2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
5 * Copyright (c) 2001-2004, The GROMACS development team.
6 * Copyright (c) 2013,2014,2015,2016, by the GROMACS development team, led by
7 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
8 * and including many others, as listed in the AUTHORS file in the
9 * top-level source directory and at http://www.gromacs.org.
11 * GROMACS is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public License
13 * as published by the Free Software Foundation; either version 2.1
14 * of the License, or (at your option) any later version.
16 * GROMACS is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * Lesser General Public License for more details.
21 * You should have received a copy of the GNU Lesser General Public
22 * License along with GROMACS; if not, see
23 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
24 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
26 * If you want to redistribute modifications to GROMACS, please
27 * consider that scientific software is very special. Version
28 * control is crucial - bugs must be traceable. We will be happy to
29 * consider code for inclusion in the official distribution, but
30 * derived work must not be called official GROMACS. Details are found
31 * in the README & COPYING files - if they are missing, get the
32 * official version at http://www.gromacs.org.
34 * To help us fund GROMACS development, we humbly ask that you cite
35 * the research papers on the package. Check out http://www.gromacs.org.
37 #ifndef GMX_MDTYPES_TYPES_FORCEREC_H
38 #define GMX_MDTYPES_TYPES_FORCEREC_H
40 #include "gromacs/math/vectypes.h"
41 #include "gromacs/mdtypes/interaction_const.h"
42 #include "gromacs/mdtypes/md_enums.h"
43 #include "gromacs/topology/idef.h"
44 #include "gromacs/utility/basedefinitions.h"
45 #include "gromacs/utility/real.h"
51 } /* fixes auto-indentation problems */
54 /* Abstract type for PME that is defined only in the routine that use them. */
58 struct nonbonded_verlet_t
;
59 struct bonded_threading_t
;
67 /* macros for the cginfo data in forcerec
69 * Since the tpx format support max 256 energy groups, we do the same here.
70 * Note that we thus have bits 8-14 still unused.
72 * The maximum cg size in cginfo is 63
73 * because we only have space for 6 bits in cginfo,
74 * this cg size entry is actually only read with domain decomposition.
75 * But there is a smaller limit due to the t_excl data structure
76 * which is defined in nblist.h.
78 #define SET_CGINFO_GID(cgi, gid) (cgi) = (((cgi) & ~255) | (gid))
79 #define GET_CGINFO_GID(cgi) ( (cgi) & 255)
80 #define SET_CGINFO_FEP(cgi) (cgi) = ((cgi) | (1<<15))
81 #define GET_CGINFO_FEP(cgi) ( (cgi) & (1<<15))
82 #define SET_CGINFO_EXCL_INTRA(cgi) (cgi) = ((cgi) | (1<<16))
83 #define GET_CGINFO_EXCL_INTRA(cgi) ( (cgi) & (1<<16))
84 #define SET_CGINFO_EXCL_INTER(cgi) (cgi) = ((cgi) | (1<<17))
85 #define GET_CGINFO_EXCL_INTER(cgi) ( (cgi) & (1<<17))
86 #define SET_CGINFO_SOLOPT(cgi, opt) (cgi) = (((cgi) & ~(3<<18)) | ((opt)<<18))
87 #define GET_CGINFO_SOLOPT(cgi) (((cgi)>>18) & 3)
88 #define SET_CGINFO_CONSTR(cgi) (cgi) = ((cgi) | (1<<20))
89 #define GET_CGINFO_CONSTR(cgi) ( (cgi) & (1<<20))
90 #define SET_CGINFO_SETTLE(cgi) (cgi) = ((cgi) | (1<<21))
91 #define GET_CGINFO_SETTLE(cgi) ( (cgi) & (1<<21))
92 /* This bit is only used with bBondComm in the domain decomposition */
93 #define SET_CGINFO_BOND_INTER(cgi) (cgi) = ((cgi) | (1<<22))
94 #define GET_CGINFO_BOND_INTER(cgi) ( (cgi) & (1<<22))
95 #define SET_CGINFO_HAS_VDW(cgi) (cgi) = ((cgi) | (1<<23))
96 #define GET_CGINFO_HAS_VDW(cgi) ( (cgi) & (1<<23))
97 #define SET_CGINFO_HAS_Q(cgi) (cgi) = ((cgi) | (1<<24))
98 #define GET_CGINFO_HAS_Q(cgi) ( (cgi) & (1<<24))
99 #define SET_CGINFO_NATOMS(cgi, opt) (cgi) = (((cgi) & ~(63<<25)) | ((opt)<<25))
100 #define GET_CGINFO_NATOMS(cgi) (((cgi)>>25) & 63)
103 /* Value to be used in mdrun for an infinite cut-off.
104 * Since we need to compare with the cut-off squared,
105 * this value should be slighlty smaller than sqrt(GMX_FLOAT_MAX).
107 #define GMX_CUTOFF_INF 1E+18
109 /* enums for the neighborlist type */
111 enbvdwNONE
, enbvdwLJ
, enbvdwBHAM
, enbvdwTAB
, enbvdwNR
113 /* OOR is "one over r" -- standard coul */
115 enbcoulNONE
, enbcoulOOR
, enbcoulRF
, enbcoulTAB
, enbcoulGB
, enbcoulFEWALD
, enbcoulNR
119 egCOULSR
, egLJSR
, egBHAMSR
,
120 egCOUL14
, egLJ14
, egGB
, egNR
122 extern const char *egrp_nm
[egNR
+1];
124 typedef struct gmx_grppairener_t
{
125 int nener
; /* The number of energy group pairs */
126 real
*ener
[egNR
]; /* Energy terms for each pair of groups */
129 typedef struct gmx_enerdata_t
{
130 real term
[F_NRE
]; /* The energies for all different interaction types */
131 gmx_grppairener_t grpp
;
132 double dvdl_lin
[efptNR
]; /* Contributions to dvdl with linear lam-dependence */
133 double dvdl_nonlin
[efptNR
]; /* Idem, but non-linear dependence */
135 int fep_state
; /*current fep state -- just for printing */
136 double *enerpart_lambda
; /* Partial energy for lambda and flambda[] */
137 real foreign_term
[F_NRE
]; /* alternate array for storing foreign lambda energies */
138 gmx_grppairener_t foreign_grpp
; /* alternate array for storing foreign lambda energies */
140 /* The idea is that dvdl terms with linear lambda dependence will be added
141 * automatically to enerpart_lambda. Terms with non-linear lambda dependence
142 * should explicitly determine the energies at foreign lambda points
154 /* Forward declaration of type for managing Ewald tables */
155 struct gmx_ewald_tab_t
;
157 typedef struct ewald_corr_thread_t ewald_corr_thread_t
;
159 typedef struct t_forcerec
{
160 interaction_const_t
*ic
;
162 /* Domain Decomposition */
172 const struct gmx_hw_info_t
*hwinfo
;
173 const struct gmx_gpu_opt_t
*gpu_opt
;
174 gmx_bool use_simd_kernels
;
176 /* Interaction for calculated in kernels. In many cases this is similar to
177 * the electrostatics settings in the inputrecord, but the difference is that
178 * these variables always specify the actual interaction in the kernel - if
179 * we are tabulating reaction-field the inputrec will say reaction-field, but
180 * the kernel interaction will say cubic-spline-table. To be safe we also
181 * have a kernel-specific setting for the modifiers - if the interaction is
182 * tabulated we already included the inputrec modification there, so the kernel
183 * modification setting will say 'none' in that case.
185 int nbkernel_elec_interaction
;
186 int nbkernel_vdw_interaction
;
187 int nbkernel_elec_modifier
;
188 int nbkernel_vdw_modifier
;
190 /* Use special N*N kernels? */
192 /* Private work data */
194 void *AllvsAll_workgb
;
197 * Infinite cut-off's will be GMX_CUTOFF_INF (unlike in t_inputrec: 0).
201 /* Dielectric constant resp. multiplication factor for charges */
203 real epsilon_r
, epsilon_rf
, epsfac
;
205 /* Constants for reaction fields */
206 real kappa
, k_rf
, c_rf
;
208 /* Charge sum and dipole for topology A/B ([0]/[1]) for Ewald corrections */
214 /* Dispersion correction stuff */
216 int numAtomsForDispersionCorrection
;
217 struct t_forcetable
*dispersionCorrectionTable
;
219 /* The shift of the shift or user potentials */
221 real enershifttwelve
;
222 /* Integrated differces for energy and virial with cut-off functions */
227 /* Constant for long range dispersion correction (average dispersion)
228 * for topology A/B ([0]/[1]) */
230 /* Constant for long range repulsion term. Relative difference of about
231 * 0.1 percent with 0.8 nm cutoffs. But hey, it's cheap anyway...
241 /* The normal tables are in the nblists struct(s) below */
243 struct t_forcetable
*pairsTable
; /* for 1-4 interactions, [pairs] and [pairs_nb] */
245 /* PPPM & Shifting stuff */
246 int coulomb_modifier
;
247 real rcoulomb_switch
, rcoulomb
;
253 real rvdw_switch
, rvdw
;
269 /* solvent_opt contains the enum for the most common solvent
270 * in the system, which will be optimized.
271 * It can be set to esolNO to disable all water optimization */
275 gmx_bool bExcl_IntraCGAll_InterCGNone
;
276 cginfo_mb_t
*cginfo_mb
;
282 /* The neighborlists including tables */
285 struct t_nblists
*nblists
;
287 int cutoff_scheme
; /* group- or Verlet-style cutoff */
288 gmx_bool bNonbonded
; /* true if nonbonded calculations are *not* turned off */
289 struct nonbonded_verlet_t
*nbv
;
291 /* The wall tables (if used) */
293 struct t_forcetable
***wall_tab
;
295 /* The number of charge groups participating in do_force_lowlevel */
297 /* The number of atoms participating in do_force_lowlevel */
299 /* The number of atoms participating in force and constraints */
300 int natoms_force_constr
;
301 /* The allocation size of vectors of size natoms_force */
304 /* Forces that should not enter into the virial summation:
305 * PPPM/PME/Ewald/posres
307 gmx_bool bF_NoVirSum
;
309 int f_novirsum_nalloc
;
310 rvec
*f_novirsum_alloc
;
311 /* Pointer that points to f_novirsum_alloc when pressure is calcaluted,
312 * points to the normal force vectors wen pressure is not requested.
316 /* Long-range forces and virial for PPPM/PME/Ewald */
317 struct gmx_pme_t
*pmedata
;
318 int ljpme_combination_rule
;
322 /* PME/Ewald stuff */
326 struct gmx_ewald_tab_t
*ewald_table
;
330 rvec vir_diag_posres
;
333 /* Non bonded Parameter lists */
334 int ntype
; /* Number of atom types */
337 real
*ljpme_c6grid
; /* C6-values used on grid in LJPME */
339 /* Energy group pair flags */
342 /* Shell molecular dynamics flexible constraints */
345 /* Generalized born implicit solvent */
347 /* Generalized born stuff */
348 real gb_epsilon_solvent
;
349 /* Table data for GB */
350 struct t_forcetable
*gbtab
;
351 /* VdW radius for each atomtype (dim is thus ntype) */
353 /* Effective radius (derived from effective volume) for each type */
355 /* Implicit solvent - surface tension for each atomtype */
356 real
*atype_surftens
;
357 /* Implicit solvent - radius for GB calculation */
358 real
*atype_gb_radius
;
359 /* Implicit solvent - overlap for HCT model */
361 /* Generalized born interaction data */
362 struct gmx_genborn_t
*born
;
364 /* Table scale for GB */
366 /* Table range for GB */
368 /* GB neighborlists (the sr list will contain for each atom all other atoms
369 * (for use in the SA calculation) and the lr list will contain
370 * for each atom all atoms 1-4 or greater (for use in the GB calculation)
372 struct t_nblist
*gblist_sr
;
373 struct t_nblist
*gblist_lr
;
374 struct t_nblist
*gblist
;
376 /* Inverse square root of the Born radii for implicit solvent */
378 /* Derivatives of the potential with respect to the Born radii */
380 /* Derivatives of the Born radii with respect to coordinates */
383 int nalloc_dadx
; /* Allocated size of dadx */
385 /* If > 0 signals Test Particle Insertion,
386 * the value is the number of atoms of the molecule to insert
387 * Only the energy difference due to the addition of the last molecule
388 * should be calculated.
392 /* Neighbor searching stuff */
397 struct t_QMMMrec
*qr
;
399 /* QM-MM neighborlists */
400 struct t_nblist
*QMMMlist
;
402 /* Limit for printing large forces, negative is don't print */
405 /* coarse load balancing time measurement */
410 /* User determined parameters, copied from the inputrec */
420 /* Pointer to struct for managing threading of bonded force calculation */
421 struct bonded_threading_t
*bonded_threading
;
423 /* Ewald correction thread local virial and energy data */
425 ewald_corr_thread_t
*ewc_t
;
428 /* Important: Starting with Gromacs-4.6, the values of c6 and c12 in the nbfp array have
429 * been scaled by 6.0 or 12.0 to save flops in the kernels. We have corrected this everywhere
430 * in the code, but beware if you are using these macros externally.
432 #define C6(nbfp, ntp, ai, aj) (nbfp)[2*((ntp)*(ai)+(aj))]
433 #define C12(nbfp, ntp, ai, aj) (nbfp)[2*((ntp)*(ai)+(aj))+1]
434 #define BHAMC(nbfp, ntp, ai, aj) (nbfp)[3*((ntp)*(ai)+(aj))]
435 #define BHAMA(nbfp, ntp, ai, aj) (nbfp)[3*((ntp)*(ai)+(aj))+1]
436 #define BHAMB(nbfp, ntp, ai, aj) (nbfp)[3*((ntp)*(ai)+(aj))+2]