Support pinning in HostAllocator
[gromacs.git] / src / gromacs / mdlib / mdatoms.cpp
blobfe998ff9c53c1811ce9a6ef99fd091495aefefe0
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
5 * Copyright (c) 2001-2004, The GROMACS development team.
6 * Copyright (c) 2012,2013,2014,2015,2016,2017, by the GROMACS development team, led by
7 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
8 * and including many others, as listed in the AUTHORS file in the
9 * top-level source directory and at http://www.gromacs.org.
11 * GROMACS is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public License
13 * as published by the Free Software Foundation; either version 2.1
14 * of the License, or (at your option) any later version.
16 * GROMACS is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * Lesser General Public License for more details.
21 * You should have received a copy of the GNU Lesser General Public
22 * License along with GROMACS; if not, see
23 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
24 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
26 * If you want to redistribute modifications to GROMACS, please
27 * consider that scientific software is very special. Version
28 * control is crucial - bugs must be traceable. We will be happy to
29 * consider code for inclusion in the official distribution, but
30 * derived work must not be called official GROMACS. Details are found
31 * in the README & COPYING files - if they are missing, get the
32 * official version at http://www.gromacs.org.
34 * To help us fund GROMACS development, we humbly ask that you cite
35 * the research papers on the package. Check out http://www.gromacs.org.
37 #include "gmxpre.h"
39 #include "mdatoms.h"
41 #include <cmath>
43 #include <memory>
45 #include "gromacs/compat/make_unique.h"
46 #include "gromacs/gpu_utils/hostallocator.h"
47 #include "gromacs/math/functions.h"
48 #include "gromacs/mdlib/gmx_omp_nthreads.h"
49 #include "gromacs/mdlib/qmmm.h"
50 #include "gromacs/mdtypes/inputrec.h"
51 #include "gromacs/mdtypes/md_enums.h"
52 #include "gromacs/topology/mtop_lookup.h"
53 #include "gromacs/topology/mtop_util.h"
54 #include "gromacs/topology/topology.h"
55 #include "gromacs/utility/exceptions.h"
56 #include "gromacs/utility/smalloc.h"
58 #define ALMOST_ZERO 1e-30
60 namespace gmx
63 MDAtoms::MDAtoms()
64 : mdatoms_(nullptr), chargeA_()
68 void MDAtoms::resize(int newSize)
70 chargeA_.resize(newSize);
71 mdatoms_->chargeA = chargeA_.data();
74 void MDAtoms::reserve(int newCapacity)
76 chargeA_.reserve(newCapacity);
77 mdatoms_->chargeA = chargeA_.data();
80 std::unique_ptr<MDAtoms>
81 makeMDAtoms(FILE *fp, const gmx_mtop_t &mtop, const t_inputrec &ir,
82 bool useGpuForPme)
84 auto mdAtoms = compat::make_unique<MDAtoms>();
85 // GPU transfers want to use the pinning mode.
86 changePinningPolicy(&mdAtoms->chargeA_, useGpuForPme ? PinningPolicy::CanBePinned : PinningPolicy::CannotBePinned);
87 t_mdatoms *md;
88 snew(md, 1);
89 mdAtoms->mdatoms_.reset(md);
91 md->nenergrp = mtop.groups.grps[egcENER].nr;
92 md->bVCMgrps = (mtop.groups.grps[egcVCM].nr > 1);
94 /* Determine the total system mass and perturbed atom counts */
95 double totalMassA = 0.0;
96 double totalMassB = 0.0;
98 gmx_mtop_atomloop_block_t aloop = gmx_mtop_atomloop_block_init(&mtop);
99 const t_atom *atom;
100 int nmol;
101 while (gmx_mtop_atomloop_block_next(aloop, &atom, &nmol))
103 totalMassA += nmol*atom->m;
104 totalMassB += nmol*atom->mB;
106 if (ir.efep != efepNO && PERTURBED(*atom))
108 md->nPerturbed++;
109 if (atom->mB != atom->m)
111 md->nMassPerturbed += nmol;
113 if (atom->qB != atom->q)
115 md->nChargePerturbed += nmol;
117 if (atom->typeB != atom->type)
119 md->nTypePerturbed += nmol;
124 md->tmassA = totalMassA;
125 md->tmassB = totalMassB;
127 if (ir.efep != efepNO && fp)
129 fprintf(fp,
130 "There are %d atoms and %d charges for free energy perturbation\n",
131 md->nPerturbed, md->nChargePerturbed);
134 md->havePartiallyFrozenAtoms = FALSE;
135 for (int g = 0; g < ir.opts.ngfrz; g++)
137 for (int d = YY; d < DIM; d++)
139 if (ir.opts.nFreeze[d] != ir.opts.nFreeze[XX])
141 md->havePartiallyFrozenAtoms = TRUE;
146 md->bOrires = gmx_mtop_ftype_count(&mtop, F_ORIRES);
148 return mdAtoms;
151 } // namespace
153 void atoms2md(const gmx_mtop_t *mtop, const t_inputrec *ir,
154 int nindex, const int *index,
155 int homenr,
156 gmx::MDAtoms *mdAtoms)
158 gmx_bool bLJPME;
159 const t_grpopts *opts;
160 const gmx_groups_t *groups;
161 int nthreads gmx_unused;
163 bLJPME = EVDW_PME(ir->vdwtype);
165 opts = &ir->opts;
167 groups = &mtop->groups;
169 auto md = mdAtoms->mdatoms();
170 /* nindex>=0 indicates DD where we use an index */
171 if (nindex >= 0)
173 md->nr = nindex;
175 else
177 md->nr = mtop->natoms;
180 if (md->nr > md->nalloc)
182 md->nalloc = over_alloc_dd(md->nr);
184 if (md->nMassPerturbed)
186 srenew(md->massA, md->nalloc);
187 srenew(md->massB, md->nalloc);
189 srenew(md->massT, md->nalloc);
190 /* The SIMD version of the integrator needs this aligned and padded.
191 * The padding needs to be with zeros, which we set later below.
193 gmx::AlignedAllocationPolicy::free(md->invmass);
194 md->invmass = new(gmx::AlignedAllocationPolicy::malloc((md->nalloc + GMX_REAL_MAX_SIMD_WIDTH)*sizeof(*md->invmass)))real;
195 srenew(md->invMassPerDim, md->nalloc);
196 // TODO eventually we will have vectors and just resize
197 // everything, but for now the semantics of md->nalloc being
198 // the capacity are preserved by keeping vectors within
199 // mdAtoms having the same properties as the other arrays.
200 mdAtoms->reserve(md->nalloc);
201 mdAtoms->resize(md->nr);
202 srenew(md->typeA, md->nalloc);
203 if (md->nPerturbed)
205 srenew(md->chargeB, md->nalloc);
206 srenew(md->typeB, md->nalloc);
208 if (bLJPME)
210 srenew(md->sqrt_c6A, md->nalloc);
211 srenew(md->sigmaA, md->nalloc);
212 srenew(md->sigma3A, md->nalloc);
213 if (md->nPerturbed)
215 srenew(md->sqrt_c6B, md->nalloc);
216 srenew(md->sigmaB, md->nalloc);
217 srenew(md->sigma3B, md->nalloc);
220 srenew(md->ptype, md->nalloc);
221 if (opts->ngtc > 1)
223 srenew(md->cTC, md->nalloc);
224 /* We always copy cTC with domain decomposition */
226 srenew(md->cENER, md->nalloc);
227 if (opts->ngacc > 1)
229 srenew(md->cACC, md->nalloc);
231 if (opts->nFreeze &&
232 (opts->ngfrz > 1 ||
233 opts->nFreeze[0][XX] || opts->nFreeze[0][YY] || opts->nFreeze[0][ZZ]))
235 srenew(md->cFREEZE, md->nalloc);
237 if (md->bVCMgrps)
239 srenew(md->cVCM, md->nalloc);
241 if (md->bOrires)
243 srenew(md->cORF, md->nalloc);
245 if (md->nPerturbed)
247 srenew(md->bPerturbed, md->nalloc);
250 /* Note that these user t_mdatoms array pointers are NULL
251 * when there is only one group present.
252 * Therefore, when adding code, the user should use something like:
253 * gprnrU1 = (md->cU1==NULL ? 0 : md->cU1[localatindex])
255 if (mtop->groups.grpnr[egcUser1] != nullptr)
257 srenew(md->cU1, md->nalloc);
259 if (mtop->groups.grpnr[egcUser2] != nullptr)
261 srenew(md->cU2, md->nalloc);
264 if (ir->bQMMM)
266 srenew(md->bQM, md->nalloc);
270 int molb = 0;
272 // cppcheck-suppress unreadVariable
273 nthreads = gmx_omp_nthreads_get(emntDefault);
274 #pragma omp parallel for num_threads(nthreads) schedule(static) firstprivate(molb)
275 for (int i = 0; i < md->nr; i++)
279 int g, ag;
280 real mA, mB, fac;
281 real c6, c12;
283 if (index == nullptr)
285 ag = i;
287 else
289 ag = index[i];
291 const t_atom &atom = mtopGetAtomParameters(mtop, ag, &molb);
293 if (md->cFREEZE)
295 md->cFREEZE[i] = ggrpnr(groups, egcFREEZE, ag);
297 if (EI_ENERGY_MINIMIZATION(ir->eI))
299 /* Displacement is proportional to F, masses used for constraints */
300 mA = 1.0;
301 mB = 1.0;
303 else if (ir->eI == eiBD)
305 /* With BD the physical masses are irrelevant.
306 * To keep the code simple we use most of the normal MD code path
307 * for BD. Thus for constraining the masses should be proportional
308 * to the friction coefficient. We set the absolute value such that
309 * m/2<(dx/dt)^2> = m/2*2kT/fric*dt = kT/2 => m=fric*dt/2
310 * Then if we set the (meaningless) velocity to v=dx/dt, we get the
311 * correct kinetic energy and temperature using the usual code path.
312 * Thus with BD v*dt will give the displacement and the reported
313 * temperature can signal bad integration (too large time step).
315 if (ir->bd_fric > 0)
317 mA = 0.5*ir->bd_fric*ir->delta_t;
318 mB = 0.5*ir->bd_fric*ir->delta_t;
320 else
322 /* The friction coefficient is mass/tau_t */
323 fac = ir->delta_t/opts->tau_t[md->cTC ? groups->grpnr[egcTC][ag] : 0];
324 mA = 0.5*atom.m*fac;
325 mB = 0.5*atom.mB*fac;
328 else
330 mA = atom.m;
331 mB = atom.mB;
333 if (md->nMassPerturbed)
335 md->massA[i] = mA;
336 md->massB[i] = mB;
338 md->massT[i] = mA;
340 if (mA == 0.0)
342 md->invmass[i] = 0;
343 md->invMassPerDim[i][XX] = 0;
344 md->invMassPerDim[i][YY] = 0;
345 md->invMassPerDim[i][ZZ] = 0;
347 else if (md->cFREEZE)
349 g = md->cFREEZE[i];
350 if (opts->nFreeze[g][XX] && opts->nFreeze[g][YY] && opts->nFreeze[g][ZZ])
352 /* Set the mass of completely frozen particles to ALMOST_ZERO
353 * iso 0 to avoid div by zero in lincs or shake.
355 md->invmass[i] = ALMOST_ZERO;
357 else
359 /* Note: Partially frozen particles use the normal invmass.
360 * If such particles are constrained, the frozen dimensions
361 * should not be updated with the constrained coordinates.
363 md->invmass[i] = 1.0/mA;
365 for (int d = 0; d < DIM; d++)
367 md->invMassPerDim[i][d] = (opts->nFreeze[g][d] ? 0 : 1.0/mA);
370 else
372 md->invmass[i] = 1.0/mA;
373 for (int d = 0; d < DIM; d++)
375 md->invMassPerDim[i][d] = 1.0/mA;
379 md->chargeA[i] = atom.q;
380 md->typeA[i] = atom.type;
381 if (bLJPME)
383 c6 = mtop->ffparams.iparams[atom.type*(mtop->ffparams.atnr+1)].lj.c6;
384 c12 = mtop->ffparams.iparams[atom.type*(mtop->ffparams.atnr+1)].lj.c12;
385 md->sqrt_c6A[i] = sqrt(c6);
386 if (c6 == 0.0 || c12 == 0)
388 md->sigmaA[i] = 1.0;
390 else
392 md->sigmaA[i] = gmx::sixthroot(c12/c6);
394 md->sigma3A[i] = 1/(md->sigmaA[i]*md->sigmaA[i]*md->sigmaA[i]);
396 if (md->nPerturbed)
398 md->bPerturbed[i] = PERTURBED(atom);
399 md->chargeB[i] = atom.qB;
400 md->typeB[i] = atom.typeB;
401 if (bLJPME)
403 c6 = mtop->ffparams.iparams[atom.typeB*(mtop->ffparams.atnr+1)].lj.c6;
404 c12 = mtop->ffparams.iparams[atom.typeB*(mtop->ffparams.atnr+1)].lj.c12;
405 md->sqrt_c6B[i] = sqrt(c6);
406 if (c6 == 0.0 || c12 == 0)
408 md->sigmaB[i] = 1.0;
410 else
412 md->sigmaB[i] = gmx::sixthroot(c12/c6);
414 md->sigma3B[i] = 1/(md->sigmaB[i]*md->sigmaB[i]*md->sigmaB[i]);
417 md->ptype[i] = atom.ptype;
418 if (md->cTC)
420 md->cTC[i] = groups->grpnr[egcTC][ag];
422 md->cENER[i] = ggrpnr(groups, egcENER, ag);
423 if (md->cACC)
425 md->cACC[i] = groups->grpnr[egcACC][ag];
427 if (md->cVCM)
429 md->cVCM[i] = groups->grpnr[egcVCM][ag];
431 if (md->cORF)
433 md->cORF[i] = ggrpnr(groups, egcORFIT, ag);
436 if (md->cU1)
438 md->cU1[i] = groups->grpnr[egcUser1][ag];
440 if (md->cU2)
442 md->cU2[i] = groups->grpnr[egcUser2][ag];
445 if (ir->bQMMM)
447 if (groups->grpnr[egcQMMM] == nullptr ||
448 groups->grpnr[egcQMMM][ag] < groups->grps[egcQMMM].nr-1)
450 md->bQM[i] = TRUE;
452 else
454 md->bQM[i] = FALSE;
458 GMX_CATCH_ALL_AND_EXIT_WITH_FATAL_ERROR;
461 if (md->nr > 0)
463 /* Pad invmass with 0 so a SIMD MD update does not change v and x */
464 for (int i = md->nr; i < md->nr + GMX_REAL_MAX_SIMD_WIDTH; i++)
466 md->invmass[i] = 0;
470 md->homenr = homenr;
471 /* We set mass, invmass, invMassPerDim and tmass for lambda=0.
472 * For free-energy runs, these should be updated using update_mdatoms().
474 md->tmass = md->tmassA;
475 md->lambda = 0;
478 void update_mdatoms(t_mdatoms *md, real lambda)
480 if (md->nMassPerturbed && lambda != md->lambda)
482 real L1 = 1 - lambda;
484 /* Update masses of perturbed atoms for the change in lambda */
485 // cppcheck-suppress unreadVariable
486 int gmx_unused nthreads = gmx_omp_nthreads_get(emntDefault);
487 #pragma omp parallel for num_threads(nthreads) schedule(static)
488 for (int i = 0; i < md->nr; i++)
490 if (md->bPerturbed[i])
492 md->massT[i] = L1*md->massA[i] + lambda*md->massB[i];
493 /* Atoms with invmass 0 or ALMOST_ZERO are massless or frozen
494 * and their invmass does not depend on lambda.
496 if (md->invmass[i] > 1.1*ALMOST_ZERO)
498 md->invmass[i] = 1.0/md->massT[i];
499 for (int d = 0; d < DIM; d++)
501 if (md->invMassPerDim[i][d] > 1.1*ALMOST_ZERO)
503 md->invMassPerDim[i][d] = md->invmass[i];
510 /* Update the system mass for the change in lambda */
511 md->tmass = L1*md->tmassA + lambda*md->tmassB;
514 md->lambda = lambda;