Removed simple.h from nb_kernel_sse2_XX
[gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecRFCut_VdwNone_GeomP1P1_sse2_single.c
blob7a55d9e1be75a0f3e1d2d3e6252edde0aa72619e
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 2012,2013,2014,2015, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
36 * Note: this file was generated by the GROMACS sse2_single kernel generator.
38 #include "gmxpre.h"
40 #include "config.h"
42 #include <math.h>
44 #include "../nb_kernel.h"
45 #include "gromacs/math/vec.h"
46 #include "gromacs/legacyheaders/nrnb.h"
48 #include "gromacs/simd/math_x86_sse2_single.h"
49 #include "kernelutil_x86_sse2_single.h"
52 * Gromacs nonbonded kernel: nb_kernel_ElecRFCut_VdwNone_GeomP1P1_VF_sse2_single
53 * Electrostatics interaction: ReactionField
54 * VdW interaction: None
55 * Geometry: Particle-Particle
56 * Calculate force/pot: PotentialAndForce
58 void
59 nb_kernel_ElecRFCut_VdwNone_GeomP1P1_VF_sse2_single
60 (t_nblist * gmx_restrict nlist,
61 rvec * gmx_restrict xx,
62 rvec * gmx_restrict ff,
63 t_forcerec * gmx_restrict fr,
64 t_mdatoms * gmx_restrict mdatoms,
65 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
66 t_nrnb * gmx_restrict nrnb)
68 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
69 * just 0 for non-waters.
70 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
71 * jnr indices corresponding to data put in the four positions in the SIMD register.
73 int i_shift_offset,i_coord_offset,outeriter,inneriter;
74 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
75 int jnrA,jnrB,jnrC,jnrD;
76 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
77 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
79 real rcutoff_scalar;
80 real *shiftvec,*fshift,*x,*f;
81 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
82 real scratch[4*DIM];
83 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
84 int vdwioffset0;
85 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
86 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
87 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
88 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
89 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
90 real *charge;
91 __m128 dummy_mask,cutoff_mask;
92 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
93 __m128 one = _mm_set1_ps(1.0);
94 __m128 two = _mm_set1_ps(2.0);
95 x = xx[0];
96 f = ff[0];
98 nri = nlist->nri;
99 iinr = nlist->iinr;
100 jindex = nlist->jindex;
101 jjnr = nlist->jjnr;
102 shiftidx = nlist->shift;
103 gid = nlist->gid;
104 shiftvec = fr->shift_vec[0];
105 fshift = fr->fshift[0];
106 facel = _mm_set1_ps(fr->epsfac);
107 charge = mdatoms->chargeA;
108 krf = _mm_set1_ps(fr->ic->k_rf);
109 krf2 = _mm_set1_ps(fr->ic->k_rf*2.0);
110 crf = _mm_set1_ps(fr->ic->c_rf);
112 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
113 rcutoff_scalar = fr->rcoulomb;
114 rcutoff = _mm_set1_ps(rcutoff_scalar);
115 rcutoff2 = _mm_mul_ps(rcutoff,rcutoff);
117 /* Avoid stupid compiler warnings */
118 jnrA = jnrB = jnrC = jnrD = 0;
119 j_coord_offsetA = 0;
120 j_coord_offsetB = 0;
121 j_coord_offsetC = 0;
122 j_coord_offsetD = 0;
124 outeriter = 0;
125 inneriter = 0;
127 for(iidx=0;iidx<4*DIM;iidx++)
129 scratch[iidx] = 0.0;
132 /* Start outer loop over neighborlists */
133 for(iidx=0; iidx<nri; iidx++)
135 /* Load shift vector for this list */
136 i_shift_offset = DIM*shiftidx[iidx];
138 /* Load limits for loop over neighbors */
139 j_index_start = jindex[iidx];
140 j_index_end = jindex[iidx+1];
142 /* Get outer coordinate index */
143 inr = iinr[iidx];
144 i_coord_offset = DIM*inr;
146 /* Load i particle coords and add shift vector */
147 gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
149 fix0 = _mm_setzero_ps();
150 fiy0 = _mm_setzero_ps();
151 fiz0 = _mm_setzero_ps();
153 /* Load parameters for i particles */
154 iq0 = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
156 /* Reset potential sums */
157 velecsum = _mm_setzero_ps();
159 /* Start inner kernel loop */
160 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
163 /* Get j neighbor index, and coordinate index */
164 jnrA = jjnr[jidx];
165 jnrB = jjnr[jidx+1];
166 jnrC = jjnr[jidx+2];
167 jnrD = jjnr[jidx+3];
168 j_coord_offsetA = DIM*jnrA;
169 j_coord_offsetB = DIM*jnrB;
170 j_coord_offsetC = DIM*jnrC;
171 j_coord_offsetD = DIM*jnrD;
173 /* load j atom coordinates */
174 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
175 x+j_coord_offsetC,x+j_coord_offsetD,
176 &jx0,&jy0,&jz0);
178 /* Calculate displacement vector */
179 dx00 = _mm_sub_ps(ix0,jx0);
180 dy00 = _mm_sub_ps(iy0,jy0);
181 dz00 = _mm_sub_ps(iz0,jz0);
183 /* Calculate squared distance and things based on it */
184 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
186 rinv00 = gmx_mm_invsqrt_ps(rsq00);
188 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
190 /* Load parameters for j particles */
191 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
192 charge+jnrC+0,charge+jnrD+0);
194 /**************************
195 * CALCULATE INTERACTIONS *
196 **************************/
198 if (gmx_mm_any_lt(rsq00,rcutoff2))
201 /* Compute parameters for interactions between i and j atoms */
202 qq00 = _mm_mul_ps(iq0,jq0);
204 /* REACTION-FIELD ELECTROSTATICS */
205 velec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
206 felec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
208 cutoff_mask = _mm_cmplt_ps(rsq00,rcutoff2);
210 /* Update potential sum for this i atom from the interaction with this j atom. */
211 velec = _mm_and_ps(velec,cutoff_mask);
212 velecsum = _mm_add_ps(velecsum,velec);
214 fscal = felec;
216 fscal = _mm_and_ps(fscal,cutoff_mask);
218 /* Calculate temporary vectorial force */
219 tx = _mm_mul_ps(fscal,dx00);
220 ty = _mm_mul_ps(fscal,dy00);
221 tz = _mm_mul_ps(fscal,dz00);
223 /* Update vectorial force */
224 fix0 = _mm_add_ps(fix0,tx);
225 fiy0 = _mm_add_ps(fiy0,ty);
226 fiz0 = _mm_add_ps(fiz0,tz);
228 fjptrA = f+j_coord_offsetA;
229 fjptrB = f+j_coord_offsetB;
230 fjptrC = f+j_coord_offsetC;
231 fjptrD = f+j_coord_offsetD;
232 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
236 /* Inner loop uses 36 flops */
239 if(jidx<j_index_end)
242 /* Get j neighbor index, and coordinate index */
243 jnrlistA = jjnr[jidx];
244 jnrlistB = jjnr[jidx+1];
245 jnrlistC = jjnr[jidx+2];
246 jnrlistD = jjnr[jidx+3];
247 /* Sign of each element will be negative for non-real atoms.
248 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
249 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
251 dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
252 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
253 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
254 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
255 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
256 j_coord_offsetA = DIM*jnrA;
257 j_coord_offsetB = DIM*jnrB;
258 j_coord_offsetC = DIM*jnrC;
259 j_coord_offsetD = DIM*jnrD;
261 /* load j atom coordinates */
262 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
263 x+j_coord_offsetC,x+j_coord_offsetD,
264 &jx0,&jy0,&jz0);
266 /* Calculate displacement vector */
267 dx00 = _mm_sub_ps(ix0,jx0);
268 dy00 = _mm_sub_ps(iy0,jy0);
269 dz00 = _mm_sub_ps(iz0,jz0);
271 /* Calculate squared distance and things based on it */
272 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
274 rinv00 = gmx_mm_invsqrt_ps(rsq00);
276 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
278 /* Load parameters for j particles */
279 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
280 charge+jnrC+0,charge+jnrD+0);
282 /**************************
283 * CALCULATE INTERACTIONS *
284 **************************/
286 if (gmx_mm_any_lt(rsq00,rcutoff2))
289 /* Compute parameters for interactions between i and j atoms */
290 qq00 = _mm_mul_ps(iq0,jq0);
292 /* REACTION-FIELD ELECTROSTATICS */
293 velec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
294 felec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
296 cutoff_mask = _mm_cmplt_ps(rsq00,rcutoff2);
298 /* Update potential sum for this i atom from the interaction with this j atom. */
299 velec = _mm_and_ps(velec,cutoff_mask);
300 velec = _mm_andnot_ps(dummy_mask,velec);
301 velecsum = _mm_add_ps(velecsum,velec);
303 fscal = felec;
305 fscal = _mm_and_ps(fscal,cutoff_mask);
307 fscal = _mm_andnot_ps(dummy_mask,fscal);
309 /* Calculate temporary vectorial force */
310 tx = _mm_mul_ps(fscal,dx00);
311 ty = _mm_mul_ps(fscal,dy00);
312 tz = _mm_mul_ps(fscal,dz00);
314 /* Update vectorial force */
315 fix0 = _mm_add_ps(fix0,tx);
316 fiy0 = _mm_add_ps(fiy0,ty);
317 fiz0 = _mm_add_ps(fiz0,tz);
319 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
320 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
321 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
322 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
323 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
327 /* Inner loop uses 36 flops */
330 /* End of innermost loop */
332 gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
333 f+i_coord_offset,fshift+i_shift_offset);
335 ggid = gid[iidx];
336 /* Update potential energies */
337 gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
339 /* Increment number of inner iterations */
340 inneriter += j_index_end - j_index_start;
342 /* Outer loop uses 8 flops */
345 /* Increment number of outer iterations */
346 outeriter += nri;
348 /* Update outer/inner flops */
350 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*36);
353 * Gromacs nonbonded kernel: nb_kernel_ElecRFCut_VdwNone_GeomP1P1_F_sse2_single
354 * Electrostatics interaction: ReactionField
355 * VdW interaction: None
356 * Geometry: Particle-Particle
357 * Calculate force/pot: Force
359 void
360 nb_kernel_ElecRFCut_VdwNone_GeomP1P1_F_sse2_single
361 (t_nblist * gmx_restrict nlist,
362 rvec * gmx_restrict xx,
363 rvec * gmx_restrict ff,
364 t_forcerec * gmx_restrict fr,
365 t_mdatoms * gmx_restrict mdatoms,
366 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
367 t_nrnb * gmx_restrict nrnb)
369 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
370 * just 0 for non-waters.
371 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
372 * jnr indices corresponding to data put in the four positions in the SIMD register.
374 int i_shift_offset,i_coord_offset,outeriter,inneriter;
375 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
376 int jnrA,jnrB,jnrC,jnrD;
377 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
378 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
379 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
380 real rcutoff_scalar;
381 real *shiftvec,*fshift,*x,*f;
382 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
383 real scratch[4*DIM];
384 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
385 int vdwioffset0;
386 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
387 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
388 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
389 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
390 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
391 real *charge;
392 __m128 dummy_mask,cutoff_mask;
393 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
394 __m128 one = _mm_set1_ps(1.0);
395 __m128 two = _mm_set1_ps(2.0);
396 x = xx[0];
397 f = ff[0];
399 nri = nlist->nri;
400 iinr = nlist->iinr;
401 jindex = nlist->jindex;
402 jjnr = nlist->jjnr;
403 shiftidx = nlist->shift;
404 gid = nlist->gid;
405 shiftvec = fr->shift_vec[0];
406 fshift = fr->fshift[0];
407 facel = _mm_set1_ps(fr->epsfac);
408 charge = mdatoms->chargeA;
409 krf = _mm_set1_ps(fr->ic->k_rf);
410 krf2 = _mm_set1_ps(fr->ic->k_rf*2.0);
411 crf = _mm_set1_ps(fr->ic->c_rf);
413 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
414 rcutoff_scalar = fr->rcoulomb;
415 rcutoff = _mm_set1_ps(rcutoff_scalar);
416 rcutoff2 = _mm_mul_ps(rcutoff,rcutoff);
418 /* Avoid stupid compiler warnings */
419 jnrA = jnrB = jnrC = jnrD = 0;
420 j_coord_offsetA = 0;
421 j_coord_offsetB = 0;
422 j_coord_offsetC = 0;
423 j_coord_offsetD = 0;
425 outeriter = 0;
426 inneriter = 0;
428 for(iidx=0;iidx<4*DIM;iidx++)
430 scratch[iidx] = 0.0;
433 /* Start outer loop over neighborlists */
434 for(iidx=0; iidx<nri; iidx++)
436 /* Load shift vector for this list */
437 i_shift_offset = DIM*shiftidx[iidx];
439 /* Load limits for loop over neighbors */
440 j_index_start = jindex[iidx];
441 j_index_end = jindex[iidx+1];
443 /* Get outer coordinate index */
444 inr = iinr[iidx];
445 i_coord_offset = DIM*inr;
447 /* Load i particle coords and add shift vector */
448 gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
450 fix0 = _mm_setzero_ps();
451 fiy0 = _mm_setzero_ps();
452 fiz0 = _mm_setzero_ps();
454 /* Load parameters for i particles */
455 iq0 = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
457 /* Start inner kernel loop */
458 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
461 /* Get j neighbor index, and coordinate index */
462 jnrA = jjnr[jidx];
463 jnrB = jjnr[jidx+1];
464 jnrC = jjnr[jidx+2];
465 jnrD = jjnr[jidx+3];
466 j_coord_offsetA = DIM*jnrA;
467 j_coord_offsetB = DIM*jnrB;
468 j_coord_offsetC = DIM*jnrC;
469 j_coord_offsetD = DIM*jnrD;
471 /* load j atom coordinates */
472 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
473 x+j_coord_offsetC,x+j_coord_offsetD,
474 &jx0,&jy0,&jz0);
476 /* Calculate displacement vector */
477 dx00 = _mm_sub_ps(ix0,jx0);
478 dy00 = _mm_sub_ps(iy0,jy0);
479 dz00 = _mm_sub_ps(iz0,jz0);
481 /* Calculate squared distance and things based on it */
482 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
484 rinv00 = gmx_mm_invsqrt_ps(rsq00);
486 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
488 /* Load parameters for j particles */
489 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
490 charge+jnrC+0,charge+jnrD+0);
492 /**************************
493 * CALCULATE INTERACTIONS *
494 **************************/
496 if (gmx_mm_any_lt(rsq00,rcutoff2))
499 /* Compute parameters for interactions between i and j atoms */
500 qq00 = _mm_mul_ps(iq0,jq0);
502 /* REACTION-FIELD ELECTROSTATICS */
503 felec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
505 cutoff_mask = _mm_cmplt_ps(rsq00,rcutoff2);
507 fscal = felec;
509 fscal = _mm_and_ps(fscal,cutoff_mask);
511 /* Calculate temporary vectorial force */
512 tx = _mm_mul_ps(fscal,dx00);
513 ty = _mm_mul_ps(fscal,dy00);
514 tz = _mm_mul_ps(fscal,dz00);
516 /* Update vectorial force */
517 fix0 = _mm_add_ps(fix0,tx);
518 fiy0 = _mm_add_ps(fiy0,ty);
519 fiz0 = _mm_add_ps(fiz0,tz);
521 fjptrA = f+j_coord_offsetA;
522 fjptrB = f+j_coord_offsetB;
523 fjptrC = f+j_coord_offsetC;
524 fjptrD = f+j_coord_offsetD;
525 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
529 /* Inner loop uses 30 flops */
532 if(jidx<j_index_end)
535 /* Get j neighbor index, and coordinate index */
536 jnrlistA = jjnr[jidx];
537 jnrlistB = jjnr[jidx+1];
538 jnrlistC = jjnr[jidx+2];
539 jnrlistD = jjnr[jidx+3];
540 /* Sign of each element will be negative for non-real atoms.
541 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
542 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
544 dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
545 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
546 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
547 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
548 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
549 j_coord_offsetA = DIM*jnrA;
550 j_coord_offsetB = DIM*jnrB;
551 j_coord_offsetC = DIM*jnrC;
552 j_coord_offsetD = DIM*jnrD;
554 /* load j atom coordinates */
555 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
556 x+j_coord_offsetC,x+j_coord_offsetD,
557 &jx0,&jy0,&jz0);
559 /* Calculate displacement vector */
560 dx00 = _mm_sub_ps(ix0,jx0);
561 dy00 = _mm_sub_ps(iy0,jy0);
562 dz00 = _mm_sub_ps(iz0,jz0);
564 /* Calculate squared distance and things based on it */
565 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
567 rinv00 = gmx_mm_invsqrt_ps(rsq00);
569 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
571 /* Load parameters for j particles */
572 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
573 charge+jnrC+0,charge+jnrD+0);
575 /**************************
576 * CALCULATE INTERACTIONS *
577 **************************/
579 if (gmx_mm_any_lt(rsq00,rcutoff2))
582 /* Compute parameters for interactions between i and j atoms */
583 qq00 = _mm_mul_ps(iq0,jq0);
585 /* REACTION-FIELD ELECTROSTATICS */
586 felec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
588 cutoff_mask = _mm_cmplt_ps(rsq00,rcutoff2);
590 fscal = felec;
592 fscal = _mm_and_ps(fscal,cutoff_mask);
594 fscal = _mm_andnot_ps(dummy_mask,fscal);
596 /* Calculate temporary vectorial force */
597 tx = _mm_mul_ps(fscal,dx00);
598 ty = _mm_mul_ps(fscal,dy00);
599 tz = _mm_mul_ps(fscal,dz00);
601 /* Update vectorial force */
602 fix0 = _mm_add_ps(fix0,tx);
603 fiy0 = _mm_add_ps(fiy0,ty);
604 fiz0 = _mm_add_ps(fiz0,tz);
606 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
607 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
608 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
609 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
610 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
614 /* Inner loop uses 30 flops */
617 /* End of innermost loop */
619 gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
620 f+i_coord_offset,fshift+i_shift_offset);
622 /* Increment number of inner iterations */
623 inneriter += j_index_end - j_index_start;
625 /* Outer loop uses 7 flops */
628 /* Increment number of outer iterations */
629 outeriter += nri;
631 /* Update outer/inner flops */
633 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*30);