Removed simple.h from nb_kernel_sse2_XX
[gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_sse2_double.c
blob9341162fec9dcd986009b776b5fdaddb95ddc897
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 2012,2013,2014,2015, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
36 * Note: this file was generated by the GROMACS sse2_double kernel generator.
38 #include "gmxpre.h"
40 #include "config.h"
42 #include <math.h>
44 #include "../nb_kernel.h"
45 #include "gromacs/math/vec.h"
46 #include "gromacs/legacyheaders/nrnb.h"
48 #include "gromacs/simd/math_x86_sse2_double.h"
49 #include "kernelutil_x86_sse2_double.h"
52 * Gromacs nonbonded kernel: nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_VF_sse2_double
53 * Electrostatics interaction: ReactionField
54 * VdW interaction: LennardJones
55 * Geometry: Water3-Particle
56 * Calculate force/pot: PotentialAndForce
58 void
59 nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_VF_sse2_double
60 (t_nblist * gmx_restrict nlist,
61 rvec * gmx_restrict xx,
62 rvec * gmx_restrict ff,
63 t_forcerec * gmx_restrict fr,
64 t_mdatoms * gmx_restrict mdatoms,
65 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
66 t_nrnb * gmx_restrict nrnb)
68 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
69 * just 0 for non-waters.
70 * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
71 * jnr indices corresponding to data put in the four positions in the SIMD register.
73 int i_shift_offset,i_coord_offset,outeriter,inneriter;
74 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
75 int jnrA,jnrB;
76 int j_coord_offsetA,j_coord_offsetB;
77 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
78 real rcutoff_scalar;
79 real *shiftvec,*fshift,*x,*f;
80 __m128d tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
81 int vdwioffset0;
82 __m128d ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
83 int vdwioffset1;
84 __m128d ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
85 int vdwioffset2;
86 __m128d ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
87 int vdwjidx0A,vdwjidx0B;
88 __m128d jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89 __m128d dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90 __m128d dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
91 __m128d dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
92 __m128d velec,felec,velecsum,facel,crf,krf,krf2;
93 real *charge;
94 int nvdwtype;
95 __m128d rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
96 int *vdwtype;
97 real *vdwparam;
98 __m128d one_sixth = _mm_set1_pd(1.0/6.0);
99 __m128d one_twelfth = _mm_set1_pd(1.0/12.0);
100 __m128d rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
101 real rswitch_scalar,d_scalar;
102 __m128d dummy_mask,cutoff_mask;
103 __m128d signbit = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
104 __m128d one = _mm_set1_pd(1.0);
105 __m128d two = _mm_set1_pd(2.0);
106 x = xx[0];
107 f = ff[0];
109 nri = nlist->nri;
110 iinr = nlist->iinr;
111 jindex = nlist->jindex;
112 jjnr = nlist->jjnr;
113 shiftidx = nlist->shift;
114 gid = nlist->gid;
115 shiftvec = fr->shift_vec[0];
116 fshift = fr->fshift[0];
117 facel = _mm_set1_pd(fr->epsfac);
118 charge = mdatoms->chargeA;
119 krf = _mm_set1_pd(fr->ic->k_rf);
120 krf2 = _mm_set1_pd(fr->ic->k_rf*2.0);
121 crf = _mm_set1_pd(fr->ic->c_rf);
122 nvdwtype = fr->ntype;
123 vdwparam = fr->nbfp;
124 vdwtype = mdatoms->typeA;
126 /* Setup water-specific parameters */
127 inr = nlist->iinr[0];
128 iq0 = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
129 iq1 = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
130 iq2 = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
131 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
133 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
134 rcutoff_scalar = fr->rcoulomb;
135 rcutoff = _mm_set1_pd(rcutoff_scalar);
136 rcutoff2 = _mm_mul_pd(rcutoff,rcutoff);
138 rswitch_scalar = fr->rvdw_switch;
139 rswitch = _mm_set1_pd(rswitch_scalar);
140 /* Setup switch parameters */
141 d_scalar = rcutoff_scalar-rswitch_scalar;
142 d = _mm_set1_pd(d_scalar);
143 swV3 = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
144 swV4 = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
145 swV5 = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
146 swF2 = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
147 swF3 = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
148 swF4 = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
150 /* Avoid stupid compiler warnings */
151 jnrA = jnrB = 0;
152 j_coord_offsetA = 0;
153 j_coord_offsetB = 0;
155 outeriter = 0;
156 inneriter = 0;
158 /* Start outer loop over neighborlists */
159 for(iidx=0; iidx<nri; iidx++)
161 /* Load shift vector for this list */
162 i_shift_offset = DIM*shiftidx[iidx];
164 /* Load limits for loop over neighbors */
165 j_index_start = jindex[iidx];
166 j_index_end = jindex[iidx+1];
168 /* Get outer coordinate index */
169 inr = iinr[iidx];
170 i_coord_offset = DIM*inr;
172 /* Load i particle coords and add shift vector */
173 gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
174 &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
176 fix0 = _mm_setzero_pd();
177 fiy0 = _mm_setzero_pd();
178 fiz0 = _mm_setzero_pd();
179 fix1 = _mm_setzero_pd();
180 fiy1 = _mm_setzero_pd();
181 fiz1 = _mm_setzero_pd();
182 fix2 = _mm_setzero_pd();
183 fiy2 = _mm_setzero_pd();
184 fiz2 = _mm_setzero_pd();
186 /* Reset potential sums */
187 velecsum = _mm_setzero_pd();
188 vvdwsum = _mm_setzero_pd();
190 /* Start inner kernel loop */
191 for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
194 /* Get j neighbor index, and coordinate index */
195 jnrA = jjnr[jidx];
196 jnrB = jjnr[jidx+1];
197 j_coord_offsetA = DIM*jnrA;
198 j_coord_offsetB = DIM*jnrB;
200 /* load j atom coordinates */
201 gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
202 &jx0,&jy0,&jz0);
204 /* Calculate displacement vector */
205 dx00 = _mm_sub_pd(ix0,jx0);
206 dy00 = _mm_sub_pd(iy0,jy0);
207 dz00 = _mm_sub_pd(iz0,jz0);
208 dx10 = _mm_sub_pd(ix1,jx0);
209 dy10 = _mm_sub_pd(iy1,jy0);
210 dz10 = _mm_sub_pd(iz1,jz0);
211 dx20 = _mm_sub_pd(ix2,jx0);
212 dy20 = _mm_sub_pd(iy2,jy0);
213 dz20 = _mm_sub_pd(iz2,jz0);
215 /* Calculate squared distance and things based on it */
216 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
217 rsq10 = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
218 rsq20 = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
220 rinv00 = gmx_mm_invsqrt_pd(rsq00);
221 rinv10 = gmx_mm_invsqrt_pd(rsq10);
222 rinv20 = gmx_mm_invsqrt_pd(rsq20);
224 rinvsq00 = _mm_mul_pd(rinv00,rinv00);
225 rinvsq10 = _mm_mul_pd(rinv10,rinv10);
226 rinvsq20 = _mm_mul_pd(rinv20,rinv20);
228 /* Load parameters for j particles */
229 jq0 = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
230 vdwjidx0A = 2*vdwtype[jnrA+0];
231 vdwjidx0B = 2*vdwtype[jnrB+0];
233 fjx0 = _mm_setzero_pd();
234 fjy0 = _mm_setzero_pd();
235 fjz0 = _mm_setzero_pd();
237 /**************************
238 * CALCULATE INTERACTIONS *
239 **************************/
241 if (gmx_mm_any_lt(rsq00,rcutoff2))
244 r00 = _mm_mul_pd(rsq00,rinv00);
246 /* Compute parameters for interactions between i and j atoms */
247 qq00 = _mm_mul_pd(iq0,jq0);
248 gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
249 vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
251 /* REACTION-FIELD ELECTROSTATICS */
252 velec = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
253 felec = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
255 /* LENNARD-JONES DISPERSION/REPULSION */
257 rinvsix = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
258 vvdw6 = _mm_mul_pd(c6_00,rinvsix);
259 vvdw12 = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
260 vvdw = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
261 fvdw = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
263 d = _mm_sub_pd(r00,rswitch);
264 d = _mm_max_pd(d,_mm_setzero_pd());
265 d2 = _mm_mul_pd(d,d);
266 sw = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
268 dsw = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
270 /* Evaluate switch function */
271 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
272 fvdw = _mm_sub_pd( _mm_mul_pd(fvdw,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
273 vvdw = _mm_mul_pd(vvdw,sw);
274 cutoff_mask = _mm_cmplt_pd(rsq00,rcutoff2);
276 /* Update potential sum for this i atom from the interaction with this j atom. */
277 velec = _mm_and_pd(velec,cutoff_mask);
278 velecsum = _mm_add_pd(velecsum,velec);
279 vvdw = _mm_and_pd(vvdw,cutoff_mask);
280 vvdwsum = _mm_add_pd(vvdwsum,vvdw);
282 fscal = _mm_add_pd(felec,fvdw);
284 fscal = _mm_and_pd(fscal,cutoff_mask);
286 /* Calculate temporary vectorial force */
287 tx = _mm_mul_pd(fscal,dx00);
288 ty = _mm_mul_pd(fscal,dy00);
289 tz = _mm_mul_pd(fscal,dz00);
291 /* Update vectorial force */
292 fix0 = _mm_add_pd(fix0,tx);
293 fiy0 = _mm_add_pd(fiy0,ty);
294 fiz0 = _mm_add_pd(fiz0,tz);
296 fjx0 = _mm_add_pd(fjx0,tx);
297 fjy0 = _mm_add_pd(fjy0,ty);
298 fjz0 = _mm_add_pd(fjz0,tz);
302 /**************************
303 * CALCULATE INTERACTIONS *
304 **************************/
306 if (gmx_mm_any_lt(rsq10,rcutoff2))
309 /* Compute parameters for interactions between i and j atoms */
310 qq10 = _mm_mul_pd(iq1,jq0);
312 /* REACTION-FIELD ELECTROSTATICS */
313 velec = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
314 felec = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
316 cutoff_mask = _mm_cmplt_pd(rsq10,rcutoff2);
318 /* Update potential sum for this i atom from the interaction with this j atom. */
319 velec = _mm_and_pd(velec,cutoff_mask);
320 velecsum = _mm_add_pd(velecsum,velec);
322 fscal = felec;
324 fscal = _mm_and_pd(fscal,cutoff_mask);
326 /* Calculate temporary vectorial force */
327 tx = _mm_mul_pd(fscal,dx10);
328 ty = _mm_mul_pd(fscal,dy10);
329 tz = _mm_mul_pd(fscal,dz10);
331 /* Update vectorial force */
332 fix1 = _mm_add_pd(fix1,tx);
333 fiy1 = _mm_add_pd(fiy1,ty);
334 fiz1 = _mm_add_pd(fiz1,tz);
336 fjx0 = _mm_add_pd(fjx0,tx);
337 fjy0 = _mm_add_pd(fjy0,ty);
338 fjz0 = _mm_add_pd(fjz0,tz);
342 /**************************
343 * CALCULATE INTERACTIONS *
344 **************************/
346 if (gmx_mm_any_lt(rsq20,rcutoff2))
349 /* Compute parameters for interactions between i and j atoms */
350 qq20 = _mm_mul_pd(iq2,jq0);
352 /* REACTION-FIELD ELECTROSTATICS */
353 velec = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
354 felec = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
356 cutoff_mask = _mm_cmplt_pd(rsq20,rcutoff2);
358 /* Update potential sum for this i atom from the interaction with this j atom. */
359 velec = _mm_and_pd(velec,cutoff_mask);
360 velecsum = _mm_add_pd(velecsum,velec);
362 fscal = felec;
364 fscal = _mm_and_pd(fscal,cutoff_mask);
366 /* Calculate temporary vectorial force */
367 tx = _mm_mul_pd(fscal,dx20);
368 ty = _mm_mul_pd(fscal,dy20);
369 tz = _mm_mul_pd(fscal,dz20);
371 /* Update vectorial force */
372 fix2 = _mm_add_pd(fix2,tx);
373 fiy2 = _mm_add_pd(fiy2,ty);
374 fiz2 = _mm_add_pd(fiz2,tz);
376 fjx0 = _mm_add_pd(fjx0,tx);
377 fjy0 = _mm_add_pd(fjy0,ty);
378 fjz0 = _mm_add_pd(fjz0,tz);
382 gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
384 /* Inner loop uses 145 flops */
387 if(jidx<j_index_end)
390 jnrA = jjnr[jidx];
391 j_coord_offsetA = DIM*jnrA;
393 /* load j atom coordinates */
394 gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
395 &jx0,&jy0,&jz0);
397 /* Calculate displacement vector */
398 dx00 = _mm_sub_pd(ix0,jx0);
399 dy00 = _mm_sub_pd(iy0,jy0);
400 dz00 = _mm_sub_pd(iz0,jz0);
401 dx10 = _mm_sub_pd(ix1,jx0);
402 dy10 = _mm_sub_pd(iy1,jy0);
403 dz10 = _mm_sub_pd(iz1,jz0);
404 dx20 = _mm_sub_pd(ix2,jx0);
405 dy20 = _mm_sub_pd(iy2,jy0);
406 dz20 = _mm_sub_pd(iz2,jz0);
408 /* Calculate squared distance and things based on it */
409 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
410 rsq10 = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
411 rsq20 = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
413 rinv00 = gmx_mm_invsqrt_pd(rsq00);
414 rinv10 = gmx_mm_invsqrt_pd(rsq10);
415 rinv20 = gmx_mm_invsqrt_pd(rsq20);
417 rinvsq00 = _mm_mul_pd(rinv00,rinv00);
418 rinvsq10 = _mm_mul_pd(rinv10,rinv10);
419 rinvsq20 = _mm_mul_pd(rinv20,rinv20);
421 /* Load parameters for j particles */
422 jq0 = _mm_load_sd(charge+jnrA+0);
423 vdwjidx0A = 2*vdwtype[jnrA+0];
425 fjx0 = _mm_setzero_pd();
426 fjy0 = _mm_setzero_pd();
427 fjz0 = _mm_setzero_pd();
429 /**************************
430 * CALCULATE INTERACTIONS *
431 **************************/
433 if (gmx_mm_any_lt(rsq00,rcutoff2))
436 r00 = _mm_mul_pd(rsq00,rinv00);
438 /* Compute parameters for interactions between i and j atoms */
439 qq00 = _mm_mul_pd(iq0,jq0);
440 gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
442 /* REACTION-FIELD ELECTROSTATICS */
443 velec = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
444 felec = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
446 /* LENNARD-JONES DISPERSION/REPULSION */
448 rinvsix = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
449 vvdw6 = _mm_mul_pd(c6_00,rinvsix);
450 vvdw12 = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
451 vvdw = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
452 fvdw = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
454 d = _mm_sub_pd(r00,rswitch);
455 d = _mm_max_pd(d,_mm_setzero_pd());
456 d2 = _mm_mul_pd(d,d);
457 sw = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
459 dsw = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
461 /* Evaluate switch function */
462 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
463 fvdw = _mm_sub_pd( _mm_mul_pd(fvdw,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
464 vvdw = _mm_mul_pd(vvdw,sw);
465 cutoff_mask = _mm_cmplt_pd(rsq00,rcutoff2);
467 /* Update potential sum for this i atom from the interaction with this j atom. */
468 velec = _mm_and_pd(velec,cutoff_mask);
469 velec = _mm_unpacklo_pd(velec,_mm_setzero_pd());
470 velecsum = _mm_add_pd(velecsum,velec);
471 vvdw = _mm_and_pd(vvdw,cutoff_mask);
472 vvdw = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
473 vvdwsum = _mm_add_pd(vvdwsum,vvdw);
475 fscal = _mm_add_pd(felec,fvdw);
477 fscal = _mm_and_pd(fscal,cutoff_mask);
479 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
481 /* Calculate temporary vectorial force */
482 tx = _mm_mul_pd(fscal,dx00);
483 ty = _mm_mul_pd(fscal,dy00);
484 tz = _mm_mul_pd(fscal,dz00);
486 /* Update vectorial force */
487 fix0 = _mm_add_pd(fix0,tx);
488 fiy0 = _mm_add_pd(fiy0,ty);
489 fiz0 = _mm_add_pd(fiz0,tz);
491 fjx0 = _mm_add_pd(fjx0,tx);
492 fjy0 = _mm_add_pd(fjy0,ty);
493 fjz0 = _mm_add_pd(fjz0,tz);
497 /**************************
498 * CALCULATE INTERACTIONS *
499 **************************/
501 if (gmx_mm_any_lt(rsq10,rcutoff2))
504 /* Compute parameters for interactions between i and j atoms */
505 qq10 = _mm_mul_pd(iq1,jq0);
507 /* REACTION-FIELD ELECTROSTATICS */
508 velec = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
509 felec = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
511 cutoff_mask = _mm_cmplt_pd(rsq10,rcutoff2);
513 /* Update potential sum for this i atom from the interaction with this j atom. */
514 velec = _mm_and_pd(velec,cutoff_mask);
515 velec = _mm_unpacklo_pd(velec,_mm_setzero_pd());
516 velecsum = _mm_add_pd(velecsum,velec);
518 fscal = felec;
520 fscal = _mm_and_pd(fscal,cutoff_mask);
522 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
524 /* Calculate temporary vectorial force */
525 tx = _mm_mul_pd(fscal,dx10);
526 ty = _mm_mul_pd(fscal,dy10);
527 tz = _mm_mul_pd(fscal,dz10);
529 /* Update vectorial force */
530 fix1 = _mm_add_pd(fix1,tx);
531 fiy1 = _mm_add_pd(fiy1,ty);
532 fiz1 = _mm_add_pd(fiz1,tz);
534 fjx0 = _mm_add_pd(fjx0,tx);
535 fjy0 = _mm_add_pd(fjy0,ty);
536 fjz0 = _mm_add_pd(fjz0,tz);
540 /**************************
541 * CALCULATE INTERACTIONS *
542 **************************/
544 if (gmx_mm_any_lt(rsq20,rcutoff2))
547 /* Compute parameters for interactions between i and j atoms */
548 qq20 = _mm_mul_pd(iq2,jq0);
550 /* REACTION-FIELD ELECTROSTATICS */
551 velec = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
552 felec = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
554 cutoff_mask = _mm_cmplt_pd(rsq20,rcutoff2);
556 /* Update potential sum for this i atom from the interaction with this j atom. */
557 velec = _mm_and_pd(velec,cutoff_mask);
558 velec = _mm_unpacklo_pd(velec,_mm_setzero_pd());
559 velecsum = _mm_add_pd(velecsum,velec);
561 fscal = felec;
563 fscal = _mm_and_pd(fscal,cutoff_mask);
565 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
567 /* Calculate temporary vectorial force */
568 tx = _mm_mul_pd(fscal,dx20);
569 ty = _mm_mul_pd(fscal,dy20);
570 tz = _mm_mul_pd(fscal,dz20);
572 /* Update vectorial force */
573 fix2 = _mm_add_pd(fix2,tx);
574 fiy2 = _mm_add_pd(fiy2,ty);
575 fiz2 = _mm_add_pd(fiz2,tz);
577 fjx0 = _mm_add_pd(fjx0,tx);
578 fjy0 = _mm_add_pd(fjy0,ty);
579 fjz0 = _mm_add_pd(fjz0,tz);
583 gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
585 /* Inner loop uses 145 flops */
588 /* End of innermost loop */
590 gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
591 f+i_coord_offset,fshift+i_shift_offset);
593 ggid = gid[iidx];
594 /* Update potential energies */
595 gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
596 gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
598 /* Increment number of inner iterations */
599 inneriter += j_index_end - j_index_start;
601 /* Outer loop uses 20 flops */
604 /* Increment number of outer iterations */
605 outeriter += nri;
607 /* Update outer/inner flops */
609 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*145);
612 * Gromacs nonbonded kernel: nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_F_sse2_double
613 * Electrostatics interaction: ReactionField
614 * VdW interaction: LennardJones
615 * Geometry: Water3-Particle
616 * Calculate force/pot: Force
618 void
619 nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_F_sse2_double
620 (t_nblist * gmx_restrict nlist,
621 rvec * gmx_restrict xx,
622 rvec * gmx_restrict ff,
623 t_forcerec * gmx_restrict fr,
624 t_mdatoms * gmx_restrict mdatoms,
625 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
626 t_nrnb * gmx_restrict nrnb)
628 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
629 * just 0 for non-waters.
630 * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
631 * jnr indices corresponding to data put in the four positions in the SIMD register.
633 int i_shift_offset,i_coord_offset,outeriter,inneriter;
634 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
635 int jnrA,jnrB;
636 int j_coord_offsetA,j_coord_offsetB;
637 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
638 real rcutoff_scalar;
639 real *shiftvec,*fshift,*x,*f;
640 __m128d tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
641 int vdwioffset0;
642 __m128d ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
643 int vdwioffset1;
644 __m128d ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
645 int vdwioffset2;
646 __m128d ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
647 int vdwjidx0A,vdwjidx0B;
648 __m128d jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
649 __m128d dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
650 __m128d dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
651 __m128d dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
652 __m128d velec,felec,velecsum,facel,crf,krf,krf2;
653 real *charge;
654 int nvdwtype;
655 __m128d rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
656 int *vdwtype;
657 real *vdwparam;
658 __m128d one_sixth = _mm_set1_pd(1.0/6.0);
659 __m128d one_twelfth = _mm_set1_pd(1.0/12.0);
660 __m128d rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
661 real rswitch_scalar,d_scalar;
662 __m128d dummy_mask,cutoff_mask;
663 __m128d signbit = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
664 __m128d one = _mm_set1_pd(1.0);
665 __m128d two = _mm_set1_pd(2.0);
666 x = xx[0];
667 f = ff[0];
669 nri = nlist->nri;
670 iinr = nlist->iinr;
671 jindex = nlist->jindex;
672 jjnr = nlist->jjnr;
673 shiftidx = nlist->shift;
674 gid = nlist->gid;
675 shiftvec = fr->shift_vec[0];
676 fshift = fr->fshift[0];
677 facel = _mm_set1_pd(fr->epsfac);
678 charge = mdatoms->chargeA;
679 krf = _mm_set1_pd(fr->ic->k_rf);
680 krf2 = _mm_set1_pd(fr->ic->k_rf*2.0);
681 crf = _mm_set1_pd(fr->ic->c_rf);
682 nvdwtype = fr->ntype;
683 vdwparam = fr->nbfp;
684 vdwtype = mdatoms->typeA;
686 /* Setup water-specific parameters */
687 inr = nlist->iinr[0];
688 iq0 = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
689 iq1 = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
690 iq2 = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
691 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
693 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
694 rcutoff_scalar = fr->rcoulomb;
695 rcutoff = _mm_set1_pd(rcutoff_scalar);
696 rcutoff2 = _mm_mul_pd(rcutoff,rcutoff);
698 rswitch_scalar = fr->rvdw_switch;
699 rswitch = _mm_set1_pd(rswitch_scalar);
700 /* Setup switch parameters */
701 d_scalar = rcutoff_scalar-rswitch_scalar;
702 d = _mm_set1_pd(d_scalar);
703 swV3 = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
704 swV4 = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
705 swV5 = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
706 swF2 = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
707 swF3 = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
708 swF4 = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
710 /* Avoid stupid compiler warnings */
711 jnrA = jnrB = 0;
712 j_coord_offsetA = 0;
713 j_coord_offsetB = 0;
715 outeriter = 0;
716 inneriter = 0;
718 /* Start outer loop over neighborlists */
719 for(iidx=0; iidx<nri; iidx++)
721 /* Load shift vector for this list */
722 i_shift_offset = DIM*shiftidx[iidx];
724 /* Load limits for loop over neighbors */
725 j_index_start = jindex[iidx];
726 j_index_end = jindex[iidx+1];
728 /* Get outer coordinate index */
729 inr = iinr[iidx];
730 i_coord_offset = DIM*inr;
732 /* Load i particle coords and add shift vector */
733 gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
734 &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
736 fix0 = _mm_setzero_pd();
737 fiy0 = _mm_setzero_pd();
738 fiz0 = _mm_setzero_pd();
739 fix1 = _mm_setzero_pd();
740 fiy1 = _mm_setzero_pd();
741 fiz1 = _mm_setzero_pd();
742 fix2 = _mm_setzero_pd();
743 fiy2 = _mm_setzero_pd();
744 fiz2 = _mm_setzero_pd();
746 /* Start inner kernel loop */
747 for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
750 /* Get j neighbor index, and coordinate index */
751 jnrA = jjnr[jidx];
752 jnrB = jjnr[jidx+1];
753 j_coord_offsetA = DIM*jnrA;
754 j_coord_offsetB = DIM*jnrB;
756 /* load j atom coordinates */
757 gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
758 &jx0,&jy0,&jz0);
760 /* Calculate displacement vector */
761 dx00 = _mm_sub_pd(ix0,jx0);
762 dy00 = _mm_sub_pd(iy0,jy0);
763 dz00 = _mm_sub_pd(iz0,jz0);
764 dx10 = _mm_sub_pd(ix1,jx0);
765 dy10 = _mm_sub_pd(iy1,jy0);
766 dz10 = _mm_sub_pd(iz1,jz0);
767 dx20 = _mm_sub_pd(ix2,jx0);
768 dy20 = _mm_sub_pd(iy2,jy0);
769 dz20 = _mm_sub_pd(iz2,jz0);
771 /* Calculate squared distance and things based on it */
772 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
773 rsq10 = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
774 rsq20 = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
776 rinv00 = gmx_mm_invsqrt_pd(rsq00);
777 rinv10 = gmx_mm_invsqrt_pd(rsq10);
778 rinv20 = gmx_mm_invsqrt_pd(rsq20);
780 rinvsq00 = _mm_mul_pd(rinv00,rinv00);
781 rinvsq10 = _mm_mul_pd(rinv10,rinv10);
782 rinvsq20 = _mm_mul_pd(rinv20,rinv20);
784 /* Load parameters for j particles */
785 jq0 = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
786 vdwjidx0A = 2*vdwtype[jnrA+0];
787 vdwjidx0B = 2*vdwtype[jnrB+0];
789 fjx0 = _mm_setzero_pd();
790 fjy0 = _mm_setzero_pd();
791 fjz0 = _mm_setzero_pd();
793 /**************************
794 * CALCULATE INTERACTIONS *
795 **************************/
797 if (gmx_mm_any_lt(rsq00,rcutoff2))
800 r00 = _mm_mul_pd(rsq00,rinv00);
802 /* Compute parameters for interactions between i and j atoms */
803 qq00 = _mm_mul_pd(iq0,jq0);
804 gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
805 vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
807 /* REACTION-FIELD ELECTROSTATICS */
808 felec = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
810 /* LENNARD-JONES DISPERSION/REPULSION */
812 rinvsix = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
813 vvdw6 = _mm_mul_pd(c6_00,rinvsix);
814 vvdw12 = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
815 vvdw = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
816 fvdw = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
818 d = _mm_sub_pd(r00,rswitch);
819 d = _mm_max_pd(d,_mm_setzero_pd());
820 d2 = _mm_mul_pd(d,d);
821 sw = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
823 dsw = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
825 /* Evaluate switch function */
826 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
827 fvdw = _mm_sub_pd( _mm_mul_pd(fvdw,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
828 cutoff_mask = _mm_cmplt_pd(rsq00,rcutoff2);
830 fscal = _mm_add_pd(felec,fvdw);
832 fscal = _mm_and_pd(fscal,cutoff_mask);
834 /* Calculate temporary vectorial force */
835 tx = _mm_mul_pd(fscal,dx00);
836 ty = _mm_mul_pd(fscal,dy00);
837 tz = _mm_mul_pd(fscal,dz00);
839 /* Update vectorial force */
840 fix0 = _mm_add_pd(fix0,tx);
841 fiy0 = _mm_add_pd(fiy0,ty);
842 fiz0 = _mm_add_pd(fiz0,tz);
844 fjx0 = _mm_add_pd(fjx0,tx);
845 fjy0 = _mm_add_pd(fjy0,ty);
846 fjz0 = _mm_add_pd(fjz0,tz);
850 /**************************
851 * CALCULATE INTERACTIONS *
852 **************************/
854 if (gmx_mm_any_lt(rsq10,rcutoff2))
857 /* Compute parameters for interactions between i and j atoms */
858 qq10 = _mm_mul_pd(iq1,jq0);
860 /* REACTION-FIELD ELECTROSTATICS */
861 felec = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
863 cutoff_mask = _mm_cmplt_pd(rsq10,rcutoff2);
865 fscal = felec;
867 fscal = _mm_and_pd(fscal,cutoff_mask);
869 /* Calculate temporary vectorial force */
870 tx = _mm_mul_pd(fscal,dx10);
871 ty = _mm_mul_pd(fscal,dy10);
872 tz = _mm_mul_pd(fscal,dz10);
874 /* Update vectorial force */
875 fix1 = _mm_add_pd(fix1,tx);
876 fiy1 = _mm_add_pd(fiy1,ty);
877 fiz1 = _mm_add_pd(fiz1,tz);
879 fjx0 = _mm_add_pd(fjx0,tx);
880 fjy0 = _mm_add_pd(fjy0,ty);
881 fjz0 = _mm_add_pd(fjz0,tz);
885 /**************************
886 * CALCULATE INTERACTIONS *
887 **************************/
889 if (gmx_mm_any_lt(rsq20,rcutoff2))
892 /* Compute parameters for interactions between i and j atoms */
893 qq20 = _mm_mul_pd(iq2,jq0);
895 /* REACTION-FIELD ELECTROSTATICS */
896 felec = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
898 cutoff_mask = _mm_cmplt_pd(rsq20,rcutoff2);
900 fscal = felec;
902 fscal = _mm_and_pd(fscal,cutoff_mask);
904 /* Calculate temporary vectorial force */
905 tx = _mm_mul_pd(fscal,dx20);
906 ty = _mm_mul_pd(fscal,dy20);
907 tz = _mm_mul_pd(fscal,dz20);
909 /* Update vectorial force */
910 fix2 = _mm_add_pd(fix2,tx);
911 fiy2 = _mm_add_pd(fiy2,ty);
912 fiz2 = _mm_add_pd(fiz2,tz);
914 fjx0 = _mm_add_pd(fjx0,tx);
915 fjy0 = _mm_add_pd(fjy0,ty);
916 fjz0 = _mm_add_pd(fjz0,tz);
920 gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
922 /* Inner loop uses 124 flops */
925 if(jidx<j_index_end)
928 jnrA = jjnr[jidx];
929 j_coord_offsetA = DIM*jnrA;
931 /* load j atom coordinates */
932 gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
933 &jx0,&jy0,&jz0);
935 /* Calculate displacement vector */
936 dx00 = _mm_sub_pd(ix0,jx0);
937 dy00 = _mm_sub_pd(iy0,jy0);
938 dz00 = _mm_sub_pd(iz0,jz0);
939 dx10 = _mm_sub_pd(ix1,jx0);
940 dy10 = _mm_sub_pd(iy1,jy0);
941 dz10 = _mm_sub_pd(iz1,jz0);
942 dx20 = _mm_sub_pd(ix2,jx0);
943 dy20 = _mm_sub_pd(iy2,jy0);
944 dz20 = _mm_sub_pd(iz2,jz0);
946 /* Calculate squared distance and things based on it */
947 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
948 rsq10 = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
949 rsq20 = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
951 rinv00 = gmx_mm_invsqrt_pd(rsq00);
952 rinv10 = gmx_mm_invsqrt_pd(rsq10);
953 rinv20 = gmx_mm_invsqrt_pd(rsq20);
955 rinvsq00 = _mm_mul_pd(rinv00,rinv00);
956 rinvsq10 = _mm_mul_pd(rinv10,rinv10);
957 rinvsq20 = _mm_mul_pd(rinv20,rinv20);
959 /* Load parameters for j particles */
960 jq0 = _mm_load_sd(charge+jnrA+0);
961 vdwjidx0A = 2*vdwtype[jnrA+0];
963 fjx0 = _mm_setzero_pd();
964 fjy0 = _mm_setzero_pd();
965 fjz0 = _mm_setzero_pd();
967 /**************************
968 * CALCULATE INTERACTIONS *
969 **************************/
971 if (gmx_mm_any_lt(rsq00,rcutoff2))
974 r00 = _mm_mul_pd(rsq00,rinv00);
976 /* Compute parameters for interactions between i and j atoms */
977 qq00 = _mm_mul_pd(iq0,jq0);
978 gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
980 /* REACTION-FIELD ELECTROSTATICS */
981 felec = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
983 /* LENNARD-JONES DISPERSION/REPULSION */
985 rinvsix = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
986 vvdw6 = _mm_mul_pd(c6_00,rinvsix);
987 vvdw12 = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
988 vvdw = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
989 fvdw = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
991 d = _mm_sub_pd(r00,rswitch);
992 d = _mm_max_pd(d,_mm_setzero_pd());
993 d2 = _mm_mul_pd(d,d);
994 sw = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
996 dsw = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
998 /* Evaluate switch function */
999 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1000 fvdw = _mm_sub_pd( _mm_mul_pd(fvdw,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
1001 cutoff_mask = _mm_cmplt_pd(rsq00,rcutoff2);
1003 fscal = _mm_add_pd(felec,fvdw);
1005 fscal = _mm_and_pd(fscal,cutoff_mask);
1007 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1009 /* Calculate temporary vectorial force */
1010 tx = _mm_mul_pd(fscal,dx00);
1011 ty = _mm_mul_pd(fscal,dy00);
1012 tz = _mm_mul_pd(fscal,dz00);
1014 /* Update vectorial force */
1015 fix0 = _mm_add_pd(fix0,tx);
1016 fiy0 = _mm_add_pd(fiy0,ty);
1017 fiz0 = _mm_add_pd(fiz0,tz);
1019 fjx0 = _mm_add_pd(fjx0,tx);
1020 fjy0 = _mm_add_pd(fjy0,ty);
1021 fjz0 = _mm_add_pd(fjz0,tz);
1025 /**************************
1026 * CALCULATE INTERACTIONS *
1027 **************************/
1029 if (gmx_mm_any_lt(rsq10,rcutoff2))
1032 /* Compute parameters for interactions between i and j atoms */
1033 qq10 = _mm_mul_pd(iq1,jq0);
1035 /* REACTION-FIELD ELECTROSTATICS */
1036 felec = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
1038 cutoff_mask = _mm_cmplt_pd(rsq10,rcutoff2);
1040 fscal = felec;
1042 fscal = _mm_and_pd(fscal,cutoff_mask);
1044 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1046 /* Calculate temporary vectorial force */
1047 tx = _mm_mul_pd(fscal,dx10);
1048 ty = _mm_mul_pd(fscal,dy10);
1049 tz = _mm_mul_pd(fscal,dz10);
1051 /* Update vectorial force */
1052 fix1 = _mm_add_pd(fix1,tx);
1053 fiy1 = _mm_add_pd(fiy1,ty);
1054 fiz1 = _mm_add_pd(fiz1,tz);
1056 fjx0 = _mm_add_pd(fjx0,tx);
1057 fjy0 = _mm_add_pd(fjy0,ty);
1058 fjz0 = _mm_add_pd(fjz0,tz);
1062 /**************************
1063 * CALCULATE INTERACTIONS *
1064 **************************/
1066 if (gmx_mm_any_lt(rsq20,rcutoff2))
1069 /* Compute parameters for interactions between i and j atoms */
1070 qq20 = _mm_mul_pd(iq2,jq0);
1072 /* REACTION-FIELD ELECTROSTATICS */
1073 felec = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
1075 cutoff_mask = _mm_cmplt_pd(rsq20,rcutoff2);
1077 fscal = felec;
1079 fscal = _mm_and_pd(fscal,cutoff_mask);
1081 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1083 /* Calculate temporary vectorial force */
1084 tx = _mm_mul_pd(fscal,dx20);
1085 ty = _mm_mul_pd(fscal,dy20);
1086 tz = _mm_mul_pd(fscal,dz20);
1088 /* Update vectorial force */
1089 fix2 = _mm_add_pd(fix2,tx);
1090 fiy2 = _mm_add_pd(fiy2,ty);
1091 fiz2 = _mm_add_pd(fiz2,tz);
1093 fjx0 = _mm_add_pd(fjx0,tx);
1094 fjy0 = _mm_add_pd(fjy0,ty);
1095 fjz0 = _mm_add_pd(fjz0,tz);
1099 gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1101 /* Inner loop uses 124 flops */
1104 /* End of innermost loop */
1106 gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1107 f+i_coord_offset,fshift+i_shift_offset);
1109 /* Increment number of inner iterations */
1110 inneriter += j_index_end - j_index_start;
1112 /* Outer loop uses 18 flops */
1115 /* Increment number of outer iterations */
1116 outeriter += nri;
1118 /* Update outer/inner flops */
1120 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*124);