Removed simple.h from nb_kernel_sse2_XX
[gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_sse2_double.c
blobec360de07489de684301aa8904eb4abf4fc26a93
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 2012,2013,2014,2015, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
36 * Note: this file was generated by the GROMACS sse2_double kernel generator.
38 #include "gmxpre.h"
40 #include "config.h"
42 #include <math.h>
44 #include "../nb_kernel.h"
45 #include "gromacs/math/vec.h"
46 #include "gromacs/legacyheaders/nrnb.h"
48 #include "gromacs/simd/math_x86_sse2_double.h"
49 #include "kernelutil_x86_sse2_double.h"
52 * Gromacs nonbonded kernel: nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_VF_sse2_double
53 * Electrostatics interaction: Ewald
54 * VdW interaction: LJEwald
55 * Geometry: Water3-Particle
56 * Calculate force/pot: PotentialAndForce
58 void
59 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_VF_sse2_double
60 (t_nblist * gmx_restrict nlist,
61 rvec * gmx_restrict xx,
62 rvec * gmx_restrict ff,
63 t_forcerec * gmx_restrict fr,
64 t_mdatoms * gmx_restrict mdatoms,
65 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
66 t_nrnb * gmx_restrict nrnb)
68 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
69 * just 0 for non-waters.
70 * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
71 * jnr indices corresponding to data put in the four positions in the SIMD register.
73 int i_shift_offset,i_coord_offset,outeriter,inneriter;
74 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
75 int jnrA,jnrB;
76 int j_coord_offsetA,j_coord_offsetB;
77 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
78 real rcutoff_scalar;
79 real *shiftvec,*fshift,*x,*f;
80 __m128d tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
81 int vdwioffset0;
82 __m128d ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
83 int vdwioffset1;
84 __m128d ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
85 int vdwioffset2;
86 __m128d ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
87 int vdwjidx0A,vdwjidx0B;
88 __m128d jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89 __m128d dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90 __m128d dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
91 __m128d dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
92 __m128d velec,felec,velecsum,facel,crf,krf,krf2;
93 real *charge;
94 int nvdwtype;
95 __m128d rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
96 int *vdwtype;
97 real *vdwparam;
98 __m128d one_sixth = _mm_set1_pd(1.0/6.0);
99 __m128d one_twelfth = _mm_set1_pd(1.0/12.0);
100 __m128d c6grid_00;
101 __m128d c6grid_10;
102 __m128d c6grid_20;
103 __m128d ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
104 real *vdwgridparam;
105 __m128d one_half = _mm_set1_pd(0.5);
106 __m128d minus_one = _mm_set1_pd(-1.0);
107 __m128i ewitab;
108 __m128d ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
109 real *ewtab;
110 __m128d dummy_mask,cutoff_mask;
111 __m128d signbit = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
112 __m128d one = _mm_set1_pd(1.0);
113 __m128d two = _mm_set1_pd(2.0);
114 x = xx[0];
115 f = ff[0];
117 nri = nlist->nri;
118 iinr = nlist->iinr;
119 jindex = nlist->jindex;
120 jjnr = nlist->jjnr;
121 shiftidx = nlist->shift;
122 gid = nlist->gid;
123 shiftvec = fr->shift_vec[0];
124 fshift = fr->fshift[0];
125 facel = _mm_set1_pd(fr->epsfac);
126 charge = mdatoms->chargeA;
127 nvdwtype = fr->ntype;
128 vdwparam = fr->nbfp;
129 vdwtype = mdatoms->typeA;
130 vdwgridparam = fr->ljpme_c6grid;
131 sh_lj_ewald = _mm_set1_pd(fr->ic->sh_lj_ewald);
132 ewclj = _mm_set1_pd(fr->ewaldcoeff_lj);
133 ewclj2 = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
135 sh_ewald = _mm_set1_pd(fr->ic->sh_ewald);
136 ewtab = fr->ic->tabq_coul_FDV0;
137 ewtabscale = _mm_set1_pd(fr->ic->tabq_scale);
138 ewtabhalfspace = _mm_set1_pd(0.5/fr->ic->tabq_scale);
140 /* Setup water-specific parameters */
141 inr = nlist->iinr[0];
142 iq0 = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
143 iq1 = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
144 iq2 = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
145 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
147 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
148 rcutoff_scalar = fr->rcoulomb;
149 rcutoff = _mm_set1_pd(rcutoff_scalar);
150 rcutoff2 = _mm_mul_pd(rcutoff,rcutoff);
152 sh_vdw_invrcut6 = _mm_set1_pd(fr->ic->sh_invrc6);
153 rvdw = _mm_set1_pd(fr->rvdw);
155 /* Avoid stupid compiler warnings */
156 jnrA = jnrB = 0;
157 j_coord_offsetA = 0;
158 j_coord_offsetB = 0;
160 outeriter = 0;
161 inneriter = 0;
163 /* Start outer loop over neighborlists */
164 for(iidx=0; iidx<nri; iidx++)
166 /* Load shift vector for this list */
167 i_shift_offset = DIM*shiftidx[iidx];
169 /* Load limits for loop over neighbors */
170 j_index_start = jindex[iidx];
171 j_index_end = jindex[iidx+1];
173 /* Get outer coordinate index */
174 inr = iinr[iidx];
175 i_coord_offset = DIM*inr;
177 /* Load i particle coords and add shift vector */
178 gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
179 &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
181 fix0 = _mm_setzero_pd();
182 fiy0 = _mm_setzero_pd();
183 fiz0 = _mm_setzero_pd();
184 fix1 = _mm_setzero_pd();
185 fiy1 = _mm_setzero_pd();
186 fiz1 = _mm_setzero_pd();
187 fix2 = _mm_setzero_pd();
188 fiy2 = _mm_setzero_pd();
189 fiz2 = _mm_setzero_pd();
191 /* Reset potential sums */
192 velecsum = _mm_setzero_pd();
193 vvdwsum = _mm_setzero_pd();
195 /* Start inner kernel loop */
196 for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
199 /* Get j neighbor index, and coordinate index */
200 jnrA = jjnr[jidx];
201 jnrB = jjnr[jidx+1];
202 j_coord_offsetA = DIM*jnrA;
203 j_coord_offsetB = DIM*jnrB;
205 /* load j atom coordinates */
206 gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
207 &jx0,&jy0,&jz0);
209 /* Calculate displacement vector */
210 dx00 = _mm_sub_pd(ix0,jx0);
211 dy00 = _mm_sub_pd(iy0,jy0);
212 dz00 = _mm_sub_pd(iz0,jz0);
213 dx10 = _mm_sub_pd(ix1,jx0);
214 dy10 = _mm_sub_pd(iy1,jy0);
215 dz10 = _mm_sub_pd(iz1,jz0);
216 dx20 = _mm_sub_pd(ix2,jx0);
217 dy20 = _mm_sub_pd(iy2,jy0);
218 dz20 = _mm_sub_pd(iz2,jz0);
220 /* Calculate squared distance and things based on it */
221 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
222 rsq10 = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
223 rsq20 = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
225 rinv00 = gmx_mm_invsqrt_pd(rsq00);
226 rinv10 = gmx_mm_invsqrt_pd(rsq10);
227 rinv20 = gmx_mm_invsqrt_pd(rsq20);
229 rinvsq00 = _mm_mul_pd(rinv00,rinv00);
230 rinvsq10 = _mm_mul_pd(rinv10,rinv10);
231 rinvsq20 = _mm_mul_pd(rinv20,rinv20);
233 /* Load parameters for j particles */
234 jq0 = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
235 vdwjidx0A = 2*vdwtype[jnrA+0];
236 vdwjidx0B = 2*vdwtype[jnrB+0];
238 fjx0 = _mm_setzero_pd();
239 fjy0 = _mm_setzero_pd();
240 fjz0 = _mm_setzero_pd();
242 /**************************
243 * CALCULATE INTERACTIONS *
244 **************************/
246 if (gmx_mm_any_lt(rsq00,rcutoff2))
249 r00 = _mm_mul_pd(rsq00,rinv00);
251 /* Compute parameters for interactions between i and j atoms */
252 qq00 = _mm_mul_pd(iq0,jq0);
253 gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
254 vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
256 c6grid_00 = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
257 vdwgridparam+vdwioffset0+vdwjidx0B);
259 /* EWALD ELECTROSTATICS */
261 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
262 ewrt = _mm_mul_pd(r00,ewtabscale);
263 ewitab = _mm_cvttpd_epi32(ewrt);
264 eweps = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
265 ewitab = _mm_slli_epi32(ewitab,2);
266 ewtabF = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
267 ewtabD = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
268 GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
269 ewtabV = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
270 ewtabFn = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
271 GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
272 felec = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
273 velec = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
274 velec = _mm_mul_pd(qq00,_mm_sub_pd(_mm_sub_pd(rinv00,sh_ewald),velec));
275 felec = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
277 /* Analytical LJ-PME */
278 rinvsix = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
279 ewcljrsq = _mm_mul_pd(ewclj2,rsq00);
280 ewclj6 = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
281 exponent = gmx_simd_exp_d(ewcljrsq);
282 /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
283 poly = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
284 /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
285 vvdw6 = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
286 vvdw12 = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
287 vvdw = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))),one_twelfth),
288 _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_add_pd(_mm_mul_pd(c6_00,sh_vdw_invrcut6),_mm_mul_pd(c6grid_00,sh_lj_ewald))),one_sixth));
289 /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
290 fvdw = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
292 cutoff_mask = _mm_cmplt_pd(rsq00,rcutoff2);
294 /* Update potential sum for this i atom from the interaction with this j atom. */
295 velec = _mm_and_pd(velec,cutoff_mask);
296 velecsum = _mm_add_pd(velecsum,velec);
297 vvdw = _mm_and_pd(vvdw,cutoff_mask);
298 vvdwsum = _mm_add_pd(vvdwsum,vvdw);
300 fscal = _mm_add_pd(felec,fvdw);
302 fscal = _mm_and_pd(fscal,cutoff_mask);
304 /* Calculate temporary vectorial force */
305 tx = _mm_mul_pd(fscal,dx00);
306 ty = _mm_mul_pd(fscal,dy00);
307 tz = _mm_mul_pd(fscal,dz00);
309 /* Update vectorial force */
310 fix0 = _mm_add_pd(fix0,tx);
311 fiy0 = _mm_add_pd(fiy0,ty);
312 fiz0 = _mm_add_pd(fiz0,tz);
314 fjx0 = _mm_add_pd(fjx0,tx);
315 fjy0 = _mm_add_pd(fjy0,ty);
316 fjz0 = _mm_add_pd(fjz0,tz);
320 /**************************
321 * CALCULATE INTERACTIONS *
322 **************************/
324 if (gmx_mm_any_lt(rsq10,rcutoff2))
327 r10 = _mm_mul_pd(rsq10,rinv10);
329 /* Compute parameters for interactions between i and j atoms */
330 qq10 = _mm_mul_pd(iq1,jq0);
332 /* EWALD ELECTROSTATICS */
334 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
335 ewrt = _mm_mul_pd(r10,ewtabscale);
336 ewitab = _mm_cvttpd_epi32(ewrt);
337 eweps = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
338 ewitab = _mm_slli_epi32(ewitab,2);
339 ewtabF = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
340 ewtabD = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
341 GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
342 ewtabV = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
343 ewtabFn = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
344 GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
345 felec = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
346 velec = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
347 velec = _mm_mul_pd(qq10,_mm_sub_pd(_mm_sub_pd(rinv10,sh_ewald),velec));
348 felec = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
350 cutoff_mask = _mm_cmplt_pd(rsq10,rcutoff2);
352 /* Update potential sum for this i atom from the interaction with this j atom. */
353 velec = _mm_and_pd(velec,cutoff_mask);
354 velecsum = _mm_add_pd(velecsum,velec);
356 fscal = felec;
358 fscal = _mm_and_pd(fscal,cutoff_mask);
360 /* Calculate temporary vectorial force */
361 tx = _mm_mul_pd(fscal,dx10);
362 ty = _mm_mul_pd(fscal,dy10);
363 tz = _mm_mul_pd(fscal,dz10);
365 /* Update vectorial force */
366 fix1 = _mm_add_pd(fix1,tx);
367 fiy1 = _mm_add_pd(fiy1,ty);
368 fiz1 = _mm_add_pd(fiz1,tz);
370 fjx0 = _mm_add_pd(fjx0,tx);
371 fjy0 = _mm_add_pd(fjy0,ty);
372 fjz0 = _mm_add_pd(fjz0,tz);
376 /**************************
377 * CALCULATE INTERACTIONS *
378 **************************/
380 if (gmx_mm_any_lt(rsq20,rcutoff2))
383 r20 = _mm_mul_pd(rsq20,rinv20);
385 /* Compute parameters for interactions between i and j atoms */
386 qq20 = _mm_mul_pd(iq2,jq0);
388 /* EWALD ELECTROSTATICS */
390 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
391 ewrt = _mm_mul_pd(r20,ewtabscale);
392 ewitab = _mm_cvttpd_epi32(ewrt);
393 eweps = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
394 ewitab = _mm_slli_epi32(ewitab,2);
395 ewtabF = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
396 ewtabD = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
397 GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
398 ewtabV = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
399 ewtabFn = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
400 GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
401 felec = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
402 velec = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
403 velec = _mm_mul_pd(qq20,_mm_sub_pd(_mm_sub_pd(rinv20,sh_ewald),velec));
404 felec = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
406 cutoff_mask = _mm_cmplt_pd(rsq20,rcutoff2);
408 /* Update potential sum for this i atom from the interaction with this j atom. */
409 velec = _mm_and_pd(velec,cutoff_mask);
410 velecsum = _mm_add_pd(velecsum,velec);
412 fscal = felec;
414 fscal = _mm_and_pd(fscal,cutoff_mask);
416 /* Calculate temporary vectorial force */
417 tx = _mm_mul_pd(fscal,dx20);
418 ty = _mm_mul_pd(fscal,dy20);
419 tz = _mm_mul_pd(fscal,dz20);
421 /* Update vectorial force */
422 fix2 = _mm_add_pd(fix2,tx);
423 fiy2 = _mm_add_pd(fiy2,ty);
424 fiz2 = _mm_add_pd(fiz2,tz);
426 fjx0 = _mm_add_pd(fjx0,tx);
427 fjy0 = _mm_add_pd(fjy0,ty);
428 fjz0 = _mm_add_pd(fjz0,tz);
432 gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
434 /* Inner loop uses 177 flops */
437 if(jidx<j_index_end)
440 jnrA = jjnr[jidx];
441 j_coord_offsetA = DIM*jnrA;
443 /* load j atom coordinates */
444 gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
445 &jx0,&jy0,&jz0);
447 /* Calculate displacement vector */
448 dx00 = _mm_sub_pd(ix0,jx0);
449 dy00 = _mm_sub_pd(iy0,jy0);
450 dz00 = _mm_sub_pd(iz0,jz0);
451 dx10 = _mm_sub_pd(ix1,jx0);
452 dy10 = _mm_sub_pd(iy1,jy0);
453 dz10 = _mm_sub_pd(iz1,jz0);
454 dx20 = _mm_sub_pd(ix2,jx0);
455 dy20 = _mm_sub_pd(iy2,jy0);
456 dz20 = _mm_sub_pd(iz2,jz0);
458 /* Calculate squared distance and things based on it */
459 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
460 rsq10 = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
461 rsq20 = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
463 rinv00 = gmx_mm_invsqrt_pd(rsq00);
464 rinv10 = gmx_mm_invsqrt_pd(rsq10);
465 rinv20 = gmx_mm_invsqrt_pd(rsq20);
467 rinvsq00 = _mm_mul_pd(rinv00,rinv00);
468 rinvsq10 = _mm_mul_pd(rinv10,rinv10);
469 rinvsq20 = _mm_mul_pd(rinv20,rinv20);
471 /* Load parameters for j particles */
472 jq0 = _mm_load_sd(charge+jnrA+0);
473 vdwjidx0A = 2*vdwtype[jnrA+0];
475 fjx0 = _mm_setzero_pd();
476 fjy0 = _mm_setzero_pd();
477 fjz0 = _mm_setzero_pd();
479 /**************************
480 * CALCULATE INTERACTIONS *
481 **************************/
483 if (gmx_mm_any_lt(rsq00,rcutoff2))
486 r00 = _mm_mul_pd(rsq00,rinv00);
488 /* Compute parameters for interactions between i and j atoms */
489 qq00 = _mm_mul_pd(iq0,jq0);
490 gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
492 c6grid_00 = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
494 /* EWALD ELECTROSTATICS */
496 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
497 ewrt = _mm_mul_pd(r00,ewtabscale);
498 ewitab = _mm_cvttpd_epi32(ewrt);
499 eweps = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
500 ewitab = _mm_slli_epi32(ewitab,2);
501 ewtabF = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
502 ewtabD = _mm_setzero_pd();
503 GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
504 ewtabV = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
505 ewtabFn = _mm_setzero_pd();
506 GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
507 felec = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
508 velec = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
509 velec = _mm_mul_pd(qq00,_mm_sub_pd(_mm_sub_pd(rinv00,sh_ewald),velec));
510 felec = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
512 /* Analytical LJ-PME */
513 rinvsix = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
514 ewcljrsq = _mm_mul_pd(ewclj2,rsq00);
515 ewclj6 = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
516 exponent = gmx_simd_exp_d(ewcljrsq);
517 /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
518 poly = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
519 /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
520 vvdw6 = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
521 vvdw12 = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
522 vvdw = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))),one_twelfth),
523 _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_add_pd(_mm_mul_pd(c6_00,sh_vdw_invrcut6),_mm_mul_pd(c6grid_00,sh_lj_ewald))),one_sixth));
524 /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
525 fvdw = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
527 cutoff_mask = _mm_cmplt_pd(rsq00,rcutoff2);
529 /* Update potential sum for this i atom from the interaction with this j atom. */
530 velec = _mm_and_pd(velec,cutoff_mask);
531 velec = _mm_unpacklo_pd(velec,_mm_setzero_pd());
532 velecsum = _mm_add_pd(velecsum,velec);
533 vvdw = _mm_and_pd(vvdw,cutoff_mask);
534 vvdw = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
535 vvdwsum = _mm_add_pd(vvdwsum,vvdw);
537 fscal = _mm_add_pd(felec,fvdw);
539 fscal = _mm_and_pd(fscal,cutoff_mask);
541 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
543 /* Calculate temporary vectorial force */
544 tx = _mm_mul_pd(fscal,dx00);
545 ty = _mm_mul_pd(fscal,dy00);
546 tz = _mm_mul_pd(fscal,dz00);
548 /* Update vectorial force */
549 fix0 = _mm_add_pd(fix0,tx);
550 fiy0 = _mm_add_pd(fiy0,ty);
551 fiz0 = _mm_add_pd(fiz0,tz);
553 fjx0 = _mm_add_pd(fjx0,tx);
554 fjy0 = _mm_add_pd(fjy0,ty);
555 fjz0 = _mm_add_pd(fjz0,tz);
559 /**************************
560 * CALCULATE INTERACTIONS *
561 **************************/
563 if (gmx_mm_any_lt(rsq10,rcutoff2))
566 r10 = _mm_mul_pd(rsq10,rinv10);
568 /* Compute parameters for interactions between i and j atoms */
569 qq10 = _mm_mul_pd(iq1,jq0);
571 /* EWALD ELECTROSTATICS */
573 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
574 ewrt = _mm_mul_pd(r10,ewtabscale);
575 ewitab = _mm_cvttpd_epi32(ewrt);
576 eweps = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
577 ewitab = _mm_slli_epi32(ewitab,2);
578 ewtabF = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
579 ewtabD = _mm_setzero_pd();
580 GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
581 ewtabV = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
582 ewtabFn = _mm_setzero_pd();
583 GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
584 felec = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
585 velec = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
586 velec = _mm_mul_pd(qq10,_mm_sub_pd(_mm_sub_pd(rinv10,sh_ewald),velec));
587 felec = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
589 cutoff_mask = _mm_cmplt_pd(rsq10,rcutoff2);
591 /* Update potential sum for this i atom from the interaction with this j atom. */
592 velec = _mm_and_pd(velec,cutoff_mask);
593 velec = _mm_unpacklo_pd(velec,_mm_setzero_pd());
594 velecsum = _mm_add_pd(velecsum,velec);
596 fscal = felec;
598 fscal = _mm_and_pd(fscal,cutoff_mask);
600 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
602 /* Calculate temporary vectorial force */
603 tx = _mm_mul_pd(fscal,dx10);
604 ty = _mm_mul_pd(fscal,dy10);
605 tz = _mm_mul_pd(fscal,dz10);
607 /* Update vectorial force */
608 fix1 = _mm_add_pd(fix1,tx);
609 fiy1 = _mm_add_pd(fiy1,ty);
610 fiz1 = _mm_add_pd(fiz1,tz);
612 fjx0 = _mm_add_pd(fjx0,tx);
613 fjy0 = _mm_add_pd(fjy0,ty);
614 fjz0 = _mm_add_pd(fjz0,tz);
618 /**************************
619 * CALCULATE INTERACTIONS *
620 **************************/
622 if (gmx_mm_any_lt(rsq20,rcutoff2))
625 r20 = _mm_mul_pd(rsq20,rinv20);
627 /* Compute parameters for interactions between i and j atoms */
628 qq20 = _mm_mul_pd(iq2,jq0);
630 /* EWALD ELECTROSTATICS */
632 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
633 ewrt = _mm_mul_pd(r20,ewtabscale);
634 ewitab = _mm_cvttpd_epi32(ewrt);
635 eweps = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
636 ewitab = _mm_slli_epi32(ewitab,2);
637 ewtabF = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
638 ewtabD = _mm_setzero_pd();
639 GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
640 ewtabV = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
641 ewtabFn = _mm_setzero_pd();
642 GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
643 felec = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
644 velec = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
645 velec = _mm_mul_pd(qq20,_mm_sub_pd(_mm_sub_pd(rinv20,sh_ewald),velec));
646 felec = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
648 cutoff_mask = _mm_cmplt_pd(rsq20,rcutoff2);
650 /* Update potential sum for this i atom from the interaction with this j atom. */
651 velec = _mm_and_pd(velec,cutoff_mask);
652 velec = _mm_unpacklo_pd(velec,_mm_setzero_pd());
653 velecsum = _mm_add_pd(velecsum,velec);
655 fscal = felec;
657 fscal = _mm_and_pd(fscal,cutoff_mask);
659 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
661 /* Calculate temporary vectorial force */
662 tx = _mm_mul_pd(fscal,dx20);
663 ty = _mm_mul_pd(fscal,dy20);
664 tz = _mm_mul_pd(fscal,dz20);
666 /* Update vectorial force */
667 fix2 = _mm_add_pd(fix2,tx);
668 fiy2 = _mm_add_pd(fiy2,ty);
669 fiz2 = _mm_add_pd(fiz2,tz);
671 fjx0 = _mm_add_pd(fjx0,tx);
672 fjy0 = _mm_add_pd(fjy0,ty);
673 fjz0 = _mm_add_pd(fjz0,tz);
677 gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
679 /* Inner loop uses 177 flops */
682 /* End of innermost loop */
684 gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
685 f+i_coord_offset,fshift+i_shift_offset);
687 ggid = gid[iidx];
688 /* Update potential energies */
689 gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
690 gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
692 /* Increment number of inner iterations */
693 inneriter += j_index_end - j_index_start;
695 /* Outer loop uses 20 flops */
698 /* Increment number of outer iterations */
699 outeriter += nri;
701 /* Update outer/inner flops */
703 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*177);
706 * Gromacs nonbonded kernel: nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_F_sse2_double
707 * Electrostatics interaction: Ewald
708 * VdW interaction: LJEwald
709 * Geometry: Water3-Particle
710 * Calculate force/pot: Force
712 void
713 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_F_sse2_double
714 (t_nblist * gmx_restrict nlist,
715 rvec * gmx_restrict xx,
716 rvec * gmx_restrict ff,
717 t_forcerec * gmx_restrict fr,
718 t_mdatoms * gmx_restrict mdatoms,
719 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
720 t_nrnb * gmx_restrict nrnb)
722 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
723 * just 0 for non-waters.
724 * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
725 * jnr indices corresponding to data put in the four positions in the SIMD register.
727 int i_shift_offset,i_coord_offset,outeriter,inneriter;
728 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
729 int jnrA,jnrB;
730 int j_coord_offsetA,j_coord_offsetB;
731 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
732 real rcutoff_scalar;
733 real *shiftvec,*fshift,*x,*f;
734 __m128d tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
735 int vdwioffset0;
736 __m128d ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
737 int vdwioffset1;
738 __m128d ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
739 int vdwioffset2;
740 __m128d ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
741 int vdwjidx0A,vdwjidx0B;
742 __m128d jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
743 __m128d dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
744 __m128d dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
745 __m128d dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
746 __m128d velec,felec,velecsum,facel,crf,krf,krf2;
747 real *charge;
748 int nvdwtype;
749 __m128d rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
750 int *vdwtype;
751 real *vdwparam;
752 __m128d one_sixth = _mm_set1_pd(1.0/6.0);
753 __m128d one_twelfth = _mm_set1_pd(1.0/12.0);
754 __m128d c6grid_00;
755 __m128d c6grid_10;
756 __m128d c6grid_20;
757 __m128d ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
758 real *vdwgridparam;
759 __m128d one_half = _mm_set1_pd(0.5);
760 __m128d minus_one = _mm_set1_pd(-1.0);
761 __m128i ewitab;
762 __m128d ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
763 real *ewtab;
764 __m128d dummy_mask,cutoff_mask;
765 __m128d signbit = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
766 __m128d one = _mm_set1_pd(1.0);
767 __m128d two = _mm_set1_pd(2.0);
768 x = xx[0];
769 f = ff[0];
771 nri = nlist->nri;
772 iinr = nlist->iinr;
773 jindex = nlist->jindex;
774 jjnr = nlist->jjnr;
775 shiftidx = nlist->shift;
776 gid = nlist->gid;
777 shiftvec = fr->shift_vec[0];
778 fshift = fr->fshift[0];
779 facel = _mm_set1_pd(fr->epsfac);
780 charge = mdatoms->chargeA;
781 nvdwtype = fr->ntype;
782 vdwparam = fr->nbfp;
783 vdwtype = mdatoms->typeA;
784 vdwgridparam = fr->ljpme_c6grid;
785 sh_lj_ewald = _mm_set1_pd(fr->ic->sh_lj_ewald);
786 ewclj = _mm_set1_pd(fr->ewaldcoeff_lj);
787 ewclj2 = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
789 sh_ewald = _mm_set1_pd(fr->ic->sh_ewald);
790 ewtab = fr->ic->tabq_coul_F;
791 ewtabscale = _mm_set1_pd(fr->ic->tabq_scale);
792 ewtabhalfspace = _mm_set1_pd(0.5/fr->ic->tabq_scale);
794 /* Setup water-specific parameters */
795 inr = nlist->iinr[0];
796 iq0 = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
797 iq1 = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
798 iq2 = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
799 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
801 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
802 rcutoff_scalar = fr->rcoulomb;
803 rcutoff = _mm_set1_pd(rcutoff_scalar);
804 rcutoff2 = _mm_mul_pd(rcutoff,rcutoff);
806 sh_vdw_invrcut6 = _mm_set1_pd(fr->ic->sh_invrc6);
807 rvdw = _mm_set1_pd(fr->rvdw);
809 /* Avoid stupid compiler warnings */
810 jnrA = jnrB = 0;
811 j_coord_offsetA = 0;
812 j_coord_offsetB = 0;
814 outeriter = 0;
815 inneriter = 0;
817 /* Start outer loop over neighborlists */
818 for(iidx=0; iidx<nri; iidx++)
820 /* Load shift vector for this list */
821 i_shift_offset = DIM*shiftidx[iidx];
823 /* Load limits for loop over neighbors */
824 j_index_start = jindex[iidx];
825 j_index_end = jindex[iidx+1];
827 /* Get outer coordinate index */
828 inr = iinr[iidx];
829 i_coord_offset = DIM*inr;
831 /* Load i particle coords and add shift vector */
832 gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
833 &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
835 fix0 = _mm_setzero_pd();
836 fiy0 = _mm_setzero_pd();
837 fiz0 = _mm_setzero_pd();
838 fix1 = _mm_setzero_pd();
839 fiy1 = _mm_setzero_pd();
840 fiz1 = _mm_setzero_pd();
841 fix2 = _mm_setzero_pd();
842 fiy2 = _mm_setzero_pd();
843 fiz2 = _mm_setzero_pd();
845 /* Start inner kernel loop */
846 for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
849 /* Get j neighbor index, and coordinate index */
850 jnrA = jjnr[jidx];
851 jnrB = jjnr[jidx+1];
852 j_coord_offsetA = DIM*jnrA;
853 j_coord_offsetB = DIM*jnrB;
855 /* load j atom coordinates */
856 gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
857 &jx0,&jy0,&jz0);
859 /* Calculate displacement vector */
860 dx00 = _mm_sub_pd(ix0,jx0);
861 dy00 = _mm_sub_pd(iy0,jy0);
862 dz00 = _mm_sub_pd(iz0,jz0);
863 dx10 = _mm_sub_pd(ix1,jx0);
864 dy10 = _mm_sub_pd(iy1,jy0);
865 dz10 = _mm_sub_pd(iz1,jz0);
866 dx20 = _mm_sub_pd(ix2,jx0);
867 dy20 = _mm_sub_pd(iy2,jy0);
868 dz20 = _mm_sub_pd(iz2,jz0);
870 /* Calculate squared distance and things based on it */
871 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
872 rsq10 = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
873 rsq20 = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
875 rinv00 = gmx_mm_invsqrt_pd(rsq00);
876 rinv10 = gmx_mm_invsqrt_pd(rsq10);
877 rinv20 = gmx_mm_invsqrt_pd(rsq20);
879 rinvsq00 = _mm_mul_pd(rinv00,rinv00);
880 rinvsq10 = _mm_mul_pd(rinv10,rinv10);
881 rinvsq20 = _mm_mul_pd(rinv20,rinv20);
883 /* Load parameters for j particles */
884 jq0 = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
885 vdwjidx0A = 2*vdwtype[jnrA+0];
886 vdwjidx0B = 2*vdwtype[jnrB+0];
888 fjx0 = _mm_setzero_pd();
889 fjy0 = _mm_setzero_pd();
890 fjz0 = _mm_setzero_pd();
892 /**************************
893 * CALCULATE INTERACTIONS *
894 **************************/
896 if (gmx_mm_any_lt(rsq00,rcutoff2))
899 r00 = _mm_mul_pd(rsq00,rinv00);
901 /* Compute parameters for interactions between i and j atoms */
902 qq00 = _mm_mul_pd(iq0,jq0);
903 gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
904 vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
906 c6grid_00 = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
907 vdwgridparam+vdwioffset0+vdwjidx0B);
909 /* EWALD ELECTROSTATICS */
911 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
912 ewrt = _mm_mul_pd(r00,ewtabscale);
913 ewitab = _mm_cvttpd_epi32(ewrt);
914 eweps = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
915 gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
916 &ewtabF,&ewtabFn);
917 felec = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
918 felec = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
920 /* Analytical LJ-PME */
921 rinvsix = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
922 ewcljrsq = _mm_mul_pd(ewclj2,rsq00);
923 ewclj6 = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
924 exponent = gmx_simd_exp_d(ewcljrsq);
925 /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
926 poly = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
927 /* f6A = 6 * C6grid * (1 - poly) */
928 f6A = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
929 /* f6B = C6grid * exponent * beta^6 */
930 f6B = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
931 /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
932 fvdw = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
934 cutoff_mask = _mm_cmplt_pd(rsq00,rcutoff2);
936 fscal = _mm_add_pd(felec,fvdw);
938 fscal = _mm_and_pd(fscal,cutoff_mask);
940 /* Calculate temporary vectorial force */
941 tx = _mm_mul_pd(fscal,dx00);
942 ty = _mm_mul_pd(fscal,dy00);
943 tz = _mm_mul_pd(fscal,dz00);
945 /* Update vectorial force */
946 fix0 = _mm_add_pd(fix0,tx);
947 fiy0 = _mm_add_pd(fiy0,ty);
948 fiz0 = _mm_add_pd(fiz0,tz);
950 fjx0 = _mm_add_pd(fjx0,tx);
951 fjy0 = _mm_add_pd(fjy0,ty);
952 fjz0 = _mm_add_pd(fjz0,tz);
956 /**************************
957 * CALCULATE INTERACTIONS *
958 **************************/
960 if (gmx_mm_any_lt(rsq10,rcutoff2))
963 r10 = _mm_mul_pd(rsq10,rinv10);
965 /* Compute parameters for interactions between i and j atoms */
966 qq10 = _mm_mul_pd(iq1,jq0);
968 /* EWALD ELECTROSTATICS */
970 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
971 ewrt = _mm_mul_pd(r10,ewtabscale);
972 ewitab = _mm_cvttpd_epi32(ewrt);
973 eweps = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
974 gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
975 &ewtabF,&ewtabFn);
976 felec = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
977 felec = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
979 cutoff_mask = _mm_cmplt_pd(rsq10,rcutoff2);
981 fscal = felec;
983 fscal = _mm_and_pd(fscal,cutoff_mask);
985 /* Calculate temporary vectorial force */
986 tx = _mm_mul_pd(fscal,dx10);
987 ty = _mm_mul_pd(fscal,dy10);
988 tz = _mm_mul_pd(fscal,dz10);
990 /* Update vectorial force */
991 fix1 = _mm_add_pd(fix1,tx);
992 fiy1 = _mm_add_pd(fiy1,ty);
993 fiz1 = _mm_add_pd(fiz1,tz);
995 fjx0 = _mm_add_pd(fjx0,tx);
996 fjy0 = _mm_add_pd(fjy0,ty);
997 fjz0 = _mm_add_pd(fjz0,tz);
1001 /**************************
1002 * CALCULATE INTERACTIONS *
1003 **************************/
1005 if (gmx_mm_any_lt(rsq20,rcutoff2))
1008 r20 = _mm_mul_pd(rsq20,rinv20);
1010 /* Compute parameters for interactions between i and j atoms */
1011 qq20 = _mm_mul_pd(iq2,jq0);
1013 /* EWALD ELECTROSTATICS */
1015 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1016 ewrt = _mm_mul_pd(r20,ewtabscale);
1017 ewitab = _mm_cvttpd_epi32(ewrt);
1018 eweps = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1019 gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1020 &ewtabF,&ewtabFn);
1021 felec = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1022 felec = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1024 cutoff_mask = _mm_cmplt_pd(rsq20,rcutoff2);
1026 fscal = felec;
1028 fscal = _mm_and_pd(fscal,cutoff_mask);
1030 /* Calculate temporary vectorial force */
1031 tx = _mm_mul_pd(fscal,dx20);
1032 ty = _mm_mul_pd(fscal,dy20);
1033 tz = _mm_mul_pd(fscal,dz20);
1035 /* Update vectorial force */
1036 fix2 = _mm_add_pd(fix2,tx);
1037 fiy2 = _mm_add_pd(fiy2,ty);
1038 fiz2 = _mm_add_pd(fiz2,tz);
1040 fjx0 = _mm_add_pd(fjx0,tx);
1041 fjy0 = _mm_add_pd(fjy0,ty);
1042 fjz0 = _mm_add_pd(fjz0,tz);
1046 gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1048 /* Inner loop uses 143 flops */
1051 if(jidx<j_index_end)
1054 jnrA = jjnr[jidx];
1055 j_coord_offsetA = DIM*jnrA;
1057 /* load j atom coordinates */
1058 gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1059 &jx0,&jy0,&jz0);
1061 /* Calculate displacement vector */
1062 dx00 = _mm_sub_pd(ix0,jx0);
1063 dy00 = _mm_sub_pd(iy0,jy0);
1064 dz00 = _mm_sub_pd(iz0,jz0);
1065 dx10 = _mm_sub_pd(ix1,jx0);
1066 dy10 = _mm_sub_pd(iy1,jy0);
1067 dz10 = _mm_sub_pd(iz1,jz0);
1068 dx20 = _mm_sub_pd(ix2,jx0);
1069 dy20 = _mm_sub_pd(iy2,jy0);
1070 dz20 = _mm_sub_pd(iz2,jz0);
1072 /* Calculate squared distance and things based on it */
1073 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1074 rsq10 = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1075 rsq20 = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1077 rinv00 = gmx_mm_invsqrt_pd(rsq00);
1078 rinv10 = gmx_mm_invsqrt_pd(rsq10);
1079 rinv20 = gmx_mm_invsqrt_pd(rsq20);
1081 rinvsq00 = _mm_mul_pd(rinv00,rinv00);
1082 rinvsq10 = _mm_mul_pd(rinv10,rinv10);
1083 rinvsq20 = _mm_mul_pd(rinv20,rinv20);
1085 /* Load parameters for j particles */
1086 jq0 = _mm_load_sd(charge+jnrA+0);
1087 vdwjidx0A = 2*vdwtype[jnrA+0];
1089 fjx0 = _mm_setzero_pd();
1090 fjy0 = _mm_setzero_pd();
1091 fjz0 = _mm_setzero_pd();
1093 /**************************
1094 * CALCULATE INTERACTIONS *
1095 **************************/
1097 if (gmx_mm_any_lt(rsq00,rcutoff2))
1100 r00 = _mm_mul_pd(rsq00,rinv00);
1102 /* Compute parameters for interactions between i and j atoms */
1103 qq00 = _mm_mul_pd(iq0,jq0);
1104 gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1106 c6grid_00 = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
1108 /* EWALD ELECTROSTATICS */
1110 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1111 ewrt = _mm_mul_pd(r00,ewtabscale);
1112 ewitab = _mm_cvttpd_epi32(ewrt);
1113 eweps = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1114 gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1115 felec = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1116 felec = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
1118 /* Analytical LJ-PME */
1119 rinvsix = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1120 ewcljrsq = _mm_mul_pd(ewclj2,rsq00);
1121 ewclj6 = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
1122 exponent = gmx_simd_exp_d(ewcljrsq);
1123 /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1124 poly = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
1125 /* f6A = 6 * C6grid * (1 - poly) */
1126 f6A = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
1127 /* f6B = C6grid * exponent * beta^6 */
1128 f6B = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
1129 /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1130 fvdw = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1132 cutoff_mask = _mm_cmplt_pd(rsq00,rcutoff2);
1134 fscal = _mm_add_pd(felec,fvdw);
1136 fscal = _mm_and_pd(fscal,cutoff_mask);
1138 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1140 /* Calculate temporary vectorial force */
1141 tx = _mm_mul_pd(fscal,dx00);
1142 ty = _mm_mul_pd(fscal,dy00);
1143 tz = _mm_mul_pd(fscal,dz00);
1145 /* Update vectorial force */
1146 fix0 = _mm_add_pd(fix0,tx);
1147 fiy0 = _mm_add_pd(fiy0,ty);
1148 fiz0 = _mm_add_pd(fiz0,tz);
1150 fjx0 = _mm_add_pd(fjx0,tx);
1151 fjy0 = _mm_add_pd(fjy0,ty);
1152 fjz0 = _mm_add_pd(fjz0,tz);
1156 /**************************
1157 * CALCULATE INTERACTIONS *
1158 **************************/
1160 if (gmx_mm_any_lt(rsq10,rcutoff2))
1163 r10 = _mm_mul_pd(rsq10,rinv10);
1165 /* Compute parameters for interactions between i and j atoms */
1166 qq10 = _mm_mul_pd(iq1,jq0);
1168 /* EWALD ELECTROSTATICS */
1170 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1171 ewrt = _mm_mul_pd(r10,ewtabscale);
1172 ewitab = _mm_cvttpd_epi32(ewrt);
1173 eweps = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1174 gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1175 felec = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1176 felec = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1178 cutoff_mask = _mm_cmplt_pd(rsq10,rcutoff2);
1180 fscal = felec;
1182 fscal = _mm_and_pd(fscal,cutoff_mask);
1184 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1186 /* Calculate temporary vectorial force */
1187 tx = _mm_mul_pd(fscal,dx10);
1188 ty = _mm_mul_pd(fscal,dy10);
1189 tz = _mm_mul_pd(fscal,dz10);
1191 /* Update vectorial force */
1192 fix1 = _mm_add_pd(fix1,tx);
1193 fiy1 = _mm_add_pd(fiy1,ty);
1194 fiz1 = _mm_add_pd(fiz1,tz);
1196 fjx0 = _mm_add_pd(fjx0,tx);
1197 fjy0 = _mm_add_pd(fjy0,ty);
1198 fjz0 = _mm_add_pd(fjz0,tz);
1202 /**************************
1203 * CALCULATE INTERACTIONS *
1204 **************************/
1206 if (gmx_mm_any_lt(rsq20,rcutoff2))
1209 r20 = _mm_mul_pd(rsq20,rinv20);
1211 /* Compute parameters for interactions between i and j atoms */
1212 qq20 = _mm_mul_pd(iq2,jq0);
1214 /* EWALD ELECTROSTATICS */
1216 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1217 ewrt = _mm_mul_pd(r20,ewtabscale);
1218 ewitab = _mm_cvttpd_epi32(ewrt);
1219 eweps = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1220 gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1221 felec = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1222 felec = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1224 cutoff_mask = _mm_cmplt_pd(rsq20,rcutoff2);
1226 fscal = felec;
1228 fscal = _mm_and_pd(fscal,cutoff_mask);
1230 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1232 /* Calculate temporary vectorial force */
1233 tx = _mm_mul_pd(fscal,dx20);
1234 ty = _mm_mul_pd(fscal,dy20);
1235 tz = _mm_mul_pd(fscal,dz20);
1237 /* Update vectorial force */
1238 fix2 = _mm_add_pd(fix2,tx);
1239 fiy2 = _mm_add_pd(fiy2,ty);
1240 fiz2 = _mm_add_pd(fiz2,tz);
1242 fjx0 = _mm_add_pd(fjx0,tx);
1243 fjy0 = _mm_add_pd(fjy0,ty);
1244 fjz0 = _mm_add_pd(fjz0,tz);
1248 gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1250 /* Inner loop uses 143 flops */
1253 /* End of innermost loop */
1255 gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1256 f+i_coord_offset,fshift+i_shift_offset);
1258 /* Increment number of inner iterations */
1259 inneriter += j_index_end - j_index_start;
1261 /* Outer loop uses 18 flops */
1264 /* Increment number of outer iterations */
1265 outeriter += nri;
1267 /* Update outer/inner flops */
1269 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*143);