970 * (in CPU format) as the non-local kernel call also
971 * calculates the local - non-local interactions.
973 wallcycle_start(wcycle, ewcNB_XF_BUF_OPS);
974 wallcycle_sub_start(wcycle, ewcsNB_X_BUF_OPS);
975 nbnxn_atomdata_copy_x_to_nbat_x(nbv->nbs, eatLocal, TRUE, x,
976 nbv->grp[eintNonlocal].nbat);
977 wallcycle_sub_stop(wcycle, ewcsNB_X_BUF_OPS);
978 wallcycle_stop(wcycle, ewcNB_XF_BUF_OPS);
981 if (bNS)
983 wallcycle_start_nocount(wcycle, ewcNS);
984 wallcycle_sub_start(wcycle, ewcsNBS_SEARCH_NONLOCAL);
986 if (bDiffKernels)
988 nbnxn_grid_add_simple(nbv->nbs, nbv->grp[eintNonlocal].nbat);
991 nbnxn_make_pairlist(nbv->nbs, nbv->grp[eintNonlocal].nbat,
992 &top->excls,
993 ic->rlist,
994 nbv->min_ci_balanced,
995 &nbv->grp[eintNonlocal].nbl_lists,
996 eintNonlocal,
997 nbv->grp[eintNonlocal].kernel_type,
998 nrnb);
1000 wallcycle_sub_stop(wcycle, ewcsNBS_SEARCH_NONLOCAL);
1002 if (nbv->grp[eintNonlocal].kernel_type == nbnxnk8x8x8_GPU)
1004 /* initialize non-local pair-list on the GPU */
1005 nbnxn_gpu_init_pairlist(nbv->gpu_nbv,
1006 nbv->grp[eintNonlocal].nbl_lists.nbl[0],
1007 eintNonlocal);
1009 wallcycle_stop(wcycle, ewcNS);
1011 else
1013 wallcycle_start(wcycle, ewcMOVEX);
1014 dd_move_x(cr->dd, box, x);
1015 wallcycle_stop(wcycle, ewcMOVEX);
1017 wallcycle_start(wcycle, ewcNB_XF_BUF_OPS);
1018 wallcycle_sub_start(wcycle, ewcsNB_X_BUF_OPS);
1019 nbnxn_atomdata_copy_x_to_nbat_x(nbv->nbs, eatNonlocal, FALSE, x,
1020 nbv->grp[eintNonlocal].nbat);
1021 wallcycle_sub_stop(wcycle, ewcsNB_X_BUF_OPS);
1022 cycles_force += wallcycle_stop(wcycle, ewcNB_XF_BUF_OPS);
1025 if (bUseGPU && !bDiffKernels)
1027 wallcycle_start(wcycle, ewcLAUNCH_GPU_NB);
1028 /* launch non-local nonbonded F on GPU */
1029 do_nb_verlet(fr, ic, enerd, flags, eintNonlocal, enbvClearFNo,
1030 nrnb, wcycle);
1031 cycles_force += wallcycle_stop(wcycle, ewcLAUNCH_GPU_NB);
1035 if (bUseGPU)
1037 /* launch D2H copy-back F */
1038 wallcycle_start_nocount(wcycle, ewcLAUNCH_GPU_NB);
1039 if (DOMAINDECOMP(cr) && !bDiffKernels)
1041 nbnxn_gpu_launch_cpyback(nbv->gpu_nbv, nbv->grp[eintNonlocal].nbat,
1042 flags, eatNonlocal);
1044 nbnxn_gpu_launch_cpyback(nbv->gpu_nbv, nbv->grp[eintLocal].nbat,
1045 flags, eatLocal);
1046 cycles_force += wallcycle_stop(wcycle, ewcLAUNCH_GPU_NB);
1049 if (bStateChanged && inputrecNeedMutot(inputrec))
1051 if (PAR(cr))
1053 gmx_sumd(2*DIM, mu, cr);
1056 for (i = 0; i < 2; i++)
1058 for (j = 0; j < DIM; j++)
1060 fr->mu_tot[i][j] = mu[i*DIM + j];
1064 if (fr->efep == efepNO)
1066 copy_rvec(fr->mu_tot[0], mu_tot);
1068 else
1070 for (j = 0; j < DIM; j++)
1072 mu_tot[j] =
1073 (1.0 - lambda[efptCOUL])*fr->mu_tot[0][j] +
1074 lambda[efptCOUL]*fr->mu_tot[1][j];
1078 /* Reset energies */
1079 reset_enerdata(enerd);
1080 clear_rvecs(SHIFTS, fr->fshift);
1082 if (DOMAINDECOMP(cr) && !(cr->duty & DUTY_PME))
1084 wallcycle_start(wcycle, ewcPPDURINGPME);
1085 dd_force_flop_start(cr->dd, nrnb);
1088 if (inputrec->bRot)
1090 /* Enforced rotation has its own cycle counter that starts after the collective
1091 * coordinates have been communicated. It is added to ddCyclF to allow
1092 * for proper load-balancing */
1093 wallcycle_start(wcycle, ewcROT);
1094 do_rotation(cr, inputrec, box, x, t, step, wcycle, bNS);
1095 wallcycle_stop(wcycle, ewcROT);
1098 /* Temporary solution until all routines take PaddedRVecVector */
1099 rvec *f = as_rvec_array(force->data());
1101 /* Start the force cycle counter.
1102 * This counter is stopped after do_force_lowlevel.
1103 * No parallel communication should occur while this counter is running,
1104 * since that will interfere with the dynamic load balancing.
1106 wallcycle_start(wcycle, ewcFORCE);
1107 if (bDoForces)
1109 /* Reset forces for which the virial is calculated separately:
1110 * PME/Ewald forces if necessary */
1111 if (fr->bF_NoVirSum)
1113 if (flags & GMX_FORCE_VIRIAL)
1115 fr->f_novirsum = fr->forceBufferNoVirialSummation;
1117 else
1119 /* We are not calculating the pressure so we do not need
1120 * a separate array for forces that do not contribute
1121 * to the pressure.
1123 fr->f_novirsum = force;
1127 if (fr->bF_NoVirSum)
1129 if (flags & GMX_FORCE_VIRIAL)
1131 /* TODO: remove this - 1 when padding is properly implemented */
1132 clear_rvecs_omp(fr->f_novirsum->size() - 1,
1133 as_rvec_array(fr->f_novirsum->data()));
1136 /* Clear the short- and long-range forces */
1137 clear_rvecs_omp(fr->natoms_force_constr, f);
1139 clear_rvec(fr->vir_diag_posres);
1142 if (inputrec->bPull && pull_have_constraint(inputrec->pull_work))
1144 clear_pull_forces(inputrec->pull_work);
1147 /* We calculate the non-bonded forces, when done on the CPU, here.
1148 * We do this before calling do_force_lowlevel, because in that
1149 * function, the listed forces are calculated before PME, which
1150 * does communication. With this order, non-bonded and listed
1151 * force calculation imbalance can be balanced out by the domain
1152 * decomposition load balancing.
1155 if (!bUseOrEmulGPU)
1157 /* Maybe we should move this into do_force_lowlevel */
1158 do_nb_verlet(fr, ic, enerd, flags, eintLocal, enbvClearFYes,
1159 nrnb, wcycle);
1162 if (fr->efep != efepNO)
1164 /* Calculate the local and non-local free energy interactions here.
1165 * Happens here on the CPU both with and without GPU.
1167 if (fr->nbv->grp[eintLocal].nbl_lists.nbl_fep[0]->nrj > 0)
1169 do_nb_verlet_fep(&fr->nbv->grp[eintLocal].nbl_lists,
1170 fr, x, f, mdatoms,
1171 inputrec->fepvals, lambda,
1172 enerd, flags, nrnb, wcycle);
1175 if (DOMAINDECOMP(cr) &&
1176 fr->nbv->grp[eintNonlocal].nbl_lists.nbl_fep[0]->nrj > 0)
1178 do_nb_verlet_fep(&fr->nbv->grp[eintNonlocal].nbl_lists,
1179 fr, x, f, mdatoms,
1180 inputrec->fepvals, lambda,
1181 enerd, flags, nrnb, wcycle);
1185 if (!bUseOrEmulGPU || bDiffKernels)
1187 int aloc;
1189 if (DOMAINDECOMP(cr))
1191 do_nb_verlet(fr, ic, enerd, flags, eintNonlocal,
1192 bDiffKernels ? enbvClearFYes : enbvClearFNo,
1193 nrnb, wcycle);
1196 if (!bUseOrEmulGPU)
1198 aloc = eintLocal;
1200 else
1202 aloc = eintNonlocal;
1205 /* Add all the non-bonded force to the normal force array.
1206 * This can be split into a local and a non-local part when overlapping
1207 * communication with calculation with domain decomposition.
1209 cycles_force += wallcycle_stop(wcycle, ewcFORCE);
1210 wallcycle_start(wcycle, ewcNB_XF_BUF_OPS);
1211 wallcycle_sub_start(wcycle, ewcsNB_F_BUF_OPS);
1212 nbnxn_atomdata_add_nbat_f_to_f(nbv->nbs, eatAll, nbv->grp[aloc].nbat, f);
1213 wallcycle_sub_stop(wcycle, ewcsNB_F_BUF_OPS);
1214 cycles_force += wallcycle_stop(wcycle, ewcNB_XF_BUF_OPS);
1215 wallcycle_start_nocount(wcycle, ewcFORCE);
1217 /* if there are multiple fshift output buffers reduce them */
1218 if ((flags & GMX_FORCE_VIRIAL) &&
1219 nbv->grp[aloc].nbl_lists.nnbl > 1)
1221 /* This is not in a subcounter because it takes a
1222 negligible and constant-sized amount of time */
1223 nbnxn_atomdata_add_nbat_fshift_to_fshift(nbv->grp[aloc].nbat,
1224 fr->fshift);
1228 /* update QMMMrec, if necessary */
1229 if (fr->bQMMM)
1231 update_QMMMrec(cr, fr, x, mdatoms, box, top);
1234 /* Compute the bonded and non-bonded energies and optionally forces */
1235 do_force_lowlevel(fr, inputrec, &(top->idef),
1236 cr, nrnb, wcycle, mdatoms,
1237 x, hist, f, enerd, fcd, top, fr->born,
1238 bBornRadii, box,
1239 inputrec->fepvals, lambda, graph, &(top->excls), fr->mu_tot,
1240 flags, &cycles_pme);
1242 cycles_force += wallcycle_stop(wcycle, ewcFORCE);
1244 if (ed)
1246 do_flood(cr, inputrec, x, f, ed, box, step, bNS);
1249 if (bUseOrEmulGPU && !bDiffKernels)
1251 /* wait for non-local forces (or calculate in emulation mode) */
1252 if (DOMAINDECOMP(cr))
1254 if (bUseGPU)
1256 float cycles_tmp;
1258 wallcycle_start(wcycle, ewcWAIT_GPU_NB_NL);
1259 nbnxn_gpu_wait_for_gpu(nbv->gpu_nbv,
1260 flags, eatNonlocal,
1261 enerd->grpp.ener[egLJSR], enerd->grpp.ener[egCOULSR],
1262 fr->fshift);
1263 cycles_tmp = wallcycle_stop(wcycle, ewcWAIT_GPU_NB_NL);
1264 cycles_wait_gpu += cycles_tmp;
1265 cycles_force += cycles_tmp;
1267 else
1269 wallcycle_start_nocount(wcycle, ewcFORCE);
1270 do_nb_verlet(fr, ic, enerd, flags, eintNonlocal, enbvClearFYes,
1271 nrnb, wcycle);
1272 cycles_force += wallcycle_stop(wcycle, ewcFORCE);
1274 wallcycle_start(wcycle, ewcNB_XF_BUF_OPS);
1275 wallcycle_sub_start(wcycle, ewcsNB_F_BUF_OPS);
1276 /* skip the reduction if there was no non-local work to do */
1277 if (nbv->grp[eintNonlocal].nbl_lists.nbl[0]->nsci > 0)
1279 nbnxn_atomdata_add_nbat_f_to_f(nbv->nbs, eatNonlocal,
1280 nbv->grp[eintNonlocal].nbat, f);
1282 wallcycle_sub_stop(wcycle, ewcsNB_F_BUF_OPS);
1283 cycles_force += wallcycle_stop(wcycle, ewcNB_XF_BUF_OPS);
1287 if (bDoForces && DOMAINDECOMP(cr))
1289 if (bUseGPU)
1291 /* We are done with the CPU compute, but the GPU local non-bonded
1292 * kernel can still be running while we communicate the forces.
1293 * We start a counter here, so we can, hopefully, time the rest
1294 * of the GPU kernel execution and data transfer.
1296 cycleCountBeforeLocalWorkCompletes = gmx_cycles_read();
1299 /* Communicate the forces */
1300 wallcycle_start(wcycle, ewcMOVEF);
1301 dd_move_f(cr->dd, f, fr->fshift);
1302 wallcycle_stop(wcycle, ewcMOVEF);
1305 if (bUseOrEmulGPU)
1307 /* wait for local forces (or calculate in emulation mode) */
1308 if (bUseGPU)
1310 float cycles_tmp, cycles_wait_est;
1311 /* Measured overhead on CUDA and OpenCL with(out) GPU sharing
1312 * is between 0.5 and 1.5 Mcycles. So 2 MCycles is an overestimate,
1313 * but even with a step of 0.1 ms the difference is less than 1%
1314 * of the step time.
1316 const float gpuWaitApiOverheadMargin = 2e6f; /* cycles */
1318 wallcycle_start(wcycle, ewcWAIT_GPU_NB_L);
1319 nbnxn_gpu_wait_for_gpu(nbv->gpu_nbv,
1320 flags, eatLocal,
1321 enerd->grpp.ener[egLJSR], enerd->grpp.ener[egCOULSR],
1322 fr->fshift);
1323 cycles_tmp = wallcycle_stop(wcycle, ewcWAIT_GPU_NB_L);
1325 if (bDoForces && DOMAINDECOMP(cr))
1327 cycles_wait_est = gmx_cycles_read() - cycleCountBeforeLocalWorkCompletes;
1329 if (cycles_tmp < gpuWaitApiOverheadMargin)
1331 /* We measured few cycles, it could be that the kernel
1332 * and transfer finished earlier and there was no actual
1333 * wait time, only API call overhead.
1334 * Then the actual time could be anywhere between 0 and
1335 * cycles_wait_est. As a compromise, we use half the time.
1337 cycles_wait_est *= 0.5f;
1340 else
1342 /* No force communication so we actually timed the wait */
1343 cycles_wait_est = cycles_tmp;
1345 /* Even though this is after dd_move_f, the actual task we are
1346 * waiting for runs asynchronously with dd_move_f and we usually
1347 * have nothing to balance it with, so we can and should add
1348 * the time to the force time for load balancing.
1350 cycles_force += cycles_wait_est;
1351 cycles_wait_gpu += cycles_wait_est;
1353 /* now clear the GPU outputs while we finish the step on the CPU */
1354 wallcycle_start_nocount(wcycle, ewcLAUNCH_GPU_NB);
1355 nbnxn_gpu_clear_outputs(nbv->gpu_nbv, flags);
1356 wallcycle_stop(wcycle, ewcLAUNCH_GPU_NB);
1358 else
1360 wallcycle_start_nocount(wcycle, ewcFORCE);
1361 do_nb_verlet(fr, ic, enerd, flags, eintLocal,
1362 DOMAINDECOMP(cr) ? enbvClearFNo : enbvClearFYes,
1363 nrnb, wcycle);
1364 wallcycle_stop(wcycle, ewcFORCE);
1366 wallcycle_start(wcycle, ewcNB_XF_BUF_OPS);
1367 wallcycle_sub_start(wcycle, ewcsNB_F_BUF_OPS);
1368 nbnxn_atomdata_add_nbat_f_to_f(nbv->nbs, eatLocal,
1369 nbv->grp[eintLocal].nbat, f);
1370 wallcycle_sub_stop(wcycle, ewcsNB_F_BUF_OPS);
1371 wallcycle_stop(wcycle, ewcNB_XF_BUF_OPS);
1374 if (DOMAINDECOMP(cr))
1376 dd_force_flop_stop(cr->dd, nrnb);
1377 if (wcycle)
1379 dd_cycles_add(cr->dd, cycles_force-cycles_pme, ddCyclF);
1380 if (bUseGPU)
1382 dd_cycles_add(cr->dd, cycles_wait_gpu, ddCyclWaitGPU);
1387 if (bDoForces)
1389 /* Compute forces due to electric field */
1390 if (fr->efield != nullptr)
1392 fr->efield->calculateForces(cr, mdatoms, fr->f_novirsum, t);
1395 /* If we have NoVirSum forces, but we do not calculate the virial,
1396 * we sum fr->f_novirsum=f later.
1398 if (vsite && !(fr->bF_NoVirSum && !(flags & GMX_FORCE_VIRIAL)))
1400 wallcycle_start(wcycle, ewcVSITESPREAD);
1401 spread_vsite_f(vsite, x, f, fr->fshift, FALSE, nullptr, nrnb,
1402 &top->idef, fr->ePBC, fr->bMolPBC, graph, box, cr);
1403 wallcycle_stop(wcycle, ewcVSITESPREAD);
1406 if (flags & GMX_FORCE_VIRIAL)
1408 /* Calculation of the virial must be done after vsites! */
1409 calc_virial(0, mdatoms->homenr, x, f,
1410 vir_force, graph, box, nrnb, fr, inputrec->ePBC);
1414 if (inputrec->bPull && pull_have_potential(inputrec->pull_work))
1416 /* Since the COM pulling is always done mass-weighted, no forces are
1417 * applied to vsites and this call can be done after vsite spreading.
1419 pull_potential_wrapper(cr, inputrec, box, x,
1420 f, vir_force, mdatoms, enerd, lambda, t,
1421 wcycle);
1424 /* Add the forces from enforced rotation potentials (if any) */
1425 if (inputrec->bRot)
1427 wallcycle_start(wcycle, ewcROTadd);
1428 enerd->term[F_COM_PULL] += add_rot_forces(inputrec->rot, f, cr, step, t);
1429 wallcycle_stop(wcycle, ewcROTadd);
1432 /* Add forces from interactive molecular dynamics (IMD), if bIMD == TRUE. */
1433 IMD_apply_forces(inputrec->bIMD, inputrec->imd, cr, f, wcycle);
1435 if (PAR(cr) && !(cr->duty & DUTY_PME))
1437 /* In case of node-splitting, the PP nodes receive the long-range
1438 * forces, virial and energy from the PME nodes here.
1440 pme_receive_force_ener(cr, wcycle, enerd, fr);
1443 if (bDoForces)
1445 post_process_forces(cr, step, nrnb, wcycle,
1446 top, box, x, f, vir_force, mdatoms, graph, fr, vsite,
1447 flags);
1450 if (flags & GMX_FORCE_ENERGY)
1452 /* Sum the potential energy terms from group contributions */
1453 sum_epot(&(enerd->grpp), enerd->term);
1455 if (!EI_TPI(inputrec->eI))
1457 checkPotentialEnergyValidity(enerd);
1462 void do_force_cutsGROUP(FILE *fplog, t_commrec *cr,
1463 t_inputrec *inputrec,
1464 gmx_int64_t step, t_nrnb *nrnb, gmx_wallcycle_t wcycle,
1465 gmx_localtop_t *top,
1466 gmx_groups_t *groups,
1467 matrix box, rvec x[], history_t *hist,
1468 PaddedRVecVector *force,
1469 tensor vir_force,
1470 t_mdatoms *mdatoms,
1471 gmx_enerdata_t *enerd, t_fcdata *fcd,
1472 real *lambda, t_graph *graph,
1473 t_forcerec *fr, gmx_vsite_t *vsite, rvec mu_tot,
1474 double t, gmx_edsam_t ed,
1475 gmx_bool bBornRadii,
1476 int flags)
1478 int cg0, cg1, i, j;
1479 double mu[2*DIM];
1480 gmx_bool bStateChanged, bNS, bFillGrid, bCalcCGCM;
1481 gmx_bool bDoForces;
1482 float cycles_pme, cycles_force;
1484 const int start = 0;
1485 const int homenr = mdatoms->homenr;
1487 clear_mat(vir_force);
1489 cg0 = 0;
1490 if (DOMAINDECOMP(cr))
1492 cg1 = cr->dd->ncg_tot;
1494 else
1496 cg1 = top->cgs.nr;
1498 if (fr->n_tpi > 0)
1500 cg1--;
1503 bStateChanged = (flags & GMX_FORCE_STATECHANGED);
1504 bNS = (flags & GMX_FORCE_NS) && (fr->bAllvsAll == FALSE);
1505 /* Should we perform the long-range nonbonded evaluation inside the neighborsearching? */
1506 bFillGrid = (bNS && bStateChanged);
1507 bCalcCGCM = (bFillGrid && !DOMAINDECOMP(cr));
1508 bDoForces = (flags & GMX_FORCE_FORCES);
1510 if (bStateChanged)
1512 update_forcerec(fr, box);
1514 if (inputrecNeedMutot(inputrec))
1516 /* Calculate total (local) dipole moment in a temporary common array.
1517 * This makes it possible to sum them over nodes faster.
1519 calc_mu(start, homenr,
1520 x, mdatoms->chargeA, mdatoms->chargeB, mdatoms->nChargePerturbed,
1521 mu, mu+DIM);
1525 if (fr->ePBC != epbcNONE)
1527 /* Compute shift vectors every step,
1528 * because of pressure coupling or box deformation!
1530 if ((flags & GMX_FORCE_DYNAMICBOX) && bStateChanged)
1532 calc_shifts(box, fr->shift_vec);
1535 if (bCalcCGCM)
1537 put_charge_groups_in_box(fplog, cg0, cg1, fr->ePBC, box,
1538 &(top->cgs), x, fr->cg_cm);
1539 inc_nrnb(nrnb, eNR_CGCM, homenr);
1540 inc_nrnb(nrnb, eNR_RESETX, cg1-cg0);
1542 else if (EI_ENERGY_MINIMIZATION(inputrec->eI) && graph)
1544 unshift_self(graph, box, x);
1547 else if (bCalcCGCM)
1549 calc_cgcm(fplog, cg0, cg1, &(top->cgs), x, fr->cg_cm);
1550 inc_nrnb(nrnb, eNR_CGCM, homenr);
1553 if (bCalcCGCM && gmx_debug_at)
1555 pr_rvecs(debug, 0, "cgcm", fr->cg_cm, top->cgs.nr);
1558 #if GMX_MPI
1559 if (!(cr->duty & DUTY_PME))
1561 gmx_bool bBS;
1562 matrix boxs;
1564 /* Send particle coordinates to the pme nodes.
1565 * Since this is only implemented for domain decomposition
1566 * and domain decomposition does not use the graph,
1567 * we do not need to worry about shifting.
1570 wallcycle_start(wcycle, ewcPP_PMESENDX);
1572 bBS = (inputrec->nwall == 2);
1573 if (bBS)
1575 copy_mat(box, boxs);
1576 svmul(inputrec->wall_ewald_zfac, boxs[ZZ], boxs[ZZ]);
1579 gmx_pme_send_coordinates(cr, bBS ? boxs : box, x,
1580 lambda[efptCOUL], lambda[efptVDW],
1581 (flags & (GMX_FORCE_VIRIAL | GMX_FORCE_ENERGY)),
1582 step);
1584 wallcycle_stop(wcycle, ewcPP_PMESENDX);
1586 #endif /* GMX_MPI */
1588 /* Communicate coordinates and sum dipole if necessary */
1589 if (DOMAINDECOMP(cr))
1591 wallcycle_start(wcycle, ewcMOVEX);
1592 dd_move_x(cr->dd, box, x);
1593 wallcycle_stop(wcycle, ewcMOVEX);
1596 if (inputrecNeedMutot(inputrec))
1598 if (bStateChanged)
1600 if (PAR(cr))
1602 gmx_sumd(2*DIM, mu, cr);
1604 for (i = 0; i < 2; i++)
1606 for (j = 0; j < DIM; j++)
1608 fr->mu_tot[i][j] = mu[i*DIM + j];
1612 if (fr->efep == efepNO)
1614 copy_rvec(fr->mu_tot[0], mu_tot);
1616 else
1618 for (j = 0; j < DIM; j++)
1620 mu_tot[j] =
1621 (1.0 - lambda[efptCOUL])*fr->mu_tot[0][j] + lambda[efptCOUL]*fr->mu_tot[1][j];
1626 /* Reset energies */
1627 reset_enerdata(enerd);
1628 clear_rvecs(SHIFTS, fr->fshift);
1630 if (bNS)
1632 wallcycle_start(wcycle, ewcNS);
1634 if (graph && bStateChanged)
1636 /* Calculate intramolecular shift vectors to make molecules whole */
1637 mk_mshift(fplog, graph, fr->ePBC, box, x);
1640 /* Do the actual neighbour searching */
1641 ns(fplog, fr, box,
1642 groups, top, mdatoms,
1643 cr, nrnb, bFillGrid);
1645 wallcycle_stop(wcycle, ewcNS);
1648 if (inputrec->implicit_solvent && bNS)
1650 make_gb_nblist(cr, inputrec->gb_algorithm,
1651 x, box, fr, &top->idef, graph, fr->born);
1654 if (DOMAINDECOMP(cr) && !(cr->duty & DUTY_PME))
1656 wallcycle_start(wcycle, ewcPPDURINGPME);
1657 dd_force_flop_start(cr->dd, nrnb);
1660 if (inputrec->bRot)
1662 /* Enforced rotation has its own cycle counter that starts after the collective
1663 * coordinates have been communicated. It is added to ddCyclF to allow
1664 * for proper load-balancing */
1665 wallcycle_start(wcycle, ewcROT);
1666 do_rotation(cr, inputrec, box, x, t, step, wcycle, bNS);
1667 wallcycle_stop(wcycle, ewcROT);
1670 /* Temporary solution until all routines take PaddedRVecVector */
1671 rvec *f = as_rvec_array(force->data());
1673 /* Start the force cycle counter.
1674 * This counter is stopped after do_force_lowlevel.
1675 * No parallel communication should occur while this counter is running,
1676 * since that will interfere with the dynamic load balancing.
1678 wallcycle_start(wcycle, ewcFORCE);
1680 if (bDoForces)
1682 /* Reset forces for which the virial is calculated separately:
1683 * PME/Ewald forces if necessary */
1684 if (fr->bF_NoVirSum)
1686 if (flags & GMX_FORCE_VIRIAL)
1688 fr->f_novirsum = fr->forceBufferNoVirialSummation;
1689 /* TODO: remove this - 1 when padding is properly implemented */
1690 clear_rvecs(fr->f_novirsum->size() - 1,
1691 as_rvec_array(fr->f_novirsum->data()));
1693 else
1695 /* We are not calculating the pressure so we do not need
1696 * a separate array for forces that do not contribute
1697 * to the pressure.
1699 fr->f_novirsum = force;
1703 /* Clear the short- and long-range forces */
1704 clear_rvecs(fr->natoms_force_constr, f);
1706 clear_rvec(fr->vir_diag_posres);
1708 if (inputrec->bPull && pull_have_constraint(inputrec->pull_work))
1710 clear_pull_forces(inputrec->pull_work);
1713 /* update QMMMrec, if necessary */
1714 if (fr->bQMMM)
1716 update_QMMMrec(cr, fr, x, mdatoms, box, top);
1719 /* Compute the bonded and non-bonded energies and optionally forces */
1720 do_force_lowlevel(fr, inputrec, &(top->idef),
1721 cr, nrnb, wcycle, mdatoms,
1722 x, hist, f, enerd, fcd, top, fr->born,
1723 bBornRadii, box,
1724 inputrec->fepvals, lambda,
1725 graph, &(top->excls), fr->mu_tot,
1726 flags,
1727 &cycles_pme);
1729 cycles_force = wallcycle_stop(wcycle, ewcFORCE);
1731 if (ed)
1733 do_flood(cr, inputrec, x, f, ed, box, step, bNS);
1736 if (DOMAINDECOMP(cr))
1738 dd_force_flop_stop(cr->dd, nrnb);
1739 if (wcycle)
1741 dd_cycles_add(cr->dd, cycles_force-cycles_pme, ddCyclF);
1745 if (bDoForces)
1747 /* Compute forces due to electric field */
1748 if (fr->efield != nullptr)
1750 fr->efield->calculateForces(cr, mdatoms, fr->f_novirsum, t);
1753 /* Communicate the forces */
1754 if (DOMAINDECOMP(cr))
1756 wallcycle_start(wcycle, ewcMOVEF);
1757 dd_move_f(cr->dd, f, fr->fshift);
1758 /* Do we need to communicate the separate force array
1759 * for terms that do not contribute to the single sum virial?
1760 * Position restraints and electric fields do not introduce
1761 * inter-cg forces, only full electrostatics methods do.
1762 * When we do not calculate the virial, fr->f_novirsum = f,
1763 * so we have already communicated these forces.
1765 if (EEL_FULL(fr->eeltype) && cr->dd->n_intercg_excl &&
1766 (flags & GMX_FORCE_VIRIAL))
1768 dd_move_f(cr->dd, as_rvec_array(fr->f_novirsum->data()), nullptr);
1770 wallcycle_stop(wcycle, ewcMOVEF);
1773 /* If we have NoVirSum forces, but we do not calculate the virial,
1774 * we sum fr->f_novirsum=f later.
1776 if (vsite && !(fr->bF_NoVirSum && !(flags & GMX_FORCE_VIRIAL)))
1778 wallcycle_start(wcycle, ewcVSITESPREAD);
1779 spread_vsite_f(vsite, x, f, fr->fshift, FALSE, nullptr, nrnb,
1780 &top->idef, fr->ePBC, fr->bMolPBC, graph, box, cr);
1781 wallcycle_stop(wcycle, ewcVSITESPREAD);
1784 if (flags & GMX_FORCE_VIRIAL)
1786 /* Calculation of the virial must be done after vsites! */
1787 calc_virial(0, mdatoms->homenr, x, f,
1788 vir_force, graph, box, nrnb, fr, inputrec->ePBC);
1792 if (inputrec->bPull && pull_have_potential(inputrec->pull_work))
1794 pull_potential_wrapper(cr, inputrec, box, x,
1795 f, vir_force, mdatoms, enerd, lambda, t,
1796 wcycle);
1799 /* Add the forces from enforced rotation potentials (if any) */
1800 if (inputrec->bRot)
1802 wallcycle_start(wcycle, ewcROTadd);
1803 enerd->term[F_COM_PULL] += add_rot_forces(inputrec->rot, f, cr, step, t);
1804 wallcycle_stop(wcycle, ewcROTadd);
1807 /* Add forces from interactive molecular dynamics (IMD), if bIMD == TRUE. */
1808 IMD_apply_forces(inputrec->bIMD, inputrec->imd, cr, f, wcycle);
1810 if (PAR(cr) && !(cr->duty & DUTY_PME))
1812 /* In case of node-splitting, the PP nodes receive the long-range
1813 * forces, virial and energy from the PME nodes here.
1815 pme_receive_force_ener(cr, wcycle, enerd, fr);
1818 if (bDoForces)
1820 post_process_forces(cr, step, nrnb, wcycle,
1821 top, box, x, f, vir_force, mdatoms, graph, fr, vsite,
1822 flags);
1825 if (flags & GMX_FORCE_ENERGY)
1827 /* Sum the potential energy terms from group contributions */
1828 sum_epot(&(enerd->grpp), enerd->term);
1830 if (!EI_TPI(inputrec->eI))
1832 checkPotentialEnergyValidity(enerd);
1838 void do_force(FILE *fplog, t_commrec *cr,
1839 t_inputrec *inputrec,
1840 gmx_int64_t step, t_nrnb *nrnb, gmx_wallcycle_t wcycle,
1841 gmx_localtop_t *top,
1842 gmx_groups_t *groups,
1843 matrix box, PaddedRVecVector *coordinates, history_t *hist,
1844 PaddedRVecVector *force,
1845 tensor vir_force,
1846 t_mdatoms *mdatoms,
1847 gmx_enerdata_t *enerd, t_fcdata *fcd,
1848 gmx::ArrayRef<real> lambda, t_graph *graph,
1849 t_forcerec *fr,
1850 gmx_vsite_t *vsite, rvec mu_tot,
1851 double t, gmx_edsam_t ed,
1852 gmx_bool bBornRadii,
1853 int flags)
1855 /* modify force flag if not doing nonbonded */
1856 if (!fr->bNonbonded)
1858 flags &= ~GMX_FORCE_NONBONDED;
1861 GMX_ASSERT(coordinates->size() >= static_cast<unsigned int>(fr->natoms_force + 1) ||
1862 fr->natoms_force == 0, "We might need 1 element extra for SIMD");
1863 GMX_ASSERT(force->size() >= static_cast<unsigned int>(fr->natoms_force + 1) ||
1864 fr->natoms_force == 0, "We might need 1 element extra for SIMD");
1866 rvec *x = as_rvec_array(coordinates->data());
1868 switch (inputrec->cutoff_scheme)
1870 case ecutsVERLET:
1871 do_force_cutsVERLET(fplog, cr, inputrec,
1872 step, nrnb, wcycle,
1873 top,
1874 groups,
1875 box, x, hist,
1876 force, vir_force,
1877 mdatoms,
1878 enerd, fcd,
1879 lambda.data(), graph,
1880 fr, fr->ic,
1881 vsite, mu_tot,
1882 t, ed,
1883 bBornRadii,
1884 flags);
1885 break;
1886 case ecutsGROUP:
1887 do_force_cutsGROUP(fplog, cr, inputrec,
1888 step, nrnb, wcycle,
1889 top,
1890 groups,
1891 box, x, hist,
1892 force, vir_force,
1893 mdatoms,
1894 enerd, fcd,
1895 lambda.data(), graph,
1896 fr, vsite, mu_tot,
1897 t, ed,
1898 bBornRadii,
1899 flags);
1900 break;
1901 default:
1902 gmx_incons("Invalid cut-off scheme passed!");
1907 void do_constrain_first(FILE *fplog, gmx_constr_t constr,
1908 t_inputrec *ir, t_mdatoms *md,
1909 t_state *state, t_commrec *cr, t_nrnb *nrnb,
1910 t_forcerec *fr, gmx_localtop_t *top)
1912 int i, m, start, end;
1913 gmx_int64_t step;
1914 real dt = ir->delta_t;
1915 real dvdl_dum;
1916 rvec *savex;
1918 /* We need to allocate one element extra, since we might use
1919 * (unaligned) 4-wide SIMD loads to access rvec entries.
1921 snew(savex, state->natoms + 1);
1923 start = 0;
1924 end = md->homenr;
1926 if (debug)
1928 fprintf(debug, "vcm: start=%d, homenr=%d, end=%d\n",
1929 start, md->homenr, end);
1931 /* Do a first constrain to reset particles... */
1932 step = ir->init_step;
1933 if (fplog)
1935 char buf[STEPSTRSIZE];
1936 fprintf(fplog, "\nConstraining the starting coordinates (step %s)\n",
1937 gmx_step_str(step, buf));
1939 dvdl_dum = 0;
1941 /* constrain the current position */
1942 constrain(nullptr, TRUE, FALSE, constr, &(top->idef),
1943 ir, cr, step, 0, 1.0, md,
1944 as_rvec_array(state->x.data()), as_rvec_array(state->x.data()), nullptr,
1945 fr->bMolPBC, state->box,
1946 state->lambda[efptBONDED], &dvdl_dum,
1947 nullptr, nullptr, nrnb, econqCoord);
1948 if (EI_VV(ir->eI))
1950 /* constrain the inital velocity, and save it */
1951 /* also may be useful if we need the ekin from the halfstep for velocity verlet */
1952 constrain(nullptr, TRUE, FALSE, constr, &(top->idef),
1953 ir, cr, step, 0, 1.0, md,
1954 as_rvec_array(state->x.data()), as_rvec_array(state->v.data()), as_rvec_array(state->v.data()),
1955 fr->bMolPBC, state->box,
1956 state->lambda[efptBONDED], &dvdl_dum,
1957 nullptr, nullptr, nrnb, econqVeloc);
1959 /* constrain the inital velocities at t-dt/2 */
1960 if (EI_STATE_VELOCITY(ir->eI) && ir->eI != eiVV)
1962 for (i = start; (i < end); i++)
1964 for (m = 0; (m < DIM); m++)
1966 /* Reverse the velocity */
1967 state->v[i][m] = -state->v[i][m];
1968 /* Store the position at t-dt in buf */
1969 savex[i][m] = state->x[i][m] + dt*state->v[i][m];
1972 /* Shake the positions at t=-dt with the positions at t=0
1973 * as reference coordinates.
1975 if (fplog)
1977 char buf[STEPSTRSIZE];
1978 fprintf(fplog, "\nConstraining the coordinates at t0-dt (step %s)\n",
1979 gmx_step_str(step, buf));
1981 dvdl_dum = 0;
1982 constrain(nullptr, TRUE, FALSE, constr, &(top->idef),
1983 ir, cr, step, -1, 1.0, md,
1984 as_rvec_array(state->x.data()), savex, nullptr,
1985 fr->bMolPBC, state->box,
1986 state->lambda[efptBONDED], &dvdl_dum,
1987 as_rvec_array(state->v.data()), nullptr, nrnb, econqCoord);
1989 for (i = start; i < end; i++)
1991 for (m = 0; m < DIM; m++)
1993 /* Re-reverse the velocities */
1994 state->v[i][m] = -state->v[i][m];
1998 sfree(savex);
2002 static void
2003 integrate_table(real vdwtab[], real scale, int offstart, int rstart, int rend,
2004 double *enerout, double *virout)
2006 double enersum, virsum;
2007 double invscale, invscale2, invscale3;
2008 double r, ea, eb, ec, pa, pb, pc, pd;
2009 double y0, f, g, h;
2010 int ri, offset;
2011 double tabfactor;
2013 invscale = 1.0/scale;
2014 invscale2 = invscale*invscale;
2015 invscale3 = invscale*invscale2;
2017 /* Following summation derived from cubic spline definition,
2018 * Numerical Recipies in C, second edition, p. 113-116. Exact for
2019 * the cubic spline. We first calculate the negative of the
2020 * energy from rvdw to rvdw_switch, assuming that g(r)=1, and then
2021 * add the more standard, abrupt cutoff correction to that result,
2022 * yielding the long-range correction for a switched function. We
2023 * perform both the pressure and energy loops at the same time for
2024 * simplicity, as the computational cost is low. */
2026 if (offstart == 0)
2028 /* Since the dispersion table has been scaled down a factor
2029 * 6.0 and the repulsion a factor 12.0 to compensate for the
2030 * c6/c12 parameters inside nbfp[] being scaled up (to save
2031 * flops in kernels), we need to correct for this.
2033 tabfactor = 6.0;
2035 else
2037 tabfactor = 12.0;
2040 enersum = 0.0;
2041 virsum = 0.0;
2042 for (ri = rstart; ri < rend; ++ri)
2044 r = ri*invscale;
2045 ea = invscale3;
2046 eb = 2.0*invscale2*r;
2047 ec = invscale*r*r;
2049 pa = invscale3;
2050 pb = 3.0*invscale2*r;
2051 pc = 3.0*invscale*r*r;
2052 pd = r*r*r;
2054 /* this "8" is from the packing in the vdwtab array - perhaps
2055 should be defined? */
2057 offset = 8*ri + offstart;
2058 y0 = vdwtab[offset];
2059 f = vdwtab[offset+1];
2060 g = vdwtab[offset+2];
2061 h = vdwtab[offset+3];
2063 enersum += y0*(ea/3 + eb/2 + ec) + f*(ea/4 + eb/3 + ec/2) + g*(ea/5 + eb/4 + ec/3) + h*(ea/6 + eb/5 + ec/4);
2064 virsum += f*(pa/4 + pb/3 + pc/2 + pd) + 2*g*(pa/5 + pb/4 + pc/3 + pd/2) + 3*h*(pa/6 + pb/5 + pc/4 + pd/3);
2066 *enerout = 4.0*M_PI*enersum*tabfactor;
2067 *virout = 4.0*M_PI*virsum*tabfactor;
2070 void calc_enervirdiff(FILE *fplog, int eDispCorr, t_forcerec *fr)
2072 double eners[2], virs[2], enersum, virsum;
2073 double r0, rc3, rc9;
2074 int ri0, ri1, i;
2075 real scale, *vdwtab;
2077 fr->enershiftsix = 0;
2078 fr->enershifttwelve = 0;
2079 fr->enerdiffsix = 0;
2080 fr->enerdifftwelve = 0;
2081 fr->virdiffsix = 0;
2082 fr->virdifftwelve = 0;
2084 if (eDispCorr != edispcNO)
2086 for (i = 0; i < 2; i++)
2088 eners[i] = 0;
2089 virs[i] = 0;
2091 if ((fr->vdw_modifier == eintmodPOTSHIFT) ||
2092 (fr->vdw_modifier == eintmodPOTSWITCH) ||
2093 (fr->vdw_modifier == eintmodFORCESWITCH) ||
2094 (fr->vdwtype == evdwSHIFT) ||
2095 (fr->vdwtype == evdwSWITCH))
2097 if (((fr->vdw_modifier == eintmodPOTSWITCH) ||
2098 (fr->vdw_modifier == eintmodFORCESWITCH) ||
2099 (fr->vdwtype == evdwSWITCH)) && fr->rvdw_switch == 0)
2101 gmx_fatal(FARGS,
2102 "With dispersion correction rvdw-switch can not be zero "
2103 "for vdw-type = %s", evdw_names[fr->vdwtype]);
2106 /* TODO This code depends on the logic in tables.c that
2107 constructs the table layout, which should be made
2108 explicit in future cleanup. */
2109 GMX_ASSERT(fr->dispersionCorrectionTable->interaction == GMX_TABLE_INTERACTION_VDWREP_VDWDISP,
2110 "Dispersion-correction code needs a table with both repulsion and dispersion terms");
2111 scale = fr->dispersionCorrectionTable->scale;
2112 vdwtab = fr->dispersionCorrectionTable->data;
2114 /* Round the cut-offs to exact table values for precision */
2115 ri0 = static_cast<int>(floor(fr->rvdw_switch*scale));
2116 ri1 = static_cast<int>(ceil(fr->rvdw*scale));
2118 /* The code below has some support for handling force-switching, i.e.
2119 * when the force (instead of potential) is switched over a limited
2120 * region. This leads to a constant shift in the potential inside the
2121 * switching region, which we can handle by adding a constant energy
2122 * term in the force-switch case just like when we do potential-shift.
2124 * For now this is not enabled, but to keep the functionality in the
2125 * code we check separately for switch and shift. When we do force-switch
2126 * the shifting point is rvdw_switch, while it is the cutoff when we
2127 * have a classical potential-shift.
2129 * For a pure potential-shift the potential has a constant shift
2130 * all the way out to the cutoff, and that is it. For other forms
2131 * we need to calculate the constant shift up to the point where we
2132 * start modifying the potential.
2134 ri0 = (fr->vdw_modifier == eintmodPOTSHIFT) ? ri1 : ri0;
2136 r0 = ri0/scale;
2137 rc3 = r0*r0*r0;
2138 rc9 = rc3*rc3*rc3;
2140 if ((fr->vdw_modifier == eintmodFORCESWITCH) ||
2141 (fr->vdwtype == evdwSHIFT))
2143 /* Determine the constant energy shift below rvdw_switch.
2144 * Table has a scale factor since we have scaled it down to compensate
2145 * for scaling-up c6/c12 with the derivative factors to save flops in analytical kernels.
2147 fr->enershiftsix = (real)(-1.0/(rc3*rc3)) - 6.0*vdwtab[8*ri0];
2148 fr->enershifttwelve = (real)( 1.0/(rc9*rc3)) - 12.0*vdwtab[8*ri0 + 4];
2150 else if (fr->vdw_modifier == eintmodPOTSHIFT)
2152 fr->enershiftsix = (real)(-1.0/(rc3*rc3));
2153 fr->enershifttwelve = (real)( 1.0/(rc9*rc3));
2156 /* Add the constant part from 0 to rvdw_switch.
2157 * This integration from 0 to rvdw_switch overcounts the number
2158 * of interactions by 1, as it also counts the self interaction.
2159 * We will correct for this later.
2161 eners[0] += 4.0*M_PI*fr->enershiftsix*rc3/3.0;
2162 eners[1] += 4.0*M_PI*fr->enershifttwelve*rc3/3.0;
2164 /* Calculate the contribution in the range [r0,r1] where we
2165 * modify the potential. For a pure potential-shift modifier we will
2166 * have ri0==ri1, and there will not be any contribution here.
2168 for (i = 0; i < 2; i++)
2170 enersum = 0;
2171 virsum = 0;
2172 integrate_table(vdwtab, scale, (i == 0 ? 0 : 4), ri0, ri1, &enersum, &virsum);
2173 eners[i] -= enersum;
2174 virs[i] -= virsum;
2177 /* Alright: Above we compensated by REMOVING the parts outside r0
2178 * corresponding to the ideal VdW 1/r6 and /r12 potentials.
2180 * Regardless of whether r0 is the point where we start switching,
2181 * or the cutoff where we calculated the constant shift, we include
2182 * all the parts we are missing out to infinity from r0 by
2183 * calculating the analytical dispersion correction.
2185 eners[0] += -4.0*M_PI/(3.0*rc3);
2186 eners[1] += 4.0*M_PI/(9.0*rc9);
2187 virs[0] += 8.0*M_PI/rc3;
2188 virs[1] += -16.0*M_PI/(3.0*rc9);
2190 else if (fr->vdwtype == evdwCUT ||
2191 EVDW_PME(fr->vdwtype) ||
2192 fr->vdwtype == evdwUSER)
2194 if (fr->vdwtype == evdwUSER && fplog)
2196 fprintf(fplog,
2197 "WARNING: using dispersion correction with user tables\n");
2200 /* Note that with LJ-PME, the dispersion correction is multiplied
2201 * by the difference between the actual C6 and the value of C6
2202 * that would produce the combination rule.
2203 * This means the normal energy and virial difference formulas
2204 * can be used here.
2207 rc3 = fr->rvdw*fr->rvdw*fr->rvdw;
2208 rc9 = rc3*rc3*rc3;
2209 /* Contribution beyond the cut-off */
2210 eners[0] += -4.0*M_PI/(3.0*rc3);
2211 eners[1] += 4.0*M_PI/(9.0*rc9);
2212 if (fr->vdw_modifier == eintmodPOTSHIFT)
2214 /* Contribution within the cut-off */
2215 eners[0] += -4.0*M_PI/(3.0*rc3);
2216 eners[1] += 4.0*M_PI/(3.0*rc9);
2218 /* Contribution beyond the cut-off */
2219 virs[0] += 8.0*M_PI/rc3;
2220 virs[1] += -16.0*M_PI/(3.0*rc9);
2222 else
2224 gmx_fatal(FARGS,
2225 "Dispersion correction is not implemented for vdw-type = %s",
2226 evdw_names[fr->vdwtype]);
2229 /* When we deprecate the group kernels the code below can go too */
2230 if (fr->vdwtype == evdwPME && fr->cutoff_scheme == ecutsGROUP)
2232 /* Calculate self-interaction coefficient (assuming that
2233 * the reciprocal-space contribution is constant in the
2234 * region that contributes to the self-interaction).
2236 fr->enershiftsix = gmx::power6(fr->ewaldcoeff_lj) / 6.0;
2238 eners[0] += -gmx::power3(std::sqrt(M_PI)*fr->ewaldcoeff_lj)/3.0;
2239 virs[0] += gmx::power3(std::sqrt(M_PI)*fr->ewaldcoeff_lj);
2242 fr->enerdiffsix = eners[0];
2243 fr->enerdifftwelve = eners[1];
2244 /* The 0.5 is due to the Gromacs definition of the virial */
2245 fr->virdiffsix = 0.5*virs[0];
2246 fr->virdifftwelve = 0.5*virs[1];
2250 void calc_dispcorr(t_inputrec *ir, t_forcerec *fr,
2251 matrix box, real lambda, tensor pres, tensor virial,
2252 real *prescorr, real *enercorr, real *dvdlcorr)
2254 gmx_bool bCorrAll, bCorrPres;
2255 real dvdlambda, invvol, dens, ninter, avcsix, avctwelve, enerdiff, svir = 0, spres = 0;
2256 int m;
2258 *prescorr = 0;
2259 *enercorr = 0;
2260 *dvdlcorr = 0;
2262 clear_mat(virial);
2263 clear_mat(pres);
2265 if (ir->eDispCorr != edispcNO)
2267 bCorrAll = (ir->eDispCorr == edispcAllEner ||
2268 ir->eDispCorr == edispcAllEnerPres);
2269 bCorrPres = (ir->eDispCorr == edispcEnerPres ||
2270 ir->eDispCorr == edispcAllEnerPres);
2272 invvol = 1/det(box);
2273 if (fr->n_tpi)
2275 /* Only correct for the interactions with the inserted molecule */
2276 dens = (fr->numAtomsForDispersionCorrection - fr->n_tpi)*invvol;
2277 ninter = fr->n_tpi;
2279 else
2281 dens = fr->numAtomsForDispersionCorrection*invvol;
2282 ninter = 0.5*fr->numAtomsForDispersionCorrection;
2285 if (ir->efep == efepNO)
2287 avcsix = fr->avcsix[0];
2288 avctwelve = fr->avctwelve[0];
2290 else
2292 avcsix = (1 - lambda)*fr->avcsix[0] + lambda*fr->avcsix[1];
2293 avctwelve = (1 - lambda)*fr->avctwelve[0] + lambda*fr->avctwelve[1];
2296 enerdiff = ninter*(dens*fr->enerdiffsix - fr->enershiftsix);
2297 *enercorr += avcsix*enerdiff;
2298 dvdlambda = 0.0;
2299 if (ir->efep != efepNO)
2301 dvdlambda += (fr->avcsix[1] - fr->avcsix[0])*enerdiff;
2303 if (bCorrAll)
2305 enerdiff = ninter*(dens*fr->enerdifftwelve - fr->enershifttwelve);
2306 *enercorr += avctwelve*enerdiff;
2307 if (fr->efep != efepNO)
2309 dvdlambda += (fr->avctwelve[1] - fr->avctwelve[0])*enerdiff;
2313 if (bCorrPres)
2315 svir = ninter*dens*avcsix*fr->virdiffsix/3.0;
2316 if (ir->eDispCorr == edispcAllEnerPres)
2318 svir += ninter*dens*avctwelve*fr->virdifftwelve/3.0;
2320 /* The factor 2 is because of the Gromacs virial definition */
2321 spres = -2.0*invvol*svir*PRESFAC;
2323 for (m = 0; m < DIM; m++)
2325 virial[m][m] += svir;
2326 pres[m][m] += spres;
2328 *prescorr += spres;
2331 /* Can't currently control when it prints, for now, just print when degugging */
2332 if (debug)
2334 if (bCorrAll)
2336 fprintf(debug, "Long Range LJ corr.: <C6> %10.4e, <C12> %10.4e\n",
2337 avcsix, avctwelve);
2339 if (bCorrPres)
2341 fprintf(debug,
2342 "Long Range LJ corr.: Epot %10g, Pres: %10g, Vir: %10g\n",
2343 *enercorr, spres, svir);
2345 else
2347 fprintf(debug, "Long Range LJ corr.: Epot %10g\n", *enercorr);
2351 if (fr->efep != efepNO)
2353 *dvdlcorr += dvdlambda;
2358 void do_pbc_first(FILE *fplog, matrix box, t_forcerec *fr,
2359 t_graph *graph, rvec x[])
2361 if (fplog)
2363 fprintf(fplog, "Removing pbc first time\n");
2365 calc_shifts(box, fr->shift_vec);
2366 if (graph)
2368 mk_mshift(fplog, graph, fr->ePBC, box, x);
2369 if (gmx_debug_at)
2371 p_graph(debug, "do_pbc_first 1", graph);
2373 shift_self(graph, box, x);
2374 /* By doing an extra mk_mshift the molecules that are broken
2375 * because they were e.g. imported from another software
2376 * will be made whole again. Such are the healing powers
2377 * of GROMACS.
2379 mk_mshift(fplog, graph, fr->ePBC, box, x);
2380 if (gmx_debug_at)
2382 p_graph(debug, "do_pbc_first 2", graph);
2385 if (fplog)
2387 fprintf(fplog, "Done rmpbc\n");
2391 static void low_do_pbc_mtop(FILE *fplog, int ePBC, matrix box,
2392 const gmx_mtop_t *mtop, rvec x[],
2393 gmx_bool bFirst)
2395 t_graph *graph;
2396 int mb, as, mol;
2397 gmx_molblock_t *molb;
2399 if (bFirst && fplog)
2401 fprintf(fplog, "Removing pbc first time\n");
2404 snew(graph, 1);
2405 as = 0;
2406 for (mb = 0; mb < mtop->nmolblock; mb++)
2408 molb = &mtop->molblock[mb];
2409 if (molb->natoms_mol == 1 ||
2410 (!bFirst && mtop->moltype[molb->type].cgs.nr == 1))
2412 /* Just one atom or charge group in the molecule, no PBC required */
2413 as += molb->nmol*molb->natoms_mol;
2415 else
2417 /* Pass NULL iso fplog to avoid graph prints for each molecule type */
2418 mk_graph_ilist(nullptr, mtop->moltype[molb->type].ilist,
2419 0, molb->natoms_mol, FALSE, FALSE, graph);
2421 for (mol = 0; mol < molb->nmol; mol++)
2423 mk_mshift(fplog, graph, ePBC, box, x+as);
2425 shift_self(graph, box, x+as);
2426 /* The molecule is whole now.
2427 * We don't need the second mk_mshift call as in do_pbc_first,
2428 * since we no longer need this graph.
2431 as += molb->natoms_mol;
2433 done_graph(graph);
2436 sfree(graph);
2439 void do_pbc_first_mtop(FILE *fplog, int ePBC, matrix box,
2440 const gmx_mtop_t *mtop, rvec x[])
2442 low_do_pbc_mtop(fplog, ePBC, box, mtop, x, TRUE);
2445 void do_pbc_mtop(FILE *fplog, int ePBC, matrix box,
2446 gmx_mtop_t *mtop, rvec x[])
2448 low_do_pbc_mtop(fplog, ePBC, box, mtop, x, FALSE);
2451 void put_atoms_in_box_omp(int ePBC, const matrix box, int natoms, rvec x[])
2453 int t, nth;
2454 nth = gmx_omp_nthreads_get(emntDefault);
2456 #pragma omp parallel for num_threads(nth) schedule(static)
2457 for (t = 0; t < nth; t++)
2461 int offset, len;
2463 offset = (natoms*t )/nth;
2464 len = (natoms*(t + 1))/nth - offset;
2465 put_atoms_in_box(ePBC, box, len, x + offset);
2467 GMX_CATCH_ALL_AND_EXIT_WITH_FATAL_ERROR;
2471 // TODO This can be cleaned up a lot, and move back to runner.cpp
2472 void finish_run(FILE *fplog, const gmx::MDLogger &mdlog, t_commrec *cr,
2473 t_inputrec *inputrec,
2474 t_nrnb nrnb[], gmx_wallcycle_t wcycle,
2475 gmx_walltime_accounting_t walltime_accounting,
2476 nonbonded_verlet_t *nbv,
2477 gmx_bool bWriteStat)
2479 t_nrnb *nrnb_tot = nullptr;
2480 double delta_t = 0;
2481 double nbfs = 0, mflop = 0;
2482 double elapsed_time,
2483 elapsed_time_over_all_ranks,
2484 elapsed_time_over_all_threads,
2485 elapsed_time_over_all_threads_over_all_ranks;
2487 if (!walltime_accounting_get_valid_finish(walltime_accounting))
2489 GMX_LOG(mdlog.warning).asParagraph().appendText("Simulation ended prematurely, no performance report will be written.");
2490 return;
2493 if (cr->nnodes > 1)
2495 snew(nrnb_tot, 1);
2496 #if GMX_MPI
2497 MPI_Allreduce(nrnb->n, nrnb_tot->n, eNRNB, MPI_DOUBLE, MPI_SUM,
2498 cr->mpi_comm_mysim);
2499 #endif
2501 else
2503 nrnb_tot = nrnb;
2506 elapsed_time = walltime_accounting_get_elapsed_time(walltime_accounting);
2507 elapsed_time_over_all_ranks = elapsed_time;
2508 elapsed_time_over_all_threads = walltime_accounting_get_elapsed_time_over_all_threads(walltime_accounting);
2509 elapsed_time_over_all_threads_over_all_ranks = elapsed_time_over_all_threads;
2510 #if GMX_MPI
2511 if (cr->nnodes > 1)
2513 /* reduce elapsed_time over all MPI ranks in the current simulation */
2514 MPI_Allreduce(&elapsed_time,
2515 &elapsed_time_over_all_ranks,
2516 1, MPI_DOUBLE, MPI_SUM,
2517 cr->mpi_comm_mysim);
2518 elapsed_time_over_all_ranks /= cr->nnodes;
2519 /* Reduce elapsed_time_over_all_threads over all MPI ranks in the
2520 * current simulation. */
2521 MPI_Allreduce(&elapsed_time_over_all_threads,
2522 &elapsed_time_over_all_threads_over_all_ranks,
2523 1, MPI_DOUBLE, MPI_SUM,
2524 cr->mpi_comm_mysim);
2526 #endif
2528 if (SIMMASTER(cr))
2530 print_flop(fplog, nrnb_tot, &nbfs, &mflop);
2532 if (cr->nnodes > 1)
2534 sfree(nrnb_tot);
2537 if ((cr->duty & DUTY_PP) && DOMAINDECOMP(cr))
2539 print_dd_statistics(cr, inputrec, fplog);
2542 /* TODO Move the responsibility for any scaling by thread counts
2543 * to the code that handled the thread region, so that there's a
2544 * mechanism to keep cycle counting working during the transition
2545 * to task parallelism. */
2546 int nthreads_pp = gmx_omp_nthreads_get(emntNonbonded);
2547 int nthreads_pme = gmx_omp_nthreads_get(emntPME);
2548 wallcycle_scale_by_num_threads(wcycle, cr->duty == DUTY_PME, nthreads_pp, nthreads_pme);
2549 auto cycle_sum(wallcycle_sum(cr, wcycle));
2551 if (SIMMASTER(cr))
2553 struct gmx_wallclock_gpu_t* gputimes = use_GPU(nbv) ? nbnxn_gpu_get_timings(nbv->gpu_nbv) : nullptr;
2555 wallcycle_print(fplog, mdlog, cr->nnodes, cr->npmenodes, nthreads_pp, nthreads_pme,
2556 elapsed_time_over_all_ranks,
2557 wcycle, cycle_sum, gputimes);
2559 if (EI_DYNAMICS(inputrec->eI))
2561 delta_t = inputrec->delta_t;
2564 if (fplog)
2566 print_perf(fplog, elapsed_time_over_all_threads_over_all_ranks,
2567 elapsed_time_over_all_ranks,
2568 walltime_accounting_get_nsteps_done(walltime_accounting),
2569 delta_t, nbfs, mflop);
2571 if (bWriteStat)
2573 print_perf(stderr, elapsed_time_over_all_threads_over_all_ranks,
2574 elapsed_time_over_all_ranks,
2575 walltime_accounting_get_nsteps_done(walltime_accounting),
2576 delta_t, nbfs, mflop);
2581 extern void initialize_lambdas(FILE *fplog, t_inputrec *ir, int *fep_state, gmx::ArrayRef<real> lambda, double *lam0)
2583 /* this function works, but could probably use a logic rewrite to keep all the different
2584 types of efep straight. */
2586 if ((ir->efep == efepNO) && (ir->bSimTemp == FALSE))
2588 return;
2591 t_lambda *fep = ir->fepvals;
2592 *fep_state = fep->init_fep_state; /* this might overwrite the checkpoint
2593 if checkpoint is set -- a kludge is in for now
2594 to prevent this.*/
2596 for (int i = 0; i < efptNR; i++)
2598 /* overwrite lambda state with init_lambda for now for backwards compatibility */
2599 if (fep->init_lambda >= 0) /* if it's -1, it was never initializd */
2601 lambda[i] = fep->init_lambda;
2602 if (lam0)
2604 lam0[i] = lambda[i];
2607 else
2609 lambda[i] = fep->all_lambda[i][*fep_state];
2610 if (lam0)
2612 lam0[i] = lambda[i];
2616 if (ir->bSimTemp)
2618 /* need to rescale control temperatures to match current state */
2619 for (int i = 0; i < ir->opts.ngtc; i++)
2621 if (ir->opts.ref_t[i] > 0)
2623 ir->opts.ref_t[i] = ir->simtempvals->temperatures[*fep_state];
2628 /* Send to the log the information on the current lambdas */
2629 if (fplog != nullptr)
2631 fprintf(fplog, "Initial vector of lambda components:[ ");
2632 for (const auto &l : lambda)
2634 fprintf(fplog, "%10.4f ", l);
2636 fprintf(fplog, "]\n");
2638 return;
2642 void init_md(FILE *fplog,
2643 t_commrec *cr, t_inputrec *ir, const gmx_output_env_t *oenv,
2644 double *t, double *t0,
2645 gmx::ArrayRef<real> lambda, int *fep_state, double *lam0,
2646 t_nrnb *nrnb, gmx_mtop_t *mtop,
2647 gmx_update_t **upd,
2648 int nfile, const t_filenm fnm[],
2649 gmx_mdoutf_t *outf, t_mdebin **mdebin,
2650 tensor force_vir, tensor shake_vir, rvec mu_tot,
2651 gmx_bool *bSimAnn, t_vcm **vcm, unsigned long Flags,
2652 gmx_wallcycle_t wcycle)
2654 int i;
2656 /* Initial values */
2657 *t = *t0 = ir->init_t;
2659 *bSimAnn = FALSE;
2660 for (i = 0; i < ir->opts.ngtc; i++)
2662 /* set bSimAnn if any group is being annealed */
2663 if (ir->opts.annealing[i] != eannNO)
2665 *bSimAnn = TRUE;
2669 /* Initialize lambda variables */
2670 initialize_lambdas(fplog, ir, fep_state, lambda, lam0);
2672 // TODO upd is never NULL in practice, but the analysers don't know that
2673 if (upd)
2675 *upd = init_update(ir);
2677 if (*bSimAnn)
2679 update_annealing_target_temp(ir, ir->init_t, upd ? *upd : nullptr);
2682 if (vcm != nullptr)
2684 *vcm = init_vcm(fplog, &mtop->groups, ir);
2687 if (EI_DYNAMICS(ir->eI) && !(Flags & MD_APPENDFILES))
2689 if (ir->etc == etcBERENDSEN)
2691 please_cite(fplog, "Berendsen84a");
2693 if (ir->etc == etcVRESCALE)
2695 please_cite(fplog, "Bussi2007a");
2697 if (ir->eI == eiSD1)
2699 please_cite(fplog, "Goga2012");
2702 init_nrnb(nrnb);
2704 if (nfile != -1)
2706 *outf = init_mdoutf(fplog, nfile, fnm, Flags, cr, ir, mtop, oenv, wcycle);
2708 *mdebin = init_mdebin((Flags & MD_APPENDFILES) ? nullptr : mdoutf_get_fp_ene(*outf),
2709 mtop, ir, mdoutf_get_fp_dhdl(*outf));
2712 /* Initiate variables */
2713 clear_mat(force_vir);
2714 clear_mat(shake_vir);
2715 clear_rvec(mu_tot);