Removed simple.h from nb_kernel_sse2_XX
[gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecNone_VdwLJSh_GeomP1P1_sse2_double.c
blob93ec7c5b0a3824e014621a3d8a560e7bbf57af3b
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 2012,2013,2014,2015, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
36 * Note: this file was generated by the GROMACS sse2_double kernel generator.
38 #include "gmxpre.h"
40 #include "config.h"
42 #include <math.h>
44 #include "../nb_kernel.h"
45 #include "gromacs/math/vec.h"
46 #include "gromacs/legacyheaders/nrnb.h"
48 #include "gromacs/simd/math_x86_sse2_double.h"
49 #include "kernelutil_x86_sse2_double.h"
52 * Gromacs nonbonded kernel: nb_kernel_ElecNone_VdwLJSh_GeomP1P1_VF_sse2_double
53 * Electrostatics interaction: None
54 * VdW interaction: LennardJones
55 * Geometry: Particle-Particle
56 * Calculate force/pot: PotentialAndForce
58 void
59 nb_kernel_ElecNone_VdwLJSh_GeomP1P1_VF_sse2_double
60 (t_nblist * gmx_restrict nlist,
61 rvec * gmx_restrict xx,
62 rvec * gmx_restrict ff,
63 t_forcerec * gmx_restrict fr,
64 t_mdatoms * gmx_restrict mdatoms,
65 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
66 t_nrnb * gmx_restrict nrnb)
68 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
69 * just 0 for non-waters.
70 * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
71 * jnr indices corresponding to data put in the four positions in the SIMD register.
73 int i_shift_offset,i_coord_offset,outeriter,inneriter;
74 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
75 int jnrA,jnrB;
76 int j_coord_offsetA,j_coord_offsetB;
77 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
78 real rcutoff_scalar;
79 real *shiftvec,*fshift,*x,*f;
80 __m128d tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
81 int vdwioffset0;
82 __m128d ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
83 int vdwjidx0A,vdwjidx0B;
84 __m128d jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
85 __m128d dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
86 int nvdwtype;
87 __m128d rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
88 int *vdwtype;
89 real *vdwparam;
90 __m128d one_sixth = _mm_set1_pd(1.0/6.0);
91 __m128d one_twelfth = _mm_set1_pd(1.0/12.0);
92 __m128d dummy_mask,cutoff_mask;
93 __m128d signbit = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
94 __m128d one = _mm_set1_pd(1.0);
95 __m128d two = _mm_set1_pd(2.0);
96 x = xx[0];
97 f = ff[0];
99 nri = nlist->nri;
100 iinr = nlist->iinr;
101 jindex = nlist->jindex;
102 jjnr = nlist->jjnr;
103 shiftidx = nlist->shift;
104 gid = nlist->gid;
105 shiftvec = fr->shift_vec[0];
106 fshift = fr->fshift[0];
107 nvdwtype = fr->ntype;
108 vdwparam = fr->nbfp;
109 vdwtype = mdatoms->typeA;
111 rcutoff_scalar = fr->rvdw;
112 rcutoff = _mm_set1_pd(rcutoff_scalar);
113 rcutoff2 = _mm_mul_pd(rcutoff,rcutoff);
115 sh_vdw_invrcut6 = _mm_set1_pd(fr->ic->sh_invrc6);
116 rvdw = _mm_set1_pd(fr->rvdw);
118 /* Avoid stupid compiler warnings */
119 jnrA = jnrB = 0;
120 j_coord_offsetA = 0;
121 j_coord_offsetB = 0;
123 outeriter = 0;
124 inneriter = 0;
126 /* Start outer loop over neighborlists */
127 for(iidx=0; iidx<nri; iidx++)
129 /* Load shift vector for this list */
130 i_shift_offset = DIM*shiftidx[iidx];
132 /* Load limits for loop over neighbors */
133 j_index_start = jindex[iidx];
134 j_index_end = jindex[iidx+1];
136 /* Get outer coordinate index */
137 inr = iinr[iidx];
138 i_coord_offset = DIM*inr;
140 /* Load i particle coords and add shift vector */
141 gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
143 fix0 = _mm_setzero_pd();
144 fiy0 = _mm_setzero_pd();
145 fiz0 = _mm_setzero_pd();
147 /* Load parameters for i particles */
148 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
150 /* Reset potential sums */
151 vvdwsum = _mm_setzero_pd();
153 /* Start inner kernel loop */
154 for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
157 /* Get j neighbor index, and coordinate index */
158 jnrA = jjnr[jidx];
159 jnrB = jjnr[jidx+1];
160 j_coord_offsetA = DIM*jnrA;
161 j_coord_offsetB = DIM*jnrB;
163 /* load j atom coordinates */
164 gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
165 &jx0,&jy0,&jz0);
167 /* Calculate displacement vector */
168 dx00 = _mm_sub_pd(ix0,jx0);
169 dy00 = _mm_sub_pd(iy0,jy0);
170 dz00 = _mm_sub_pd(iz0,jz0);
172 /* Calculate squared distance and things based on it */
173 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
175 rinvsq00 = gmx_mm_inv_pd(rsq00);
177 /* Load parameters for j particles */
178 vdwjidx0A = 2*vdwtype[jnrA+0];
179 vdwjidx0B = 2*vdwtype[jnrB+0];
181 /**************************
182 * CALCULATE INTERACTIONS *
183 **************************/
185 if (gmx_mm_any_lt(rsq00,rcutoff2))
188 /* Compute parameters for interactions between i and j atoms */
189 gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
190 vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
192 /* LENNARD-JONES DISPERSION/REPULSION */
194 rinvsix = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
195 vvdw6 = _mm_mul_pd(c6_00,rinvsix);
196 vvdw12 = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
197 vvdw = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
198 _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
199 fvdw = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
201 cutoff_mask = _mm_cmplt_pd(rsq00,rcutoff2);
203 /* Update potential sum for this i atom from the interaction with this j atom. */
204 vvdw = _mm_and_pd(vvdw,cutoff_mask);
205 vvdwsum = _mm_add_pd(vvdwsum,vvdw);
207 fscal = fvdw;
209 fscal = _mm_and_pd(fscal,cutoff_mask);
211 /* Calculate temporary vectorial force */
212 tx = _mm_mul_pd(fscal,dx00);
213 ty = _mm_mul_pd(fscal,dy00);
214 tz = _mm_mul_pd(fscal,dz00);
216 /* Update vectorial force */
217 fix0 = _mm_add_pd(fix0,tx);
218 fiy0 = _mm_add_pd(fiy0,ty);
219 fiz0 = _mm_add_pd(fiz0,tz);
221 gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
225 /* Inner loop uses 41 flops */
228 if(jidx<j_index_end)
231 jnrA = jjnr[jidx];
232 j_coord_offsetA = DIM*jnrA;
234 /* load j atom coordinates */
235 gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
236 &jx0,&jy0,&jz0);
238 /* Calculate displacement vector */
239 dx00 = _mm_sub_pd(ix0,jx0);
240 dy00 = _mm_sub_pd(iy0,jy0);
241 dz00 = _mm_sub_pd(iz0,jz0);
243 /* Calculate squared distance and things based on it */
244 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
246 rinvsq00 = gmx_mm_inv_pd(rsq00);
248 /* Load parameters for j particles */
249 vdwjidx0A = 2*vdwtype[jnrA+0];
251 /**************************
252 * CALCULATE INTERACTIONS *
253 **************************/
255 if (gmx_mm_any_lt(rsq00,rcutoff2))
258 /* Compute parameters for interactions between i and j atoms */
259 gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
261 /* LENNARD-JONES DISPERSION/REPULSION */
263 rinvsix = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
264 vvdw6 = _mm_mul_pd(c6_00,rinvsix);
265 vvdw12 = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
266 vvdw = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
267 _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
268 fvdw = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
270 cutoff_mask = _mm_cmplt_pd(rsq00,rcutoff2);
272 /* Update potential sum for this i atom from the interaction with this j atom. */
273 vvdw = _mm_and_pd(vvdw,cutoff_mask);
274 vvdw = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
275 vvdwsum = _mm_add_pd(vvdwsum,vvdw);
277 fscal = fvdw;
279 fscal = _mm_and_pd(fscal,cutoff_mask);
281 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
283 /* Calculate temporary vectorial force */
284 tx = _mm_mul_pd(fscal,dx00);
285 ty = _mm_mul_pd(fscal,dy00);
286 tz = _mm_mul_pd(fscal,dz00);
288 /* Update vectorial force */
289 fix0 = _mm_add_pd(fix0,tx);
290 fiy0 = _mm_add_pd(fiy0,ty);
291 fiz0 = _mm_add_pd(fiz0,tz);
293 gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
297 /* Inner loop uses 41 flops */
300 /* End of innermost loop */
302 gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
303 f+i_coord_offset,fshift+i_shift_offset);
305 ggid = gid[iidx];
306 /* Update potential energies */
307 gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
309 /* Increment number of inner iterations */
310 inneriter += j_index_end - j_index_start;
312 /* Outer loop uses 7 flops */
315 /* Increment number of outer iterations */
316 outeriter += nri;
318 /* Update outer/inner flops */
320 inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*7 + inneriter*41);
323 * Gromacs nonbonded kernel: nb_kernel_ElecNone_VdwLJSh_GeomP1P1_F_sse2_double
324 * Electrostatics interaction: None
325 * VdW interaction: LennardJones
326 * Geometry: Particle-Particle
327 * Calculate force/pot: Force
329 void
330 nb_kernel_ElecNone_VdwLJSh_GeomP1P1_F_sse2_double
331 (t_nblist * gmx_restrict nlist,
332 rvec * gmx_restrict xx,
333 rvec * gmx_restrict ff,
334 t_forcerec * gmx_restrict fr,
335 t_mdatoms * gmx_restrict mdatoms,
336 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
337 t_nrnb * gmx_restrict nrnb)
339 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
340 * just 0 for non-waters.
341 * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
342 * jnr indices corresponding to data put in the four positions in the SIMD register.
344 int i_shift_offset,i_coord_offset,outeriter,inneriter;
345 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
346 int jnrA,jnrB;
347 int j_coord_offsetA,j_coord_offsetB;
348 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
349 real rcutoff_scalar;
350 real *shiftvec,*fshift,*x,*f;
351 __m128d tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
352 int vdwioffset0;
353 __m128d ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
354 int vdwjidx0A,vdwjidx0B;
355 __m128d jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
356 __m128d dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
357 int nvdwtype;
358 __m128d rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
359 int *vdwtype;
360 real *vdwparam;
361 __m128d one_sixth = _mm_set1_pd(1.0/6.0);
362 __m128d one_twelfth = _mm_set1_pd(1.0/12.0);
363 __m128d dummy_mask,cutoff_mask;
364 __m128d signbit = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
365 __m128d one = _mm_set1_pd(1.0);
366 __m128d two = _mm_set1_pd(2.0);
367 x = xx[0];
368 f = ff[0];
370 nri = nlist->nri;
371 iinr = nlist->iinr;
372 jindex = nlist->jindex;
373 jjnr = nlist->jjnr;
374 shiftidx = nlist->shift;
375 gid = nlist->gid;
376 shiftvec = fr->shift_vec[0];
377 fshift = fr->fshift[0];
378 nvdwtype = fr->ntype;
379 vdwparam = fr->nbfp;
380 vdwtype = mdatoms->typeA;
382 rcutoff_scalar = fr->rvdw;
383 rcutoff = _mm_set1_pd(rcutoff_scalar);
384 rcutoff2 = _mm_mul_pd(rcutoff,rcutoff);
386 sh_vdw_invrcut6 = _mm_set1_pd(fr->ic->sh_invrc6);
387 rvdw = _mm_set1_pd(fr->rvdw);
389 /* Avoid stupid compiler warnings */
390 jnrA = jnrB = 0;
391 j_coord_offsetA = 0;
392 j_coord_offsetB = 0;
394 outeriter = 0;
395 inneriter = 0;
397 /* Start outer loop over neighborlists */
398 for(iidx=0; iidx<nri; iidx++)
400 /* Load shift vector for this list */
401 i_shift_offset = DIM*shiftidx[iidx];
403 /* Load limits for loop over neighbors */
404 j_index_start = jindex[iidx];
405 j_index_end = jindex[iidx+1];
407 /* Get outer coordinate index */
408 inr = iinr[iidx];
409 i_coord_offset = DIM*inr;
411 /* Load i particle coords and add shift vector */
412 gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
414 fix0 = _mm_setzero_pd();
415 fiy0 = _mm_setzero_pd();
416 fiz0 = _mm_setzero_pd();
418 /* Load parameters for i particles */
419 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
421 /* Start inner kernel loop */
422 for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
425 /* Get j neighbor index, and coordinate index */
426 jnrA = jjnr[jidx];
427 jnrB = jjnr[jidx+1];
428 j_coord_offsetA = DIM*jnrA;
429 j_coord_offsetB = DIM*jnrB;
431 /* load j atom coordinates */
432 gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
433 &jx0,&jy0,&jz0);
435 /* Calculate displacement vector */
436 dx00 = _mm_sub_pd(ix0,jx0);
437 dy00 = _mm_sub_pd(iy0,jy0);
438 dz00 = _mm_sub_pd(iz0,jz0);
440 /* Calculate squared distance and things based on it */
441 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
443 rinvsq00 = gmx_mm_inv_pd(rsq00);
445 /* Load parameters for j particles */
446 vdwjidx0A = 2*vdwtype[jnrA+0];
447 vdwjidx0B = 2*vdwtype[jnrB+0];
449 /**************************
450 * CALCULATE INTERACTIONS *
451 **************************/
453 if (gmx_mm_any_lt(rsq00,rcutoff2))
456 /* Compute parameters for interactions between i and j atoms */
457 gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
458 vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
460 /* LENNARD-JONES DISPERSION/REPULSION */
462 rinvsix = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
463 fvdw = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
465 cutoff_mask = _mm_cmplt_pd(rsq00,rcutoff2);
467 fscal = fvdw;
469 fscal = _mm_and_pd(fscal,cutoff_mask);
471 /* Calculate temporary vectorial force */
472 tx = _mm_mul_pd(fscal,dx00);
473 ty = _mm_mul_pd(fscal,dy00);
474 tz = _mm_mul_pd(fscal,dz00);
476 /* Update vectorial force */
477 fix0 = _mm_add_pd(fix0,tx);
478 fiy0 = _mm_add_pd(fiy0,ty);
479 fiz0 = _mm_add_pd(fiz0,tz);
481 gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
485 /* Inner loop uses 30 flops */
488 if(jidx<j_index_end)
491 jnrA = jjnr[jidx];
492 j_coord_offsetA = DIM*jnrA;
494 /* load j atom coordinates */
495 gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
496 &jx0,&jy0,&jz0);
498 /* Calculate displacement vector */
499 dx00 = _mm_sub_pd(ix0,jx0);
500 dy00 = _mm_sub_pd(iy0,jy0);
501 dz00 = _mm_sub_pd(iz0,jz0);
503 /* Calculate squared distance and things based on it */
504 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
506 rinvsq00 = gmx_mm_inv_pd(rsq00);
508 /* Load parameters for j particles */
509 vdwjidx0A = 2*vdwtype[jnrA+0];
511 /**************************
512 * CALCULATE INTERACTIONS *
513 **************************/
515 if (gmx_mm_any_lt(rsq00,rcutoff2))
518 /* Compute parameters for interactions between i and j atoms */
519 gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
521 /* LENNARD-JONES DISPERSION/REPULSION */
523 rinvsix = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
524 fvdw = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
526 cutoff_mask = _mm_cmplt_pd(rsq00,rcutoff2);
528 fscal = fvdw;
530 fscal = _mm_and_pd(fscal,cutoff_mask);
532 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
534 /* Calculate temporary vectorial force */
535 tx = _mm_mul_pd(fscal,dx00);
536 ty = _mm_mul_pd(fscal,dy00);
537 tz = _mm_mul_pd(fscal,dz00);
539 /* Update vectorial force */
540 fix0 = _mm_add_pd(fix0,tx);
541 fiy0 = _mm_add_pd(fiy0,ty);
542 fiz0 = _mm_add_pd(fiz0,tz);
544 gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
548 /* Inner loop uses 30 flops */
551 /* End of innermost loop */
553 gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
554 f+i_coord_offset,fshift+i_shift_offset);
556 /* Increment number of inner iterations */
557 inneriter += j_index_end - j_index_start;
559 /* Outer loop uses 6 flops */
562 /* Increment number of outer iterations */
563 outeriter += nri;
565 /* Update outer/inner flops */
567 inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*6 + inneriter*30);