Removed simple.h from nb_kernel_sse2_XX
[gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecGB_VdwNone_GeomP1P1_sse2_double.c
blob78d69fd4d8bc92cbbd1b626a5b840e1c38629c7d
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 2012,2013,2014,2015, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
36 * Note: this file was generated by the GROMACS sse2_double kernel generator.
38 #include "gmxpre.h"
40 #include "config.h"
42 #include <math.h>
44 #include "../nb_kernel.h"
45 #include "gromacs/math/vec.h"
46 #include "gromacs/legacyheaders/nrnb.h"
48 #include "gromacs/simd/math_x86_sse2_double.h"
49 #include "kernelutil_x86_sse2_double.h"
52 * Gromacs nonbonded kernel: nb_kernel_ElecGB_VdwNone_GeomP1P1_VF_sse2_double
53 * Electrostatics interaction: GeneralizedBorn
54 * VdW interaction: None
55 * Geometry: Particle-Particle
56 * Calculate force/pot: PotentialAndForce
58 void
59 nb_kernel_ElecGB_VdwNone_GeomP1P1_VF_sse2_double
60 (t_nblist * gmx_restrict nlist,
61 rvec * gmx_restrict xx,
62 rvec * gmx_restrict ff,
63 t_forcerec * gmx_restrict fr,
64 t_mdatoms * gmx_restrict mdatoms,
65 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
66 t_nrnb * gmx_restrict nrnb)
68 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
69 * just 0 for non-waters.
70 * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
71 * jnr indices corresponding to data put in the four positions in the SIMD register.
73 int i_shift_offset,i_coord_offset,outeriter,inneriter;
74 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
75 int jnrA,jnrB;
76 int j_coord_offsetA,j_coord_offsetB;
77 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
78 real rcutoff_scalar;
79 real *shiftvec,*fshift,*x,*f;
80 __m128d tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
81 int vdwioffset0;
82 __m128d ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
83 int vdwjidx0A,vdwjidx0B;
84 __m128d jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
85 __m128d dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
86 __m128d velec,felec,velecsum,facel,crf,krf,krf2;
87 real *charge;
88 __m128i gbitab;
89 __m128d vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,dvdatmp;
90 __m128d minushalf = _mm_set1_pd(-0.5);
91 real *invsqrta,*dvda,*gbtab;
92 __m128i vfitab;
93 __m128i ifour = _mm_set1_epi32(4);
94 __m128d rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
95 real *vftab;
96 __m128d dummy_mask,cutoff_mask;
97 __m128d signbit = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
98 __m128d one = _mm_set1_pd(1.0);
99 __m128d two = _mm_set1_pd(2.0);
100 x = xx[0];
101 f = ff[0];
103 nri = nlist->nri;
104 iinr = nlist->iinr;
105 jindex = nlist->jindex;
106 jjnr = nlist->jjnr;
107 shiftidx = nlist->shift;
108 gid = nlist->gid;
109 shiftvec = fr->shift_vec[0];
110 fshift = fr->fshift[0];
111 facel = _mm_set1_pd(fr->epsfac);
112 charge = mdatoms->chargeA;
114 invsqrta = fr->invsqrta;
115 dvda = fr->dvda;
116 gbtabscale = _mm_set1_pd(fr->gbtab.scale);
117 gbtab = fr->gbtab.data;
118 gbinvepsdiff = _mm_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
120 /* Avoid stupid compiler warnings */
121 jnrA = jnrB = 0;
122 j_coord_offsetA = 0;
123 j_coord_offsetB = 0;
125 outeriter = 0;
126 inneriter = 0;
128 /* Start outer loop over neighborlists */
129 for(iidx=0; iidx<nri; iidx++)
131 /* Load shift vector for this list */
132 i_shift_offset = DIM*shiftidx[iidx];
134 /* Load limits for loop over neighbors */
135 j_index_start = jindex[iidx];
136 j_index_end = jindex[iidx+1];
138 /* Get outer coordinate index */
139 inr = iinr[iidx];
140 i_coord_offset = DIM*inr;
142 /* Load i particle coords and add shift vector */
143 gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
145 fix0 = _mm_setzero_pd();
146 fiy0 = _mm_setzero_pd();
147 fiz0 = _mm_setzero_pd();
149 /* Load parameters for i particles */
150 iq0 = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
151 isai0 = _mm_load1_pd(invsqrta+inr+0);
153 /* Reset potential sums */
154 velecsum = _mm_setzero_pd();
155 vgbsum = _mm_setzero_pd();
156 dvdasum = _mm_setzero_pd();
158 /* Start inner kernel loop */
159 for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
162 /* Get j neighbor index, and coordinate index */
163 jnrA = jjnr[jidx];
164 jnrB = jjnr[jidx+1];
165 j_coord_offsetA = DIM*jnrA;
166 j_coord_offsetB = DIM*jnrB;
168 /* load j atom coordinates */
169 gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
170 &jx0,&jy0,&jz0);
172 /* Calculate displacement vector */
173 dx00 = _mm_sub_pd(ix0,jx0);
174 dy00 = _mm_sub_pd(iy0,jy0);
175 dz00 = _mm_sub_pd(iz0,jz0);
177 /* Calculate squared distance and things based on it */
178 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
180 rinv00 = gmx_mm_invsqrt_pd(rsq00);
182 /* Load parameters for j particles */
183 jq0 = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
184 isaj0 = gmx_mm_load_2real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0);
186 /**************************
187 * CALCULATE INTERACTIONS *
188 **************************/
190 r00 = _mm_mul_pd(rsq00,rinv00);
192 /* Compute parameters for interactions between i and j atoms */
193 qq00 = _mm_mul_pd(iq0,jq0);
195 /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
196 isaprod = _mm_mul_pd(isai0,isaj0);
197 gbqqfactor = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
198 gbscale = _mm_mul_pd(isaprod,gbtabscale);
200 /* Calculate generalized born table index - this is a separate table from the normal one,
201 * but we use the same procedure by multiplying r with scale and truncating to integer.
203 rt = _mm_mul_pd(r00,gbscale);
204 gbitab = _mm_cvttpd_epi32(rt);
205 gbeps = _mm_sub_pd(rt,_mm_cvtepi32_pd(gbitab));
206 gbitab = _mm_slli_epi32(gbitab,2);
208 Y = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) );
209 F = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,1) );
210 GMX_MM_TRANSPOSE2_PD(Y,F);
211 G = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) +2);
212 H = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,1) +2);
213 GMX_MM_TRANSPOSE2_PD(G,H);
214 Heps = _mm_mul_pd(gbeps,H);
215 Fp = _mm_add_pd(F,_mm_mul_pd(gbeps,_mm_add_pd(G,Heps)));
216 VV = _mm_add_pd(Y,_mm_mul_pd(gbeps,Fp));
217 vgb = _mm_mul_pd(gbqqfactor,VV);
219 FF = _mm_add_pd(Fp,_mm_mul_pd(gbeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
220 fgb = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
221 dvdatmp = _mm_mul_pd(minushalf,_mm_add_pd(vgb,_mm_mul_pd(fgb,r00)));
222 dvdasum = _mm_add_pd(dvdasum,dvdatmp);
223 gmx_mm_increment_2real_swizzle_pd(dvda+jnrA,dvda+jnrB,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
224 velec = _mm_mul_pd(qq00,rinv00);
225 felec = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(velec,rinv00),fgb),rinv00);
227 /* Update potential sum for this i atom from the interaction with this j atom. */
228 velecsum = _mm_add_pd(velecsum,velec);
229 vgbsum = _mm_add_pd(vgbsum,vgb);
231 fscal = felec;
233 /* Calculate temporary vectorial force */
234 tx = _mm_mul_pd(fscal,dx00);
235 ty = _mm_mul_pd(fscal,dy00);
236 tz = _mm_mul_pd(fscal,dz00);
238 /* Update vectorial force */
239 fix0 = _mm_add_pd(fix0,tx);
240 fiy0 = _mm_add_pd(fiy0,ty);
241 fiz0 = _mm_add_pd(fiz0,tz);
243 gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
245 /* Inner loop uses 58 flops */
248 if(jidx<j_index_end)
251 jnrA = jjnr[jidx];
252 j_coord_offsetA = DIM*jnrA;
254 /* load j atom coordinates */
255 gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
256 &jx0,&jy0,&jz0);
258 /* Calculate displacement vector */
259 dx00 = _mm_sub_pd(ix0,jx0);
260 dy00 = _mm_sub_pd(iy0,jy0);
261 dz00 = _mm_sub_pd(iz0,jz0);
263 /* Calculate squared distance and things based on it */
264 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
266 rinv00 = gmx_mm_invsqrt_pd(rsq00);
268 /* Load parameters for j particles */
269 jq0 = _mm_load_sd(charge+jnrA+0);
270 isaj0 = _mm_load_sd(invsqrta+jnrA+0);
272 /**************************
273 * CALCULATE INTERACTIONS *
274 **************************/
276 r00 = _mm_mul_pd(rsq00,rinv00);
278 /* Compute parameters for interactions between i and j atoms */
279 qq00 = _mm_mul_pd(iq0,jq0);
281 /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
282 isaprod = _mm_mul_pd(isai0,isaj0);
283 gbqqfactor = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
284 gbscale = _mm_mul_pd(isaprod,gbtabscale);
286 /* Calculate generalized born table index - this is a separate table from the normal one,
287 * but we use the same procedure by multiplying r with scale and truncating to integer.
289 rt = _mm_mul_pd(r00,gbscale);
290 gbitab = _mm_cvttpd_epi32(rt);
291 gbeps = _mm_sub_pd(rt,_mm_cvtepi32_pd(gbitab));
292 gbitab = _mm_slli_epi32(gbitab,2);
294 Y = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) );
295 F = _mm_setzero_pd();
296 GMX_MM_TRANSPOSE2_PD(Y,F);
297 G = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) +2);
298 H = _mm_setzero_pd();
299 GMX_MM_TRANSPOSE2_PD(G,H);
300 Heps = _mm_mul_pd(gbeps,H);
301 Fp = _mm_add_pd(F,_mm_mul_pd(gbeps,_mm_add_pd(G,Heps)));
302 VV = _mm_add_pd(Y,_mm_mul_pd(gbeps,Fp));
303 vgb = _mm_mul_pd(gbqqfactor,VV);
305 FF = _mm_add_pd(Fp,_mm_mul_pd(gbeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
306 fgb = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
307 dvdatmp = _mm_mul_pd(minushalf,_mm_add_pd(vgb,_mm_mul_pd(fgb,r00)));
308 dvdatmp = _mm_unpacklo_pd(dvdatmp,_mm_setzero_pd());
309 dvdasum = _mm_add_pd(dvdasum,dvdatmp);
310 gmx_mm_increment_1real_pd(dvda+jnrA,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
311 velec = _mm_mul_pd(qq00,rinv00);
312 felec = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(velec,rinv00),fgb),rinv00);
314 /* Update potential sum for this i atom from the interaction with this j atom. */
315 velec = _mm_unpacklo_pd(velec,_mm_setzero_pd());
316 velecsum = _mm_add_pd(velecsum,velec);
317 vgb = _mm_unpacklo_pd(vgb,_mm_setzero_pd());
318 vgbsum = _mm_add_pd(vgbsum,vgb);
320 fscal = felec;
322 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
324 /* Calculate temporary vectorial force */
325 tx = _mm_mul_pd(fscal,dx00);
326 ty = _mm_mul_pd(fscal,dy00);
327 tz = _mm_mul_pd(fscal,dz00);
329 /* Update vectorial force */
330 fix0 = _mm_add_pd(fix0,tx);
331 fiy0 = _mm_add_pd(fiy0,ty);
332 fiz0 = _mm_add_pd(fiz0,tz);
334 gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
336 /* Inner loop uses 58 flops */
339 /* End of innermost loop */
341 gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
342 f+i_coord_offset,fshift+i_shift_offset);
344 ggid = gid[iidx];
345 /* Update potential energies */
346 gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
347 gmx_mm_update_1pot_pd(vgbsum,kernel_data->energygrp_polarization+ggid);
348 dvdasum = _mm_mul_pd(dvdasum, _mm_mul_pd(isai0,isai0));
349 gmx_mm_update_1pot_pd(dvdasum,dvda+inr);
351 /* Increment number of inner iterations */
352 inneriter += j_index_end - j_index_start;
354 /* Outer loop uses 9 flops */
357 /* Increment number of outer iterations */
358 outeriter += nri;
360 /* Update outer/inner flops */
362 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*9 + inneriter*58);
365 * Gromacs nonbonded kernel: nb_kernel_ElecGB_VdwNone_GeomP1P1_F_sse2_double
366 * Electrostatics interaction: GeneralizedBorn
367 * VdW interaction: None
368 * Geometry: Particle-Particle
369 * Calculate force/pot: Force
371 void
372 nb_kernel_ElecGB_VdwNone_GeomP1P1_F_sse2_double
373 (t_nblist * gmx_restrict nlist,
374 rvec * gmx_restrict xx,
375 rvec * gmx_restrict ff,
376 t_forcerec * gmx_restrict fr,
377 t_mdatoms * gmx_restrict mdatoms,
378 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
379 t_nrnb * gmx_restrict nrnb)
381 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
382 * just 0 for non-waters.
383 * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
384 * jnr indices corresponding to data put in the four positions in the SIMD register.
386 int i_shift_offset,i_coord_offset,outeriter,inneriter;
387 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
388 int jnrA,jnrB;
389 int j_coord_offsetA,j_coord_offsetB;
390 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
391 real rcutoff_scalar;
392 real *shiftvec,*fshift,*x,*f;
393 __m128d tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
394 int vdwioffset0;
395 __m128d ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
396 int vdwjidx0A,vdwjidx0B;
397 __m128d jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
398 __m128d dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
399 __m128d velec,felec,velecsum,facel,crf,krf,krf2;
400 real *charge;
401 __m128i gbitab;
402 __m128d vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,dvdatmp;
403 __m128d minushalf = _mm_set1_pd(-0.5);
404 real *invsqrta,*dvda,*gbtab;
405 __m128i vfitab;
406 __m128i ifour = _mm_set1_epi32(4);
407 __m128d rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
408 real *vftab;
409 __m128d dummy_mask,cutoff_mask;
410 __m128d signbit = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
411 __m128d one = _mm_set1_pd(1.0);
412 __m128d two = _mm_set1_pd(2.0);
413 x = xx[0];
414 f = ff[0];
416 nri = nlist->nri;
417 iinr = nlist->iinr;
418 jindex = nlist->jindex;
419 jjnr = nlist->jjnr;
420 shiftidx = nlist->shift;
421 gid = nlist->gid;
422 shiftvec = fr->shift_vec[0];
423 fshift = fr->fshift[0];
424 facel = _mm_set1_pd(fr->epsfac);
425 charge = mdatoms->chargeA;
427 invsqrta = fr->invsqrta;
428 dvda = fr->dvda;
429 gbtabscale = _mm_set1_pd(fr->gbtab.scale);
430 gbtab = fr->gbtab.data;
431 gbinvepsdiff = _mm_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
433 /* Avoid stupid compiler warnings */
434 jnrA = jnrB = 0;
435 j_coord_offsetA = 0;
436 j_coord_offsetB = 0;
438 outeriter = 0;
439 inneriter = 0;
441 /* Start outer loop over neighborlists */
442 for(iidx=0; iidx<nri; iidx++)
444 /* Load shift vector for this list */
445 i_shift_offset = DIM*shiftidx[iidx];
447 /* Load limits for loop over neighbors */
448 j_index_start = jindex[iidx];
449 j_index_end = jindex[iidx+1];
451 /* Get outer coordinate index */
452 inr = iinr[iidx];
453 i_coord_offset = DIM*inr;
455 /* Load i particle coords and add shift vector */
456 gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
458 fix0 = _mm_setzero_pd();
459 fiy0 = _mm_setzero_pd();
460 fiz0 = _mm_setzero_pd();
462 /* Load parameters for i particles */
463 iq0 = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
464 isai0 = _mm_load1_pd(invsqrta+inr+0);
466 dvdasum = _mm_setzero_pd();
468 /* Start inner kernel loop */
469 for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
472 /* Get j neighbor index, and coordinate index */
473 jnrA = jjnr[jidx];
474 jnrB = jjnr[jidx+1];
475 j_coord_offsetA = DIM*jnrA;
476 j_coord_offsetB = DIM*jnrB;
478 /* load j atom coordinates */
479 gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
480 &jx0,&jy0,&jz0);
482 /* Calculate displacement vector */
483 dx00 = _mm_sub_pd(ix0,jx0);
484 dy00 = _mm_sub_pd(iy0,jy0);
485 dz00 = _mm_sub_pd(iz0,jz0);
487 /* Calculate squared distance and things based on it */
488 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
490 rinv00 = gmx_mm_invsqrt_pd(rsq00);
492 /* Load parameters for j particles */
493 jq0 = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
494 isaj0 = gmx_mm_load_2real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0);
496 /**************************
497 * CALCULATE INTERACTIONS *
498 **************************/
500 r00 = _mm_mul_pd(rsq00,rinv00);
502 /* Compute parameters for interactions between i and j atoms */
503 qq00 = _mm_mul_pd(iq0,jq0);
505 /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
506 isaprod = _mm_mul_pd(isai0,isaj0);
507 gbqqfactor = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
508 gbscale = _mm_mul_pd(isaprod,gbtabscale);
510 /* Calculate generalized born table index - this is a separate table from the normal one,
511 * but we use the same procedure by multiplying r with scale and truncating to integer.
513 rt = _mm_mul_pd(r00,gbscale);
514 gbitab = _mm_cvttpd_epi32(rt);
515 gbeps = _mm_sub_pd(rt,_mm_cvtepi32_pd(gbitab));
516 gbitab = _mm_slli_epi32(gbitab,2);
518 Y = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) );
519 F = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,1) );
520 GMX_MM_TRANSPOSE2_PD(Y,F);
521 G = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) +2);
522 H = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,1) +2);
523 GMX_MM_TRANSPOSE2_PD(G,H);
524 Heps = _mm_mul_pd(gbeps,H);
525 Fp = _mm_add_pd(F,_mm_mul_pd(gbeps,_mm_add_pd(G,Heps)));
526 VV = _mm_add_pd(Y,_mm_mul_pd(gbeps,Fp));
527 vgb = _mm_mul_pd(gbqqfactor,VV);
529 FF = _mm_add_pd(Fp,_mm_mul_pd(gbeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
530 fgb = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
531 dvdatmp = _mm_mul_pd(minushalf,_mm_add_pd(vgb,_mm_mul_pd(fgb,r00)));
532 dvdasum = _mm_add_pd(dvdasum,dvdatmp);
533 gmx_mm_increment_2real_swizzle_pd(dvda+jnrA,dvda+jnrB,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
534 velec = _mm_mul_pd(qq00,rinv00);
535 felec = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(velec,rinv00),fgb),rinv00);
537 fscal = felec;
539 /* Calculate temporary vectorial force */
540 tx = _mm_mul_pd(fscal,dx00);
541 ty = _mm_mul_pd(fscal,dy00);
542 tz = _mm_mul_pd(fscal,dz00);
544 /* Update vectorial force */
545 fix0 = _mm_add_pd(fix0,tx);
546 fiy0 = _mm_add_pd(fiy0,ty);
547 fiz0 = _mm_add_pd(fiz0,tz);
549 gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
551 /* Inner loop uses 56 flops */
554 if(jidx<j_index_end)
557 jnrA = jjnr[jidx];
558 j_coord_offsetA = DIM*jnrA;
560 /* load j atom coordinates */
561 gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
562 &jx0,&jy0,&jz0);
564 /* Calculate displacement vector */
565 dx00 = _mm_sub_pd(ix0,jx0);
566 dy00 = _mm_sub_pd(iy0,jy0);
567 dz00 = _mm_sub_pd(iz0,jz0);
569 /* Calculate squared distance and things based on it */
570 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
572 rinv00 = gmx_mm_invsqrt_pd(rsq00);
574 /* Load parameters for j particles */
575 jq0 = _mm_load_sd(charge+jnrA+0);
576 isaj0 = _mm_load_sd(invsqrta+jnrA+0);
578 /**************************
579 * CALCULATE INTERACTIONS *
580 **************************/
582 r00 = _mm_mul_pd(rsq00,rinv00);
584 /* Compute parameters for interactions between i and j atoms */
585 qq00 = _mm_mul_pd(iq0,jq0);
587 /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
588 isaprod = _mm_mul_pd(isai0,isaj0);
589 gbqqfactor = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
590 gbscale = _mm_mul_pd(isaprod,gbtabscale);
592 /* Calculate generalized born table index - this is a separate table from the normal one,
593 * but we use the same procedure by multiplying r with scale and truncating to integer.
595 rt = _mm_mul_pd(r00,gbscale);
596 gbitab = _mm_cvttpd_epi32(rt);
597 gbeps = _mm_sub_pd(rt,_mm_cvtepi32_pd(gbitab));
598 gbitab = _mm_slli_epi32(gbitab,2);
600 Y = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) );
601 F = _mm_setzero_pd();
602 GMX_MM_TRANSPOSE2_PD(Y,F);
603 G = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) +2);
604 H = _mm_setzero_pd();
605 GMX_MM_TRANSPOSE2_PD(G,H);
606 Heps = _mm_mul_pd(gbeps,H);
607 Fp = _mm_add_pd(F,_mm_mul_pd(gbeps,_mm_add_pd(G,Heps)));
608 VV = _mm_add_pd(Y,_mm_mul_pd(gbeps,Fp));
609 vgb = _mm_mul_pd(gbqqfactor,VV);
611 FF = _mm_add_pd(Fp,_mm_mul_pd(gbeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
612 fgb = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
613 dvdatmp = _mm_mul_pd(minushalf,_mm_add_pd(vgb,_mm_mul_pd(fgb,r00)));
614 dvdatmp = _mm_unpacklo_pd(dvdatmp,_mm_setzero_pd());
615 dvdasum = _mm_add_pd(dvdasum,dvdatmp);
616 gmx_mm_increment_1real_pd(dvda+jnrA,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
617 velec = _mm_mul_pd(qq00,rinv00);
618 felec = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(velec,rinv00),fgb),rinv00);
620 fscal = felec;
622 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
624 /* Calculate temporary vectorial force */
625 tx = _mm_mul_pd(fscal,dx00);
626 ty = _mm_mul_pd(fscal,dy00);
627 tz = _mm_mul_pd(fscal,dz00);
629 /* Update vectorial force */
630 fix0 = _mm_add_pd(fix0,tx);
631 fiy0 = _mm_add_pd(fiy0,ty);
632 fiz0 = _mm_add_pd(fiz0,tz);
634 gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
636 /* Inner loop uses 56 flops */
639 /* End of innermost loop */
641 gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
642 f+i_coord_offset,fshift+i_shift_offset);
644 dvdasum = _mm_mul_pd(dvdasum, _mm_mul_pd(isai0,isai0));
645 gmx_mm_update_1pot_pd(dvdasum,dvda+inr);
647 /* Increment number of inner iterations */
648 inneriter += j_index_end - j_index_start;
650 /* Outer loop uses 7 flops */
653 /* Increment number of outer iterations */
654 outeriter += nri;
656 /* Update outer/inner flops */
658 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*56);