Removed simple.h from nb_kernel_sse2_XX
[gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecNone_VdwLJEw_GeomP1P1_sse2_double.c
blob9d8fe0e3345cf04d2ae551eaa3051aaa55057a63
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 2012,2013,2014,2015, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
36 * Note: this file was generated by the GROMACS sse2_double kernel generator.
38 #include "gmxpre.h"
40 #include "config.h"
42 #include <math.h>
44 #include "../nb_kernel.h"
45 #include "gromacs/math/vec.h"
46 #include "gromacs/legacyheaders/nrnb.h"
48 #include "gromacs/simd/math_x86_sse2_double.h"
49 #include "kernelutil_x86_sse2_double.h"
52 * Gromacs nonbonded kernel: nb_kernel_ElecNone_VdwLJEw_GeomP1P1_VF_sse2_double
53 * Electrostatics interaction: None
54 * VdW interaction: LJEwald
55 * Geometry: Particle-Particle
56 * Calculate force/pot: PotentialAndForce
58 void
59 nb_kernel_ElecNone_VdwLJEw_GeomP1P1_VF_sse2_double
60 (t_nblist * gmx_restrict nlist,
61 rvec * gmx_restrict xx,
62 rvec * gmx_restrict ff,
63 t_forcerec * gmx_restrict fr,
64 t_mdatoms * gmx_restrict mdatoms,
65 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
66 t_nrnb * gmx_restrict nrnb)
68 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
69 * just 0 for non-waters.
70 * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
71 * jnr indices corresponding to data put in the four positions in the SIMD register.
73 int i_shift_offset,i_coord_offset,outeriter,inneriter;
74 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
75 int jnrA,jnrB;
76 int j_coord_offsetA,j_coord_offsetB;
77 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
78 real rcutoff_scalar;
79 real *shiftvec,*fshift,*x,*f;
80 __m128d tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
81 int vdwioffset0;
82 __m128d ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
83 int vdwjidx0A,vdwjidx0B;
84 __m128d jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
85 __m128d dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
86 int nvdwtype;
87 __m128d rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
88 int *vdwtype;
89 real *vdwparam;
90 __m128d one_sixth = _mm_set1_pd(1.0/6.0);
91 __m128d one_twelfth = _mm_set1_pd(1.0/12.0);
92 __m128d c6grid_00;
93 __m128d ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
94 real *vdwgridparam;
95 __m128d one_half = _mm_set1_pd(0.5);
96 __m128d minus_one = _mm_set1_pd(-1.0);
97 __m128d dummy_mask,cutoff_mask;
98 __m128d signbit = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
99 __m128d one = _mm_set1_pd(1.0);
100 __m128d two = _mm_set1_pd(2.0);
101 x = xx[0];
102 f = ff[0];
104 nri = nlist->nri;
105 iinr = nlist->iinr;
106 jindex = nlist->jindex;
107 jjnr = nlist->jjnr;
108 shiftidx = nlist->shift;
109 gid = nlist->gid;
110 shiftvec = fr->shift_vec[0];
111 fshift = fr->fshift[0];
112 nvdwtype = fr->ntype;
113 vdwparam = fr->nbfp;
114 vdwtype = mdatoms->typeA;
115 vdwgridparam = fr->ljpme_c6grid;
116 sh_lj_ewald = _mm_set1_pd(fr->ic->sh_lj_ewald);
117 ewclj = _mm_set1_pd(fr->ewaldcoeff_lj);
118 ewclj2 = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
120 /* Avoid stupid compiler warnings */
121 jnrA = jnrB = 0;
122 j_coord_offsetA = 0;
123 j_coord_offsetB = 0;
125 outeriter = 0;
126 inneriter = 0;
128 /* Start outer loop over neighborlists */
129 for(iidx=0; iidx<nri; iidx++)
131 /* Load shift vector for this list */
132 i_shift_offset = DIM*shiftidx[iidx];
134 /* Load limits for loop over neighbors */
135 j_index_start = jindex[iidx];
136 j_index_end = jindex[iidx+1];
138 /* Get outer coordinate index */
139 inr = iinr[iidx];
140 i_coord_offset = DIM*inr;
142 /* Load i particle coords and add shift vector */
143 gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
145 fix0 = _mm_setzero_pd();
146 fiy0 = _mm_setzero_pd();
147 fiz0 = _mm_setzero_pd();
149 /* Load parameters for i particles */
150 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
152 /* Reset potential sums */
153 vvdwsum = _mm_setzero_pd();
155 /* Start inner kernel loop */
156 for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
159 /* Get j neighbor index, and coordinate index */
160 jnrA = jjnr[jidx];
161 jnrB = jjnr[jidx+1];
162 j_coord_offsetA = DIM*jnrA;
163 j_coord_offsetB = DIM*jnrB;
165 /* load j atom coordinates */
166 gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
167 &jx0,&jy0,&jz0);
169 /* Calculate displacement vector */
170 dx00 = _mm_sub_pd(ix0,jx0);
171 dy00 = _mm_sub_pd(iy0,jy0);
172 dz00 = _mm_sub_pd(iz0,jz0);
174 /* Calculate squared distance and things based on it */
175 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
177 rinv00 = gmx_mm_invsqrt_pd(rsq00);
179 rinvsq00 = _mm_mul_pd(rinv00,rinv00);
181 /* Load parameters for j particles */
182 vdwjidx0A = 2*vdwtype[jnrA+0];
183 vdwjidx0B = 2*vdwtype[jnrB+0];
185 /**************************
186 * CALCULATE INTERACTIONS *
187 **************************/
189 r00 = _mm_mul_pd(rsq00,rinv00);
191 /* Compute parameters for interactions between i and j atoms */
192 gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
193 vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
195 c6grid_00 = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
196 vdwgridparam+vdwioffset0+vdwjidx0B);
198 /* Analytical LJ-PME */
199 rinvsix = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
200 ewcljrsq = _mm_mul_pd(ewclj2,rsq00);
201 ewclj6 = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
202 exponent = gmx_simd_exp_d(ewcljrsq);
203 /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
204 poly = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
205 /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
206 vvdw6 = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
207 vvdw12 = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
208 vvdw = _mm_sub_pd(_mm_mul_pd(vvdw12,one_twelfth),_mm_mul_pd(vvdw6,one_sixth));
209 /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
210 fvdw = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
212 /* Update potential sum for this i atom from the interaction with this j atom. */
213 vvdwsum = _mm_add_pd(vvdwsum,vvdw);
215 fscal = fvdw;
217 /* Calculate temporary vectorial force */
218 tx = _mm_mul_pd(fscal,dx00);
219 ty = _mm_mul_pd(fscal,dy00);
220 tz = _mm_mul_pd(fscal,dz00);
222 /* Update vectorial force */
223 fix0 = _mm_add_pd(fix0,tx);
224 fiy0 = _mm_add_pd(fiy0,ty);
225 fiz0 = _mm_add_pd(fiz0,tz);
227 gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
229 /* Inner loop uses 51 flops */
232 if(jidx<j_index_end)
235 jnrA = jjnr[jidx];
236 j_coord_offsetA = DIM*jnrA;
238 /* load j atom coordinates */
239 gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
240 &jx0,&jy0,&jz0);
242 /* Calculate displacement vector */
243 dx00 = _mm_sub_pd(ix0,jx0);
244 dy00 = _mm_sub_pd(iy0,jy0);
245 dz00 = _mm_sub_pd(iz0,jz0);
247 /* Calculate squared distance and things based on it */
248 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
250 rinv00 = gmx_mm_invsqrt_pd(rsq00);
252 rinvsq00 = _mm_mul_pd(rinv00,rinv00);
254 /* Load parameters for j particles */
255 vdwjidx0A = 2*vdwtype[jnrA+0];
257 /**************************
258 * CALCULATE INTERACTIONS *
259 **************************/
261 r00 = _mm_mul_pd(rsq00,rinv00);
263 /* Compute parameters for interactions between i and j atoms */
264 gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
266 c6grid_00 = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
268 /* Analytical LJ-PME */
269 rinvsix = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
270 ewcljrsq = _mm_mul_pd(ewclj2,rsq00);
271 ewclj6 = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
272 exponent = gmx_simd_exp_d(ewcljrsq);
273 /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
274 poly = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
275 /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
276 vvdw6 = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
277 vvdw12 = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
278 vvdw = _mm_sub_pd(_mm_mul_pd(vvdw12,one_twelfth),_mm_mul_pd(vvdw6,one_sixth));
279 /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
280 fvdw = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
282 /* Update potential sum for this i atom from the interaction with this j atom. */
283 vvdw = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
284 vvdwsum = _mm_add_pd(vvdwsum,vvdw);
286 fscal = fvdw;
288 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
290 /* Calculate temporary vectorial force */
291 tx = _mm_mul_pd(fscal,dx00);
292 ty = _mm_mul_pd(fscal,dy00);
293 tz = _mm_mul_pd(fscal,dz00);
295 /* Update vectorial force */
296 fix0 = _mm_add_pd(fix0,tx);
297 fiy0 = _mm_add_pd(fiy0,ty);
298 fiz0 = _mm_add_pd(fiz0,tz);
300 gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
302 /* Inner loop uses 51 flops */
305 /* End of innermost loop */
307 gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
308 f+i_coord_offset,fshift+i_shift_offset);
310 ggid = gid[iidx];
311 /* Update potential energies */
312 gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
314 /* Increment number of inner iterations */
315 inneriter += j_index_end - j_index_start;
317 /* Outer loop uses 7 flops */
320 /* Increment number of outer iterations */
321 outeriter += nri;
323 /* Update outer/inner flops */
325 inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*7 + inneriter*51);
328 * Gromacs nonbonded kernel: nb_kernel_ElecNone_VdwLJEw_GeomP1P1_F_sse2_double
329 * Electrostatics interaction: None
330 * VdW interaction: LJEwald
331 * Geometry: Particle-Particle
332 * Calculate force/pot: Force
334 void
335 nb_kernel_ElecNone_VdwLJEw_GeomP1P1_F_sse2_double
336 (t_nblist * gmx_restrict nlist,
337 rvec * gmx_restrict xx,
338 rvec * gmx_restrict ff,
339 t_forcerec * gmx_restrict fr,
340 t_mdatoms * gmx_restrict mdatoms,
341 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
342 t_nrnb * gmx_restrict nrnb)
344 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
345 * just 0 for non-waters.
346 * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
347 * jnr indices corresponding to data put in the four positions in the SIMD register.
349 int i_shift_offset,i_coord_offset,outeriter,inneriter;
350 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
351 int jnrA,jnrB;
352 int j_coord_offsetA,j_coord_offsetB;
353 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
354 real rcutoff_scalar;
355 real *shiftvec,*fshift,*x,*f;
356 __m128d tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
357 int vdwioffset0;
358 __m128d ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
359 int vdwjidx0A,vdwjidx0B;
360 __m128d jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
361 __m128d dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
362 int nvdwtype;
363 __m128d rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
364 int *vdwtype;
365 real *vdwparam;
366 __m128d one_sixth = _mm_set1_pd(1.0/6.0);
367 __m128d one_twelfth = _mm_set1_pd(1.0/12.0);
368 __m128d c6grid_00;
369 __m128d ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
370 real *vdwgridparam;
371 __m128d one_half = _mm_set1_pd(0.5);
372 __m128d minus_one = _mm_set1_pd(-1.0);
373 __m128d dummy_mask,cutoff_mask;
374 __m128d signbit = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
375 __m128d one = _mm_set1_pd(1.0);
376 __m128d two = _mm_set1_pd(2.0);
377 x = xx[0];
378 f = ff[0];
380 nri = nlist->nri;
381 iinr = nlist->iinr;
382 jindex = nlist->jindex;
383 jjnr = nlist->jjnr;
384 shiftidx = nlist->shift;
385 gid = nlist->gid;
386 shiftvec = fr->shift_vec[0];
387 fshift = fr->fshift[0];
388 nvdwtype = fr->ntype;
389 vdwparam = fr->nbfp;
390 vdwtype = mdatoms->typeA;
391 vdwgridparam = fr->ljpme_c6grid;
392 sh_lj_ewald = _mm_set1_pd(fr->ic->sh_lj_ewald);
393 ewclj = _mm_set1_pd(fr->ewaldcoeff_lj);
394 ewclj2 = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
396 /* Avoid stupid compiler warnings */
397 jnrA = jnrB = 0;
398 j_coord_offsetA = 0;
399 j_coord_offsetB = 0;
401 outeriter = 0;
402 inneriter = 0;
404 /* Start outer loop over neighborlists */
405 for(iidx=0; iidx<nri; iidx++)
407 /* Load shift vector for this list */
408 i_shift_offset = DIM*shiftidx[iidx];
410 /* Load limits for loop over neighbors */
411 j_index_start = jindex[iidx];
412 j_index_end = jindex[iidx+1];
414 /* Get outer coordinate index */
415 inr = iinr[iidx];
416 i_coord_offset = DIM*inr;
418 /* Load i particle coords and add shift vector */
419 gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
421 fix0 = _mm_setzero_pd();
422 fiy0 = _mm_setzero_pd();
423 fiz0 = _mm_setzero_pd();
425 /* Load parameters for i particles */
426 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
428 /* Start inner kernel loop */
429 for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
432 /* Get j neighbor index, and coordinate index */
433 jnrA = jjnr[jidx];
434 jnrB = jjnr[jidx+1];
435 j_coord_offsetA = DIM*jnrA;
436 j_coord_offsetB = DIM*jnrB;
438 /* load j atom coordinates */
439 gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
440 &jx0,&jy0,&jz0);
442 /* Calculate displacement vector */
443 dx00 = _mm_sub_pd(ix0,jx0);
444 dy00 = _mm_sub_pd(iy0,jy0);
445 dz00 = _mm_sub_pd(iz0,jz0);
447 /* Calculate squared distance and things based on it */
448 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
450 rinv00 = gmx_mm_invsqrt_pd(rsq00);
452 rinvsq00 = _mm_mul_pd(rinv00,rinv00);
454 /* Load parameters for j particles */
455 vdwjidx0A = 2*vdwtype[jnrA+0];
456 vdwjidx0B = 2*vdwtype[jnrB+0];
458 /**************************
459 * CALCULATE INTERACTIONS *
460 **************************/
462 r00 = _mm_mul_pd(rsq00,rinv00);
464 /* Compute parameters for interactions between i and j atoms */
465 gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
466 vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
468 c6grid_00 = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
469 vdwgridparam+vdwioffset0+vdwjidx0B);
471 /* Analytical LJ-PME */
472 rinvsix = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
473 ewcljrsq = _mm_mul_pd(ewclj2,rsq00);
474 ewclj6 = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
475 exponent = gmx_simd_exp_d(ewcljrsq);
476 /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
477 poly = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
478 /* f6A = 6 * C6grid * (1 - poly) */
479 f6A = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
480 /* f6B = C6grid * exponent * beta^6 */
481 f6B = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
482 /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
483 fvdw = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
485 fscal = fvdw;
487 /* Calculate temporary vectorial force */
488 tx = _mm_mul_pd(fscal,dx00);
489 ty = _mm_mul_pd(fscal,dy00);
490 tz = _mm_mul_pd(fscal,dz00);
492 /* Update vectorial force */
493 fix0 = _mm_add_pd(fix0,tx);
494 fiy0 = _mm_add_pd(fiy0,ty);
495 fiz0 = _mm_add_pd(fiz0,tz);
497 gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
499 /* Inner loop uses 46 flops */
502 if(jidx<j_index_end)
505 jnrA = jjnr[jidx];
506 j_coord_offsetA = DIM*jnrA;
508 /* load j atom coordinates */
509 gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
510 &jx0,&jy0,&jz0);
512 /* Calculate displacement vector */
513 dx00 = _mm_sub_pd(ix0,jx0);
514 dy00 = _mm_sub_pd(iy0,jy0);
515 dz00 = _mm_sub_pd(iz0,jz0);
517 /* Calculate squared distance and things based on it */
518 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
520 rinv00 = gmx_mm_invsqrt_pd(rsq00);
522 rinvsq00 = _mm_mul_pd(rinv00,rinv00);
524 /* Load parameters for j particles */
525 vdwjidx0A = 2*vdwtype[jnrA+0];
527 /**************************
528 * CALCULATE INTERACTIONS *
529 **************************/
531 r00 = _mm_mul_pd(rsq00,rinv00);
533 /* Compute parameters for interactions between i and j atoms */
534 gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
536 c6grid_00 = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
538 /* Analytical LJ-PME */
539 rinvsix = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
540 ewcljrsq = _mm_mul_pd(ewclj2,rsq00);
541 ewclj6 = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
542 exponent = gmx_simd_exp_d(ewcljrsq);
543 /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
544 poly = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
545 /* f6A = 6 * C6grid * (1 - poly) */
546 f6A = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
547 /* f6B = C6grid * exponent * beta^6 */
548 f6B = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
549 /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
550 fvdw = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
552 fscal = fvdw;
554 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
556 /* Calculate temporary vectorial force */
557 tx = _mm_mul_pd(fscal,dx00);
558 ty = _mm_mul_pd(fscal,dy00);
559 tz = _mm_mul_pd(fscal,dz00);
561 /* Update vectorial force */
562 fix0 = _mm_add_pd(fix0,tx);
563 fiy0 = _mm_add_pd(fiy0,ty);
564 fiz0 = _mm_add_pd(fiz0,tz);
566 gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
568 /* Inner loop uses 46 flops */
571 /* End of innermost loop */
573 gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
574 f+i_coord_offset,fshift+i_shift_offset);
576 /* Increment number of inner iterations */
577 inneriter += j_index_end - j_index_start;
579 /* Outer loop uses 6 flops */
582 /* Increment number of outer iterations */
583 outeriter += nri;
585 /* Update outer/inner flops */
587 inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*6 + inneriter*46);