Removed simple.h from nb_kernel_sse2_XX
[gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecRF_VdwLJ_GeomP1P1_sse2_single.c
blob800a4ef43cbd17d41a396b37f7e405571f7c6b08
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 2012,2013,2014,2015, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
36 * Note: this file was generated by the GROMACS sse2_single kernel generator.
38 #include "gmxpre.h"
40 #include "config.h"
42 #include <math.h>
44 #include "../nb_kernel.h"
45 #include "gromacs/math/vec.h"
46 #include "gromacs/legacyheaders/nrnb.h"
48 #include "gromacs/simd/math_x86_sse2_single.h"
49 #include "kernelutil_x86_sse2_single.h"
52 * Gromacs nonbonded kernel: nb_kernel_ElecRF_VdwLJ_GeomP1P1_VF_sse2_single
53 * Electrostatics interaction: ReactionField
54 * VdW interaction: LennardJones
55 * Geometry: Particle-Particle
56 * Calculate force/pot: PotentialAndForce
58 void
59 nb_kernel_ElecRF_VdwLJ_GeomP1P1_VF_sse2_single
60 (t_nblist * gmx_restrict nlist,
61 rvec * gmx_restrict xx,
62 rvec * gmx_restrict ff,
63 t_forcerec * gmx_restrict fr,
64 t_mdatoms * gmx_restrict mdatoms,
65 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
66 t_nrnb * gmx_restrict nrnb)
68 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
69 * just 0 for non-waters.
70 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
71 * jnr indices corresponding to data put in the four positions in the SIMD register.
73 int i_shift_offset,i_coord_offset,outeriter,inneriter;
74 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
75 int jnrA,jnrB,jnrC,jnrD;
76 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
77 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
79 real rcutoff_scalar;
80 real *shiftvec,*fshift,*x,*f;
81 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
82 real scratch[4*DIM];
83 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
84 int vdwioffset0;
85 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
86 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
87 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
88 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
89 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
90 real *charge;
91 int nvdwtype;
92 __m128 rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
93 int *vdwtype;
94 real *vdwparam;
95 __m128 one_sixth = _mm_set1_ps(1.0/6.0);
96 __m128 one_twelfth = _mm_set1_ps(1.0/12.0);
97 __m128 dummy_mask,cutoff_mask;
98 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
99 __m128 one = _mm_set1_ps(1.0);
100 __m128 two = _mm_set1_ps(2.0);
101 x = xx[0];
102 f = ff[0];
104 nri = nlist->nri;
105 iinr = nlist->iinr;
106 jindex = nlist->jindex;
107 jjnr = nlist->jjnr;
108 shiftidx = nlist->shift;
109 gid = nlist->gid;
110 shiftvec = fr->shift_vec[0];
111 fshift = fr->fshift[0];
112 facel = _mm_set1_ps(fr->epsfac);
113 charge = mdatoms->chargeA;
114 krf = _mm_set1_ps(fr->ic->k_rf);
115 krf2 = _mm_set1_ps(fr->ic->k_rf*2.0);
116 crf = _mm_set1_ps(fr->ic->c_rf);
117 nvdwtype = fr->ntype;
118 vdwparam = fr->nbfp;
119 vdwtype = mdatoms->typeA;
121 /* Avoid stupid compiler warnings */
122 jnrA = jnrB = jnrC = jnrD = 0;
123 j_coord_offsetA = 0;
124 j_coord_offsetB = 0;
125 j_coord_offsetC = 0;
126 j_coord_offsetD = 0;
128 outeriter = 0;
129 inneriter = 0;
131 for(iidx=0;iidx<4*DIM;iidx++)
133 scratch[iidx] = 0.0;
136 /* Start outer loop over neighborlists */
137 for(iidx=0; iidx<nri; iidx++)
139 /* Load shift vector for this list */
140 i_shift_offset = DIM*shiftidx[iidx];
142 /* Load limits for loop over neighbors */
143 j_index_start = jindex[iidx];
144 j_index_end = jindex[iidx+1];
146 /* Get outer coordinate index */
147 inr = iinr[iidx];
148 i_coord_offset = DIM*inr;
150 /* Load i particle coords and add shift vector */
151 gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
153 fix0 = _mm_setzero_ps();
154 fiy0 = _mm_setzero_ps();
155 fiz0 = _mm_setzero_ps();
157 /* Load parameters for i particles */
158 iq0 = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
159 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
161 /* Reset potential sums */
162 velecsum = _mm_setzero_ps();
163 vvdwsum = _mm_setzero_ps();
165 /* Start inner kernel loop */
166 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
169 /* Get j neighbor index, and coordinate index */
170 jnrA = jjnr[jidx];
171 jnrB = jjnr[jidx+1];
172 jnrC = jjnr[jidx+2];
173 jnrD = jjnr[jidx+3];
174 j_coord_offsetA = DIM*jnrA;
175 j_coord_offsetB = DIM*jnrB;
176 j_coord_offsetC = DIM*jnrC;
177 j_coord_offsetD = DIM*jnrD;
179 /* load j atom coordinates */
180 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
181 x+j_coord_offsetC,x+j_coord_offsetD,
182 &jx0,&jy0,&jz0);
184 /* Calculate displacement vector */
185 dx00 = _mm_sub_ps(ix0,jx0);
186 dy00 = _mm_sub_ps(iy0,jy0);
187 dz00 = _mm_sub_ps(iz0,jz0);
189 /* Calculate squared distance and things based on it */
190 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
192 rinv00 = gmx_mm_invsqrt_ps(rsq00);
194 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
196 /* Load parameters for j particles */
197 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
198 charge+jnrC+0,charge+jnrD+0);
199 vdwjidx0A = 2*vdwtype[jnrA+0];
200 vdwjidx0B = 2*vdwtype[jnrB+0];
201 vdwjidx0C = 2*vdwtype[jnrC+0];
202 vdwjidx0D = 2*vdwtype[jnrD+0];
204 /**************************
205 * CALCULATE INTERACTIONS *
206 **************************/
208 /* Compute parameters for interactions between i and j atoms */
209 qq00 = _mm_mul_ps(iq0,jq0);
210 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
211 vdwparam+vdwioffset0+vdwjidx0B,
212 vdwparam+vdwioffset0+vdwjidx0C,
213 vdwparam+vdwioffset0+vdwjidx0D,
214 &c6_00,&c12_00);
216 /* REACTION-FIELD ELECTROSTATICS */
217 velec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
218 felec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
220 /* LENNARD-JONES DISPERSION/REPULSION */
222 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
223 vvdw6 = _mm_mul_ps(c6_00,rinvsix);
224 vvdw12 = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
225 vvdw = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
226 fvdw = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
228 /* Update potential sum for this i atom from the interaction with this j atom. */
229 velecsum = _mm_add_ps(velecsum,velec);
230 vvdwsum = _mm_add_ps(vvdwsum,vvdw);
232 fscal = _mm_add_ps(felec,fvdw);
234 /* Calculate temporary vectorial force */
235 tx = _mm_mul_ps(fscal,dx00);
236 ty = _mm_mul_ps(fscal,dy00);
237 tz = _mm_mul_ps(fscal,dz00);
239 /* Update vectorial force */
240 fix0 = _mm_add_ps(fix0,tx);
241 fiy0 = _mm_add_ps(fiy0,ty);
242 fiz0 = _mm_add_ps(fiz0,tz);
244 fjptrA = f+j_coord_offsetA;
245 fjptrB = f+j_coord_offsetB;
246 fjptrC = f+j_coord_offsetC;
247 fjptrD = f+j_coord_offsetD;
248 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
250 /* Inner loop uses 44 flops */
253 if(jidx<j_index_end)
256 /* Get j neighbor index, and coordinate index */
257 jnrlistA = jjnr[jidx];
258 jnrlistB = jjnr[jidx+1];
259 jnrlistC = jjnr[jidx+2];
260 jnrlistD = jjnr[jidx+3];
261 /* Sign of each element will be negative for non-real atoms.
262 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
263 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
265 dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
266 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
267 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
268 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
269 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
270 j_coord_offsetA = DIM*jnrA;
271 j_coord_offsetB = DIM*jnrB;
272 j_coord_offsetC = DIM*jnrC;
273 j_coord_offsetD = DIM*jnrD;
275 /* load j atom coordinates */
276 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
277 x+j_coord_offsetC,x+j_coord_offsetD,
278 &jx0,&jy0,&jz0);
280 /* Calculate displacement vector */
281 dx00 = _mm_sub_ps(ix0,jx0);
282 dy00 = _mm_sub_ps(iy0,jy0);
283 dz00 = _mm_sub_ps(iz0,jz0);
285 /* Calculate squared distance and things based on it */
286 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
288 rinv00 = gmx_mm_invsqrt_ps(rsq00);
290 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
292 /* Load parameters for j particles */
293 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
294 charge+jnrC+0,charge+jnrD+0);
295 vdwjidx0A = 2*vdwtype[jnrA+0];
296 vdwjidx0B = 2*vdwtype[jnrB+0];
297 vdwjidx0C = 2*vdwtype[jnrC+0];
298 vdwjidx0D = 2*vdwtype[jnrD+0];
300 /**************************
301 * CALCULATE INTERACTIONS *
302 **************************/
304 /* Compute parameters for interactions between i and j atoms */
305 qq00 = _mm_mul_ps(iq0,jq0);
306 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
307 vdwparam+vdwioffset0+vdwjidx0B,
308 vdwparam+vdwioffset0+vdwjidx0C,
309 vdwparam+vdwioffset0+vdwjidx0D,
310 &c6_00,&c12_00);
312 /* REACTION-FIELD ELECTROSTATICS */
313 velec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
314 felec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
316 /* LENNARD-JONES DISPERSION/REPULSION */
318 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
319 vvdw6 = _mm_mul_ps(c6_00,rinvsix);
320 vvdw12 = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
321 vvdw = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
322 fvdw = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
324 /* Update potential sum for this i atom from the interaction with this j atom. */
325 velec = _mm_andnot_ps(dummy_mask,velec);
326 velecsum = _mm_add_ps(velecsum,velec);
327 vvdw = _mm_andnot_ps(dummy_mask,vvdw);
328 vvdwsum = _mm_add_ps(vvdwsum,vvdw);
330 fscal = _mm_add_ps(felec,fvdw);
332 fscal = _mm_andnot_ps(dummy_mask,fscal);
334 /* Calculate temporary vectorial force */
335 tx = _mm_mul_ps(fscal,dx00);
336 ty = _mm_mul_ps(fscal,dy00);
337 tz = _mm_mul_ps(fscal,dz00);
339 /* Update vectorial force */
340 fix0 = _mm_add_ps(fix0,tx);
341 fiy0 = _mm_add_ps(fiy0,ty);
342 fiz0 = _mm_add_ps(fiz0,tz);
344 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
345 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
346 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
347 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
348 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
350 /* Inner loop uses 44 flops */
353 /* End of innermost loop */
355 gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
356 f+i_coord_offset,fshift+i_shift_offset);
358 ggid = gid[iidx];
359 /* Update potential energies */
360 gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
361 gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
363 /* Increment number of inner iterations */
364 inneriter += j_index_end - j_index_start;
366 /* Outer loop uses 9 flops */
369 /* Increment number of outer iterations */
370 outeriter += nri;
372 /* Update outer/inner flops */
374 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*44);
377 * Gromacs nonbonded kernel: nb_kernel_ElecRF_VdwLJ_GeomP1P1_F_sse2_single
378 * Electrostatics interaction: ReactionField
379 * VdW interaction: LennardJones
380 * Geometry: Particle-Particle
381 * Calculate force/pot: Force
383 void
384 nb_kernel_ElecRF_VdwLJ_GeomP1P1_F_sse2_single
385 (t_nblist * gmx_restrict nlist,
386 rvec * gmx_restrict xx,
387 rvec * gmx_restrict ff,
388 t_forcerec * gmx_restrict fr,
389 t_mdatoms * gmx_restrict mdatoms,
390 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
391 t_nrnb * gmx_restrict nrnb)
393 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
394 * just 0 for non-waters.
395 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
396 * jnr indices corresponding to data put in the four positions in the SIMD register.
398 int i_shift_offset,i_coord_offset,outeriter,inneriter;
399 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
400 int jnrA,jnrB,jnrC,jnrD;
401 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
402 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
403 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
404 real rcutoff_scalar;
405 real *shiftvec,*fshift,*x,*f;
406 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
407 real scratch[4*DIM];
408 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
409 int vdwioffset0;
410 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
411 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
412 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
413 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
414 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
415 real *charge;
416 int nvdwtype;
417 __m128 rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
418 int *vdwtype;
419 real *vdwparam;
420 __m128 one_sixth = _mm_set1_ps(1.0/6.0);
421 __m128 one_twelfth = _mm_set1_ps(1.0/12.0);
422 __m128 dummy_mask,cutoff_mask;
423 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
424 __m128 one = _mm_set1_ps(1.0);
425 __m128 two = _mm_set1_ps(2.0);
426 x = xx[0];
427 f = ff[0];
429 nri = nlist->nri;
430 iinr = nlist->iinr;
431 jindex = nlist->jindex;
432 jjnr = nlist->jjnr;
433 shiftidx = nlist->shift;
434 gid = nlist->gid;
435 shiftvec = fr->shift_vec[0];
436 fshift = fr->fshift[0];
437 facel = _mm_set1_ps(fr->epsfac);
438 charge = mdatoms->chargeA;
439 krf = _mm_set1_ps(fr->ic->k_rf);
440 krf2 = _mm_set1_ps(fr->ic->k_rf*2.0);
441 crf = _mm_set1_ps(fr->ic->c_rf);
442 nvdwtype = fr->ntype;
443 vdwparam = fr->nbfp;
444 vdwtype = mdatoms->typeA;
446 /* Avoid stupid compiler warnings */
447 jnrA = jnrB = jnrC = jnrD = 0;
448 j_coord_offsetA = 0;
449 j_coord_offsetB = 0;
450 j_coord_offsetC = 0;
451 j_coord_offsetD = 0;
453 outeriter = 0;
454 inneriter = 0;
456 for(iidx=0;iidx<4*DIM;iidx++)
458 scratch[iidx] = 0.0;
461 /* Start outer loop over neighborlists */
462 for(iidx=0; iidx<nri; iidx++)
464 /* Load shift vector for this list */
465 i_shift_offset = DIM*shiftidx[iidx];
467 /* Load limits for loop over neighbors */
468 j_index_start = jindex[iidx];
469 j_index_end = jindex[iidx+1];
471 /* Get outer coordinate index */
472 inr = iinr[iidx];
473 i_coord_offset = DIM*inr;
475 /* Load i particle coords and add shift vector */
476 gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
478 fix0 = _mm_setzero_ps();
479 fiy0 = _mm_setzero_ps();
480 fiz0 = _mm_setzero_ps();
482 /* Load parameters for i particles */
483 iq0 = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
484 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
486 /* Start inner kernel loop */
487 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
490 /* Get j neighbor index, and coordinate index */
491 jnrA = jjnr[jidx];
492 jnrB = jjnr[jidx+1];
493 jnrC = jjnr[jidx+2];
494 jnrD = jjnr[jidx+3];
495 j_coord_offsetA = DIM*jnrA;
496 j_coord_offsetB = DIM*jnrB;
497 j_coord_offsetC = DIM*jnrC;
498 j_coord_offsetD = DIM*jnrD;
500 /* load j atom coordinates */
501 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
502 x+j_coord_offsetC,x+j_coord_offsetD,
503 &jx0,&jy0,&jz0);
505 /* Calculate displacement vector */
506 dx00 = _mm_sub_ps(ix0,jx0);
507 dy00 = _mm_sub_ps(iy0,jy0);
508 dz00 = _mm_sub_ps(iz0,jz0);
510 /* Calculate squared distance and things based on it */
511 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
513 rinv00 = gmx_mm_invsqrt_ps(rsq00);
515 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
517 /* Load parameters for j particles */
518 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
519 charge+jnrC+0,charge+jnrD+0);
520 vdwjidx0A = 2*vdwtype[jnrA+0];
521 vdwjidx0B = 2*vdwtype[jnrB+0];
522 vdwjidx0C = 2*vdwtype[jnrC+0];
523 vdwjidx0D = 2*vdwtype[jnrD+0];
525 /**************************
526 * CALCULATE INTERACTIONS *
527 **************************/
529 /* Compute parameters for interactions between i and j atoms */
530 qq00 = _mm_mul_ps(iq0,jq0);
531 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
532 vdwparam+vdwioffset0+vdwjidx0B,
533 vdwparam+vdwioffset0+vdwjidx0C,
534 vdwparam+vdwioffset0+vdwjidx0D,
535 &c6_00,&c12_00);
537 /* REACTION-FIELD ELECTROSTATICS */
538 felec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
540 /* LENNARD-JONES DISPERSION/REPULSION */
542 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
543 fvdw = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
545 fscal = _mm_add_ps(felec,fvdw);
547 /* Calculate temporary vectorial force */
548 tx = _mm_mul_ps(fscal,dx00);
549 ty = _mm_mul_ps(fscal,dy00);
550 tz = _mm_mul_ps(fscal,dz00);
552 /* Update vectorial force */
553 fix0 = _mm_add_ps(fix0,tx);
554 fiy0 = _mm_add_ps(fiy0,ty);
555 fiz0 = _mm_add_ps(fiz0,tz);
557 fjptrA = f+j_coord_offsetA;
558 fjptrB = f+j_coord_offsetB;
559 fjptrC = f+j_coord_offsetC;
560 fjptrD = f+j_coord_offsetD;
561 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
563 /* Inner loop uses 34 flops */
566 if(jidx<j_index_end)
569 /* Get j neighbor index, and coordinate index */
570 jnrlistA = jjnr[jidx];
571 jnrlistB = jjnr[jidx+1];
572 jnrlistC = jjnr[jidx+2];
573 jnrlistD = jjnr[jidx+3];
574 /* Sign of each element will be negative for non-real atoms.
575 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
576 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
578 dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
579 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
580 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
581 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
582 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
583 j_coord_offsetA = DIM*jnrA;
584 j_coord_offsetB = DIM*jnrB;
585 j_coord_offsetC = DIM*jnrC;
586 j_coord_offsetD = DIM*jnrD;
588 /* load j atom coordinates */
589 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
590 x+j_coord_offsetC,x+j_coord_offsetD,
591 &jx0,&jy0,&jz0);
593 /* Calculate displacement vector */
594 dx00 = _mm_sub_ps(ix0,jx0);
595 dy00 = _mm_sub_ps(iy0,jy0);
596 dz00 = _mm_sub_ps(iz0,jz0);
598 /* Calculate squared distance and things based on it */
599 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
601 rinv00 = gmx_mm_invsqrt_ps(rsq00);
603 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
605 /* Load parameters for j particles */
606 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
607 charge+jnrC+0,charge+jnrD+0);
608 vdwjidx0A = 2*vdwtype[jnrA+0];
609 vdwjidx0B = 2*vdwtype[jnrB+0];
610 vdwjidx0C = 2*vdwtype[jnrC+0];
611 vdwjidx0D = 2*vdwtype[jnrD+0];
613 /**************************
614 * CALCULATE INTERACTIONS *
615 **************************/
617 /* Compute parameters for interactions between i and j atoms */
618 qq00 = _mm_mul_ps(iq0,jq0);
619 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
620 vdwparam+vdwioffset0+vdwjidx0B,
621 vdwparam+vdwioffset0+vdwjidx0C,
622 vdwparam+vdwioffset0+vdwjidx0D,
623 &c6_00,&c12_00);
625 /* REACTION-FIELD ELECTROSTATICS */
626 felec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
628 /* LENNARD-JONES DISPERSION/REPULSION */
630 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
631 fvdw = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
633 fscal = _mm_add_ps(felec,fvdw);
635 fscal = _mm_andnot_ps(dummy_mask,fscal);
637 /* Calculate temporary vectorial force */
638 tx = _mm_mul_ps(fscal,dx00);
639 ty = _mm_mul_ps(fscal,dy00);
640 tz = _mm_mul_ps(fscal,dz00);
642 /* Update vectorial force */
643 fix0 = _mm_add_ps(fix0,tx);
644 fiy0 = _mm_add_ps(fiy0,ty);
645 fiz0 = _mm_add_ps(fiz0,tz);
647 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
648 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
649 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
650 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
651 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
653 /* Inner loop uses 34 flops */
656 /* End of innermost loop */
658 gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
659 f+i_coord_offset,fshift+i_shift_offset);
661 /* Increment number of inner iterations */
662 inneriter += j_index_end - j_index_start;
664 /* Outer loop uses 7 flops */
667 /* Increment number of outer iterations */
668 outeriter += nri;
670 /* Update outer/inner flops */
672 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*34);