Convert gmx_mtop_t to C++
[gromacs.git] / src / gromacs / mdlib / calc_verletbuf.cpp
blobd9339eef09ac2a9d3a703a23f7039d534aa721fc
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 2012,2013,2014,2015,2016,2017,2018, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
35 #include "gmxpre.h"
37 #include "calc_verletbuf.h"
39 #include <assert.h>
40 #include <stdlib.h>
42 #include <cmath>
44 #include <algorithm>
46 #include "gromacs/ewald/ewald-utils.h"
47 #include "gromacs/math/functions.h"
48 #include "gromacs/math/units.h"
49 #include "gromacs/math/vec.h"
50 #include "gromacs/mdlib/nb_verlet.h"
51 #include "gromacs/mdlib/nbnxn_simd.h"
52 #include "gromacs/mdlib/nbnxn_util.h"
53 #include "gromacs/mdtypes/inputrec.h"
54 #include "gromacs/mdtypes/md_enums.h"
55 #include "gromacs/topology/ifunc.h"
56 #include "gromacs/topology/topology.h"
57 #include "gromacs/utility/fatalerror.h"
58 #include "gromacs/utility/smalloc.h"
60 /* The code in this file estimates a pairlist buffer length
61 * given a target energy drift per atom per picosecond.
62 * This is done by estimating the drift given a buffer length.
63 * Ideally we would like to have a tight overestimate of the drift,
64 * but that can be difficult to achieve.
66 * Significant approximations used:
68 * Uniform particle density. UNDERESTIMATES the drift by rho_global/rho_local.
70 * Interactions don't affect particle motion. OVERESTIMATES the drift on longer
71 * time scales. This approximation probably introduces the largest errors.
73 * Only take one constraint per particle into account: OVERESTIMATES the drift.
75 * For rotating constraints assume the same functional shape for time scales
76 * where the constraints rotate significantly as the exact expression for
77 * short time scales. OVERESTIMATES the drift on long time scales.
79 * For non-linear virtual sites use the mass of the lightest constructing atom
80 * to determine the displacement. OVER/UNDERESTIMATES the drift, depending on
81 * the geometry and masses of constructing atoms.
83 * Note that the formulas for normal atoms and linear virtual sites are exact,
84 * apart from the first two approximations.
86 * Note that apart from the effect of the above approximations, the actual
87 * drift of the total energy of a system can be orders of magnitude smaller
88 * due to cancellation of positive and negative drift for different pairs.
92 /* Struct for unique atom type for calculating the energy drift.
93 * The atom displacement depends on mass and constraints.
94 * The energy jump for given distance depend on LJ type and q.
96 typedef struct
98 atom_nonbonded_kinetic_prop_t prop; /* non-bonded and kinetic atom prop. */
99 int n; /* #atoms of this type in the system */
100 } verletbuf_atomtype_t;
102 // Struct for derivatives of a non-bonded interaction potential
103 typedef struct
105 real md1; // -V' at the cutoff
106 real d2; // V'' at the cutoff
107 real md3; // -V''' at the cutoff
108 } pot_derivatives_t;
110 VerletbufListSetup verletbufGetListSetup(int nbnxnKernelType)
112 /* Note that the current buffer estimation code only handles clusters
113 * of size 1, 2 or 4, so for 4x8 or 8x8 we use the estimate for 4x4.
115 VerletbufListSetup listSetup;
117 listSetup.cluster_size_i = nbnxn_kernel_to_cluster_i_size(nbnxnKernelType);
118 listSetup.cluster_size_j = nbnxn_kernel_to_cluster_j_size(nbnxnKernelType);
120 if (nbnxnKernelType == nbnxnk8x8x8_GPU ||
121 nbnxnKernelType == nbnxnk8x8x8_PlainC)
123 /* The GPU kernels (except for OpenCL) split the j-clusters in two halves */
124 listSetup.cluster_size_j /= 2;
127 return listSetup;
130 VerletbufListSetup verletbufGetSafeListSetup(ListSetupType listType)
132 /* When calling this function we often don't know which kernel type we
133 * are going to use. We choose the kernel type with the smallest possible
134 * i- and j-cluster sizes, so we potentially overestimate, but never
135 * underestimate, the buffer drift.
137 int nbnxnKernelType;
139 if (listType == ListSetupType::Gpu)
141 nbnxnKernelType = nbnxnk8x8x8_GPU;
143 else if (GMX_SIMD && listType == ListSetupType::CpuSimdWhenSupported)
145 #ifdef GMX_NBNXN_SIMD_2XNN
146 /* We use the smallest cluster size to be on the safe side */
147 nbnxnKernelType = nbnxnk4xN_SIMD_2xNN;
148 #else
149 nbnxnKernelType = nbnxnk4xN_SIMD_4xN;
150 #endif
152 else
154 nbnxnKernelType = nbnxnk4x4_PlainC;
157 return verletbufGetListSetup(nbnxnKernelType);
160 static gmx_bool
161 atom_nonbonded_kinetic_prop_equal(const atom_nonbonded_kinetic_prop_t *prop1,
162 const atom_nonbonded_kinetic_prop_t *prop2)
164 return (prop1->mass == prop2->mass &&
165 prop1->type == prop2->type &&
166 prop1->q == prop2->q &&
167 prop1->bConstr == prop2->bConstr &&
168 prop1->con_mass == prop2->con_mass &&
169 prop1->con_len == prop2->con_len);
172 static void add_at(verletbuf_atomtype_t **att_p, int *natt_p,
173 const atom_nonbonded_kinetic_prop_t *prop,
174 int nmol)
176 verletbuf_atomtype_t *att;
177 int natt, i;
179 if (prop->mass == 0)
181 /* Ignore massless particles */
182 return;
185 att = *att_p;
186 natt = *natt_p;
188 i = 0;
189 while (i < natt && !atom_nonbonded_kinetic_prop_equal(prop, &att[i].prop))
191 i++;
194 if (i < natt)
196 att[i].n += nmol;
198 else
200 (*natt_p)++;
201 srenew(*att_p, *natt_p);
202 (*att_p)[i].prop = *prop;
203 (*att_p)[i].n = nmol;
207 static void get_vsite_masses(const gmx_moltype_t *moltype,
208 const gmx_ffparams_t *ffparams,
209 real *vsite_m,
210 int *n_nonlin_vsite)
212 int ft, i;
213 const t_ilist *il;
215 *n_nonlin_vsite = 0;
217 /* Check for virtual sites, determine mass from constructing atoms */
218 for (ft = 0; ft < F_NRE; ft++)
220 if (IS_VSITE(ft))
222 il = &moltype->ilist[ft];
224 for (i = 0; i < il->nr; i += 1+NRAL(ft))
226 const t_iparams *ip;
227 real inv_mass, coeff, m_aj;
228 int a1, aj;
230 ip = &ffparams->iparams[il->iatoms[i]];
232 a1 = il->iatoms[i+1];
234 if (ft != F_VSITEN)
236 /* Only vsiten can have more than four
237 constructing atoms, so NRAL(ft) <= 5 */
238 int j;
239 real *cam;
240 const int maxj = NRAL(ft);
242 snew(cam, maxj);
243 assert(maxj <= 5);
244 for (j = 1; j < maxj; j++)
246 cam[j] = moltype->atoms.atom[il->iatoms[i+1+j]].m;
247 if (cam[j] == 0)
249 cam[j] = vsite_m[il->iatoms[i+1+j]];
251 if (cam[j] == 0)
253 gmx_fatal(FARGS, "In molecule type '%s' %s construction involves atom %d, which is a virtual site of equal or high complexity. This is not supported.",
254 *moltype->name,
255 interaction_function[ft].longname,
256 il->iatoms[i+1+j]+1);
260 switch (ft)
262 case F_VSITE2:
263 /* Exact */
264 vsite_m[a1] = (cam[1]*cam[2])/(cam[2]*gmx::square(1-ip->vsite.a) + cam[1]*gmx::square(ip->vsite.a));
265 break;
266 case F_VSITE3:
267 /* Exact */
268 vsite_m[a1] = (cam[1]*cam[2]*cam[3])/(cam[2]*cam[3]*gmx::square(1-ip->vsite.a-ip->vsite.b) + cam[1]*cam[3]*gmx::square(ip->vsite.a) + cam[1]*cam[2]*gmx::square(ip->vsite.b));
269 break;
270 case F_VSITEN:
271 gmx_incons("Invalid vsite type");
272 break;
273 default:
274 /* Use the mass of the lightest constructing atom.
275 * This is an approximation.
276 * If the distance of the virtual site to the
277 * constructing atom is less than all distances
278 * between constructing atoms, this is a safe
279 * over-estimate of the displacement of the vsite.
280 * This condition holds for all H mass replacement
281 * vsite constructions, except for SP2/3 groups.
282 * In SP3 groups one H will have a F_VSITE3
283 * construction, so even there the total drift
284 * estimate shouldn't be far off.
286 vsite_m[a1] = cam[1];
287 for (j = 2; j < maxj; j++)
289 vsite_m[a1] = std::min(vsite_m[a1], cam[j]);
291 (*n_nonlin_vsite)++;
292 break;
294 sfree(cam);
296 else
298 int j;
300 /* Exact */
301 inv_mass = 0;
302 for (j = 0; j < 3*ffparams->iparams[il->iatoms[i]].vsiten.n; j += 3)
304 aj = il->iatoms[i+j+2];
305 coeff = ffparams->iparams[il->iatoms[i+j]].vsiten.a;
306 if (moltype->atoms.atom[aj].ptype == eptVSite)
308 m_aj = vsite_m[aj];
310 else
312 m_aj = moltype->atoms.atom[aj].m;
314 if (m_aj <= 0)
316 gmx_incons("The mass of a vsiten constructing atom is <= 0");
318 inv_mass += coeff*coeff/m_aj;
320 vsite_m[a1] = 1/inv_mass;
321 /* Correct for loop increment of i */
322 i += j - 1 - NRAL(ft);
324 if (gmx_debug_at)
326 fprintf(debug, "atom %4d %-20s mass %6.3f\n",
327 a1, interaction_function[ft].longname, vsite_m[a1]);
334 static void get_verlet_buffer_atomtypes(const gmx_mtop_t *mtop,
335 verletbuf_atomtype_t **att_p,
336 int *natt_p,
337 int *n_nonlin_vsite)
339 verletbuf_atomtype_t *att;
340 int natt;
341 int ft, i, a1, a2, a3, a;
342 const t_ilist *il;
343 const t_iparams *ip;
344 atom_nonbonded_kinetic_prop_t *prop;
345 real *vsite_m;
346 int n_nonlin_vsite_mol;
348 att = nullptr;
349 natt = 0;
351 if (n_nonlin_vsite != nullptr)
353 *n_nonlin_vsite = 0;
356 for (const gmx_molblock_t &molblock : mtop->molblock)
358 int nmol = molblock.nmol;
359 const gmx_moltype_t &moltype = mtop->moltype[molblock.type];
360 const t_atoms *atoms = &moltype.atoms;
362 /* Check for constraints, as they affect the kinetic energy.
363 * For virtual sites we need the masses and geometry of
364 * the constructing atoms to determine their velocity distribution.
366 snew(prop, atoms->nr);
367 snew(vsite_m, atoms->nr);
369 for (ft = F_CONSTR; ft <= F_CONSTRNC; ft++)
371 il = &moltype.ilist[ft];
373 for (i = 0; i < il->nr; i += 1+NRAL(ft))
375 ip = &mtop->ffparams.iparams[il->iatoms[i]];
376 a1 = il->iatoms[i+1];
377 a2 = il->iatoms[i+2];
378 if (atoms->atom[a2].m > prop[a1].con_mass)
380 prop[a1].con_mass = atoms->atom[a2].m;
381 prop[a1].con_len = ip->constr.dA;
383 if (atoms->atom[a1].m > prop[a2].con_mass)
385 prop[a2].con_mass = atoms->atom[a1].m;
386 prop[a2].con_len = ip->constr.dA;
391 il = &moltype.ilist[F_SETTLE];
393 for (i = 0; i < il->nr; i += 1+NRAL(F_SETTLE))
395 ip = &mtop->ffparams.iparams[il->iatoms[i]];
396 a1 = il->iatoms[i+1];
397 a2 = il->iatoms[i+2];
398 a3 = il->iatoms[i+3];
399 /* Usually the mass of a1 (usually oxygen) is larger than a2/a3.
400 * If this is not the case, we overestimate the displacement,
401 * which leads to a larger buffer (ok since this is an exotic case).
403 prop[a1].con_mass = atoms->atom[a2].m;
404 prop[a1].con_len = ip->settle.doh;
406 prop[a2].con_mass = atoms->atom[a1].m;
407 prop[a2].con_len = ip->settle.doh;
409 prop[a3].con_mass = atoms->atom[a1].m;
410 prop[a3].con_len = ip->settle.doh;
413 get_vsite_masses(&moltype,
414 &mtop->ffparams,
415 vsite_m,
416 &n_nonlin_vsite_mol);
417 if (n_nonlin_vsite != nullptr)
419 *n_nonlin_vsite += nmol*n_nonlin_vsite_mol;
422 for (a = 0; a < atoms->nr; a++)
424 if (atoms->atom[a].ptype == eptVSite)
426 prop[a].mass = vsite_m[a];
428 else
430 prop[a].mass = atoms->atom[a].m;
432 prop[a].type = atoms->atom[a].type;
433 prop[a].q = atoms->atom[a].q;
434 /* We consider an atom constrained, #DOF=2, when it is
435 * connected with constraints to (at least one) atom with
436 * a mass of more than 0.4x its own mass. This is not a critical
437 * parameter, since with roughly equal masses the unconstrained
438 * and constrained displacement will not differ much (and both
439 * overestimate the displacement).
441 prop[a].bConstr = (prop[a].con_mass > 0.4*prop[a].mass);
443 add_at(&att, &natt, &prop[a], nmol);
446 sfree(vsite_m);
447 sfree(prop);
450 if (gmx_debug_at)
452 for (a = 0; a < natt; a++)
454 fprintf(debug, "type %d: m %5.2f t %d q %6.3f con %d con_m %5.3f con_l %5.3f n %d\n",
455 a, att[a].prop.mass, att[a].prop.type, att[a].prop.q,
456 att[a].prop.bConstr, att[a].prop.con_mass, att[a].prop.con_len,
457 att[a].n);
461 *att_p = att;
462 *natt_p = natt;
465 /* This function computes two components of the estimate of the variance
466 * in the displacement of one atom in a system of two constrained atoms.
467 * Returns in sigma2_2d the variance due to rotation of the constrained
468 * atom around the atom to which it constrained.
469 * Returns in sigma2_3d the variance due to displacement of the COM
470 * of the whole system of the two constrained atoms.
472 * Note that we only take a single constraint (the one to the heaviest atom)
473 * into account. If an atom has multiple constraints, this will result in
474 * an overestimate of the displacement, which gives a larger drift and buffer.
476 void constrained_atom_sigma2(real kT_fac,
477 const atom_nonbonded_kinetic_prop_t *prop,
478 real *sigma2_2d,
479 real *sigma2_3d)
481 /* Here we decompose the motion of a constrained atom into two
482 * components: rotation around the COM and translation of the COM.
485 /* Determine the variance of the arc length for the two rotational DOFs */
486 real massFraction = prop->con_mass/(prop->mass + prop->con_mass);
487 real sigma2_rot = kT_fac*massFraction/prop->mass;
489 /* The distance from the atom to the COM, i.e. the rotational arm */
490 real comDistance = prop->con_len*massFraction;
492 /* The variance relative to the arm */
493 real sigma2_rel = sigma2_rot/gmx::square(comDistance);
495 /* For sigma2_rel << 1 we don't notice the rotational effect and
496 * we have a normal, Gaussian displacement distribution.
497 * For larger sigma2_rel the displacement is much less, in fact it can
498 * not exceed 2*comDistance. We can calculate MSD/arm^2 as:
499 * integral_x=0-inf distance2(x) x/sigma2_rel exp(-x^2/(2 sigma2_rel)) dx
500 * where x is angular displacement and distance2(x) is the distance^2
501 * between points at angle 0 and x:
502 * distance2(x) = (sin(x) - sin(0))^2 + (cos(x) - cos(0))^2
503 * The limiting value of this MSD is 2, which is also the value for
504 * a uniform rotation distribution that would be reached at long time.
505 * The maximum is 2.5695 at sigma2_rel = 4.5119.
506 * We approximate this integral with a rational polynomial with
507 * coefficients from a Taylor expansion. This approximation is an
508 * overestimate for all values of sigma2_rel. Its maximum value
509 * of 2.6491 is reached at sigma2_rel = sqrt(45/2) = 4.7434.
510 * We keep the approximation constant after that.
511 * We use this approximate MSD as the variance for a Gaussian distribution.
513 * NOTE: For any sensible buffer tolerance this will result in a (large)
514 * overestimate of the buffer size, since the Gaussian has a long tail,
515 * whereas the actual distribution can not reach values larger than 2.
517 /* Coeffients obtained from a Taylor expansion */
518 const real a = 1.0/3.0;
519 const real b = 2.0/45.0;
521 /* Our approximation is constant after sigma2_rel = 1/sqrt(b) */
522 sigma2_rel = std::min(sigma2_rel, 1/std::sqrt(b));
524 /* Compute the approximate sigma^2 for 2D motion due to the rotation */
525 *sigma2_2d = gmx::square(comDistance)*
526 sigma2_rel/(1 + a*sigma2_rel + b*gmx::square(sigma2_rel));
528 /* The constrained atom also moves (in 3D) with the COM of both atoms */
529 *sigma2_3d = kT_fac/(prop->mass + prop->con_mass);
532 static void get_atom_sigma2(real kT_fac,
533 const atom_nonbonded_kinetic_prop_t *prop,
534 real *sigma2_2d,
535 real *sigma2_3d)
537 if (prop->bConstr)
539 /* Complicated constraint calculation in a separate function */
540 constrained_atom_sigma2(kT_fac, prop, sigma2_2d, sigma2_3d);
542 else
544 /* Unconstrained atom: trivial */
545 *sigma2_2d = 0;
546 *sigma2_3d = kT_fac/prop->mass;
550 static void approx_2dof(real s2, real x, real *shift, real *scale)
552 /* A particle with 1 DOF constrained has 2 DOFs instead of 3.
553 * This code is also used for particles with multiple constraints,
554 * in which case we overestimate the displacement.
555 * The 2DOF distribution is sqrt(pi/2)*erfc(r/(sqrt(2)*s))/(2*s).
556 * We approximate this with scale*Gaussian(s,r+shift),
557 * by matching the distribution value and derivative at x.
558 * This is a tight overestimate for all r>=0 at any s and x.
560 real ex, er;
562 ex = std::exp(-x*x/(2*s2));
563 er = std::erfc(x/std::sqrt(2*s2));
565 *shift = -x + std::sqrt(2*s2/M_PI)*ex/er;
566 *scale = 0.5*M_PI*std::exp(ex*ex/(M_PI*er*er))*er;
569 // Returns an (over)estimate of the energy drift for a single atom pair,
570 // given the kinetic properties, displacement variances and list buffer.
571 static real energyDriftAtomPair(const atom_nonbonded_kinetic_prop_t *prop_i,
572 const atom_nonbonded_kinetic_prop_t *prop_j,
573 real s2, real s2i_2d, real s2j_2d,
574 real r_buffer,
575 const pot_derivatives_t *der)
577 // For relatively small arguments erfc() is so small that if will be 0.0
578 // when stored in a float. We set an argument limit of 8 (Erfc(8)=1e-29),
579 // such that we can divide by erfc and have some space left for arithmetic.
580 const real erfc_arg_max = 8.0;
582 real rsh = r_buffer;
583 real sc_fac = 1.0;
585 real c_exp, c_erfc;
587 if (rsh*rsh > 2*s2*erfc_arg_max*erfc_arg_max)
589 // Below we calculate c_erfc = 0.5*erfc(rsh/sqrt(2*s2))
590 // When rsh/sqrt(2*s2) increases, this erfc will be the first
591 // result that underflows and becomes 0.0. To avoid this,
592 // we set c_exp=0 and c_erfc=0 for large arguments.
593 // This also avoids NaN in approx_2dof().
594 // In any relevant case this has no effect on the results,
595 // since c_exp < 6e-29, so the displacement is completely
596 // negligible for such atom pairs (and an overestimate).
597 // In nearly all use cases, there will be other atom pairs
598 // that contribute much more to the total, so zeroing
599 // this particular contribution has no effect at all.
600 c_exp = 0;
601 c_erfc = 0;
603 else
605 /* For constraints: adapt r and scaling for the Gaussian */
606 if (prop_i->bConstr)
608 real sh, sc;
610 approx_2dof(s2i_2d, r_buffer*s2i_2d/s2, &sh, &sc);
611 rsh += sh;
612 sc_fac *= sc;
614 if (prop_j->bConstr)
616 real sh, sc;
618 approx_2dof(s2j_2d, r_buffer*s2j_2d/s2, &sh, &sc);
619 rsh += sh;
620 sc_fac *= sc;
623 /* Exact contribution of an atom pair with Gaussian displacement
624 * with sigma s to the energy drift for a potential with
625 * derivative -md and second derivative dd at the cut-off.
626 * The only catch is that for potentials that change sign
627 * near the cut-off there could be an unlucky compensation
628 * of positive and negative energy drift.
629 * Such potentials are extremely rare though.
631 * Note that pot has unit energy*length, as the linear
632 * atom density still needs to be put in.
634 c_exp = std::exp(-rsh*rsh/(2*s2))/std::sqrt(2*M_PI);
635 c_erfc = 0.5*std::erfc(rsh/(std::sqrt(2*s2)));
637 real s = std::sqrt(s2);
638 real rsh2 = rsh*rsh;
640 real pot1 = sc_fac*
641 der->md1/2*((rsh2 + s2)*c_erfc - rsh*s*c_exp);
642 real pot2 = sc_fac*
643 der->d2/6*(s*(rsh2 + 2*s2)*c_exp - rsh*(rsh2 + 3*s2)*c_erfc);
644 real pot3 = sc_fac*
645 der->md3/24*((rsh2*rsh2 + 6*rsh2*s2 + 3*s2*s2)*c_erfc - rsh*s*(rsh2 + 5*s2)*c_exp);
647 return pot1 + pot2 + pot3;
650 static real energyDrift(const verletbuf_atomtype_t *att, int natt,
651 const gmx_ffparams_t *ffp,
652 real kT_fac,
653 const pot_derivatives_t *ljDisp,
654 const pot_derivatives_t *ljRep,
655 const pot_derivatives_t *elec,
656 real rlj, real rcoulomb,
657 real rlist, real boxvol)
659 double drift_tot = 0;
661 if (kT_fac == 0)
663 /* No atom displacements: no drift, avoid division by 0 */
664 return drift_tot;
667 // Here add up the contribution of all atom pairs in the system to
668 // (estimated) energy drift by looping over all atom type pairs.
669 for (int i = 0; i < natt; i++)
671 // Get the thermal displacement variance for the i-atom type
672 const atom_nonbonded_kinetic_prop_t *prop_i = &att[i].prop;
673 real s2i_2d, s2i_3d;
674 get_atom_sigma2(kT_fac, prop_i, &s2i_2d, &s2i_3d);
676 for (int j = i; j < natt; j++)
678 // Get the thermal displacement variance for the j-atom type
679 const atom_nonbonded_kinetic_prop_t *prop_j = &att[j].prop;
680 real s2j_2d, s2j_3d;
681 get_atom_sigma2(kT_fac, prop_j, &s2j_2d, &s2j_3d);
683 /* Add up the up to four independent variances */
684 real s2 = s2i_2d + s2i_3d + s2j_2d + s2j_3d;
686 // Set -V', V'' and -V''' at the cut-off for LJ */
687 real c6 = ffp->iparams[prop_i->type*ffp->atnr + prop_j->type].lj.c6;
688 real c12 = ffp->iparams[prop_i->type*ffp->atnr + prop_j->type].lj.c12;
689 pot_derivatives_t lj;
690 lj.md1 = c6*ljDisp->md1 + c12*ljRep->md1;
691 lj.d2 = c6*ljDisp->d2 + c12*ljRep->d2;
692 lj.md3 = c6*ljDisp->md3 + c12*ljRep->md3;
694 real pot_lj = energyDriftAtomPair(prop_i, prop_j,
695 s2, s2i_2d, s2j_2d,
696 rlist - rlj,
697 &lj);
699 // Set -V' and V'' at the cut-off for Coulomb
700 pot_derivatives_t elec_qq;
701 elec_qq.md1 = elec->md1*prop_i->q*prop_j->q;
702 elec_qq.d2 = elec->d2 *prop_i->q*prop_j->q;
703 elec_qq.md3 = 0;
705 real pot_q = energyDriftAtomPair(prop_i, prop_j,
706 s2, s2i_2d, s2j_2d,
707 rlist - rcoulomb,
708 &elec_qq);
710 // Note that attractive and repulsive potentials for individual
711 // pairs can partially cancel.
712 real pot = pot_lj + pot_q;
714 /* Multiply by the number of atom pairs */
715 if (j == i)
717 pot *= (double)att[i].n*(att[i].n - 1)/2;
719 else
721 pot *= (double)att[i].n*att[j].n;
723 /* We need the line density to get the energy drift of the system.
724 * The effective average r^2 is close to (rlist+sigma)^2.
726 pot *= 4*M_PI*gmx::square(rlist + std::sqrt(s2))/boxvol;
728 /* Add the unsigned drift to avoid cancellation of errors */
729 drift_tot += std::abs(pot);
733 return drift_tot;
736 static real surface_frac(int cluster_size, real particle_distance, real rlist)
738 real d, area_rel;
740 if (rlist < 0.5*particle_distance)
742 /* We have non overlapping spheres */
743 return 1.0;
746 /* Half the inter-particle distance relative to rlist */
747 d = 0.5*particle_distance/rlist;
749 /* Determine the area of the surface at distance rlist to the closest
750 * particle, relative to surface of a sphere of radius rlist.
751 * The formulas below assume close to cubic cells for the pair search grid,
752 * which the pair search code tries to achieve.
753 * Note that in practice particle distances will not be delta distributed,
754 * but have some spread, often involving shorter distances,
755 * as e.g. O-H bonds in a water molecule. Thus the estimates below will
756 * usually be slightly too high and thus conservative.
758 switch (cluster_size)
760 case 1:
761 /* One particle: trivial */
762 area_rel = 1.0;
763 break;
764 case 2:
765 /* Two particles: two spheres at fractional distance 2*a */
766 area_rel = 1.0 + d;
767 break;
768 case 4:
769 /* We assume a perfect, symmetric tetrahedron geometry.
770 * The surface around a tetrahedron is too complex for a full
771 * analytical solution, so we use a Taylor expansion.
773 area_rel = (1.0 + 1/M_PI*(6*std::acos(1/std::sqrt(3))*d +
774 std::sqrt(3)*d*d*(1.0 +
775 5.0/18.0*d*d +
776 7.0/45.0*d*d*d*d +
777 83.0/756.0*d*d*d*d*d*d)));
778 break;
779 default:
780 gmx_incons("surface_frac called with unsupported cluster_size");
781 area_rel = 1.0;
784 return area_rel/cluster_size;
787 /* Returns the negative of the third derivative of a potential r^-p
788 * with a force-switch function, evaluated at the cut-off rc.
790 static real md3_force_switch(real p, real rswitch, real rc)
792 /* The switched force function is:
793 * p*r^-(p+1) + a*(r - rswitch)^2 + b*(r - rswitch)^3
795 real a, b;
796 real md3_pot, md3_sw;
798 a = -((p + 4)*rc - (p + 1)*rswitch)/(pow(rc, p+2)*gmx::square(rc-rswitch));
799 b = ((p + 3)*rc - (p + 1)*rswitch)/(pow(rc, p+2)*gmx::power3(rc-rswitch));
801 md3_pot = (p + 2)*(p + 1)*p*pow(rc, p+3);
802 md3_sw = 2*a + 6*b*(rc - rswitch);
804 return md3_pot + md3_sw;
807 void calc_verlet_buffer_size(const gmx_mtop_t *mtop, real boxvol,
808 const t_inputrec *ir,
809 int nstlist,
810 int list_lifetime,
811 real reference_temperature,
812 const VerletbufListSetup *list_setup,
813 int *n_nonlin_vsite,
814 real *rlist)
816 double resolution;
817 char *env;
819 real particle_distance;
820 real nb_clust_frac_pairs_not_in_list_at_cutoff;
822 verletbuf_atomtype_t *att = nullptr;
823 int natt = -1, i;
824 real elfac;
825 real kT_fac, mass_min;
826 int ib0, ib1, ib;
827 real rb, rl;
828 real drift;
830 if (!EI_DYNAMICS(ir->eI))
832 gmx_incons("Can only determine the Verlet buffer size for integrators that perform dynamics");
834 if (ir->verletbuf_tol <= 0)
836 gmx_incons("The Verlet buffer tolerance needs to be larger than zero");
839 if (reference_temperature < 0)
841 if (EI_MD(ir->eI) && ir->etc == etcNO)
843 /* This case should be handled outside calc_verlet_buffer_size */
844 gmx_incons("calc_verlet_buffer_size called with an NVE ensemble and reference_temperature < 0");
847 /* We use the maximum temperature with multiple T-coupl groups.
848 * We could use a per particle temperature, but since particles
849 * interact, this might underestimate the buffer size.
851 reference_temperature = 0;
852 for (i = 0; i < ir->opts.ngtc; i++)
854 if (ir->opts.tau_t[i] >= 0)
856 reference_temperature = std::max(reference_temperature,
857 ir->opts.ref_t[i]);
862 /* Resolution of the buffer size */
863 resolution = 0.001;
865 env = getenv("GMX_VERLET_BUFFER_RES");
866 if (env != nullptr)
868 sscanf(env, "%lf", &resolution);
871 /* In an atom wise pair-list there would be no pairs in the list
872 * beyond the pair-list cut-off.
873 * However, we use a pair-list of groups vs groups of atoms.
874 * For groups of 4 atoms, the parallelism of SSE instructions, only
875 * 10% of the atoms pairs are not in the list just beyond the cut-off.
876 * As this percentage increases slowly compared to the decrease of the
877 * Gaussian displacement distribution over this range, we can simply
878 * reduce the drift by this fraction.
879 * For larger groups, e.g. of 8 atoms, this fraction will be lower,
880 * so then buffer size will be on the conservative (large) side.
882 * Note that the formulas used here do not take into account
883 * cancellation of errors which could occur by missing both
884 * attractive and repulsive interactions.
886 * The only major assumption is homogeneous particle distribution.
887 * For an inhomogeneous system, such as a liquid-vapor system,
888 * the buffer will be underestimated. The actual energy drift
889 * will be higher by the factor: local/homogeneous particle density.
891 * The results of this estimate have been checked againt simulations.
892 * In most cases the real drift differs by less than a factor 2.
895 /* Worst case assumption: HCP packing of particles gives largest distance */
896 particle_distance = std::cbrt(boxvol*std::sqrt(2)/mtop->natoms);
898 get_verlet_buffer_atomtypes(mtop, &att, &natt, n_nonlin_vsite);
899 assert(att != NULL && natt >= 0);
901 if (debug)
903 fprintf(debug, "particle distance assuming HCP packing: %f nm\n",
904 particle_distance);
905 fprintf(debug, "energy drift atom types: %d\n", natt);
908 pot_derivatives_t ljDisp = { 0, 0, 0 };
909 pot_derivatives_t ljRep = { 0, 0, 0 };
910 real repPow = mtop->ffparams.reppow;
912 if (ir->vdwtype == evdwCUT)
914 real sw_range, md3_pswf;
916 switch (ir->vdw_modifier)
918 case eintmodNONE:
919 case eintmodPOTSHIFT:
920 /* -dV/dr of -r^-6 and r^-reppow */
921 ljDisp.md1 = -6*std::pow(ir->rvdw, -7.0);
922 ljRep.md1 = repPow*std::pow(ir->rvdw, -(repPow + 1));
923 /* The contribution of the higher derivatives is negligible */
924 break;
925 case eintmodFORCESWITCH:
926 /* At the cut-off: V=V'=V''=0, so we use only V''' */
927 ljDisp.md3 = -md3_force_switch(6.0, ir->rvdw_switch, ir->rvdw);
928 ljRep.md3 = md3_force_switch(repPow, ir->rvdw_switch, ir->rvdw);
929 break;
930 case eintmodPOTSWITCH:
931 /* At the cut-off: V=V'=V''=0.
932 * V''' is given by the original potential times
933 * the third derivative of the switch function.
935 sw_range = ir->rvdw - ir->rvdw_switch;
936 md3_pswf = 60.0/gmx::power3(sw_range);
938 ljDisp.md3 = -std::pow(ir->rvdw, -6.0 )*md3_pswf;
939 ljRep.md3 = std::pow(ir->rvdw, -repPow)*md3_pswf;
940 break;
941 default:
942 gmx_incons("Unimplemented VdW modifier");
945 else if (EVDW_PME(ir->vdwtype))
947 real b = calc_ewaldcoeff_lj(ir->rvdw, ir->ewald_rtol_lj);
948 real r = ir->rvdw;
949 real br = b*r;
950 real br2 = br*br;
951 real br4 = br2*br2;
952 real br6 = br4*br2;
953 // -dV/dr of g(br)*r^-6 [where g(x) = exp(-x^2)(1+x^2+x^4/2),
954 // see LJ-PME equations in manual] and r^-reppow
955 ljDisp.md1 = -std::exp(-br2)*(br6 + 3.0*br4 + 6.0*br2 + 6.0)*std::pow(r, -7.0);
956 ljRep.md1 = repPow*pow(r, -(repPow + 1));
957 // The contribution of the higher derivatives is negligible
959 else
961 gmx_fatal(FARGS, "Energy drift calculation is only implemented for plain cut-off Lennard-Jones interactions");
964 elfac = ONE_4PI_EPS0/ir->epsilon_r;
966 // Determine the 1st and 2nd derivative for the electostatics
967 pot_derivatives_t elec = { 0, 0, 0 };
969 if (ir->coulombtype == eelCUT || EEL_RF(ir->coulombtype))
971 real eps_rf, k_rf;
973 if (ir->coulombtype == eelCUT)
975 eps_rf = 1;
976 k_rf = 0;
978 else
980 eps_rf = ir->epsilon_rf/ir->epsilon_r;
981 if (eps_rf != 0)
983 k_rf = (eps_rf - ir->epsilon_r)/( gmx::power3(ir->rcoulomb) * (2*eps_rf + ir->epsilon_r) );
985 else
987 /* epsilon_rf = infinity */
988 k_rf = 0.5/gmx::power3(ir->rcoulomb);
992 if (eps_rf > 0)
994 elec.md1 = elfac*(1.0/gmx::square(ir->rcoulomb) - 2*k_rf*ir->rcoulomb);
996 elec.d2 = elfac*(2.0/gmx::power3(ir->rcoulomb) + 2*k_rf);
998 else if (EEL_PME(ir->coulombtype) || ir->coulombtype == eelEWALD)
1000 real b, rc, br;
1002 b = calc_ewaldcoeff_q(ir->rcoulomb, ir->ewald_rtol);
1003 rc = ir->rcoulomb;
1004 br = b*rc;
1005 elec.md1 = elfac*(b*std::exp(-br*br)*M_2_SQRTPI/rc + std::erfc(br)/(rc*rc));
1006 elec.d2 = elfac/(rc*rc)*(2*b*(1 + br*br)*std::exp(-br*br)*M_2_SQRTPI + 2*std::erfc(br)/rc);
1008 else
1010 gmx_fatal(FARGS, "Energy drift calculation is only implemented for Reaction-Field and Ewald electrostatics");
1013 /* Determine the variance of the atomic displacement
1014 * over list_lifetime steps: kT_fac
1015 * For inertial dynamics (not Brownian dynamics) the mass factor
1016 * is not included in kT_fac, it is added later.
1018 if (ir->eI == eiBD)
1020 /* Get the displacement distribution from the random component only.
1021 * With accurate integration the systematic (force) displacement
1022 * should be negligible (unless nstlist is extremely large, which
1023 * you wouldn't do anyhow).
1025 kT_fac = 2*BOLTZ*reference_temperature*list_lifetime*ir->delta_t;
1026 if (ir->bd_fric > 0)
1028 /* This is directly sigma^2 of the displacement */
1029 kT_fac /= ir->bd_fric;
1031 /* Set the masses to 1 as kT_fac is the full sigma^2,
1032 * but we divide by m in ener_drift().
1034 for (i = 0; i < natt; i++)
1036 att[i].prop.mass = 1;
1039 else
1041 real tau_t;
1043 /* Per group tau_t is not implemented yet, use the maximum */
1044 tau_t = ir->opts.tau_t[0];
1045 for (i = 1; i < ir->opts.ngtc; i++)
1047 tau_t = std::max(tau_t, ir->opts.tau_t[i]);
1050 kT_fac *= tau_t;
1051 /* This kT_fac needs to be divided by the mass to get sigma^2 */
1054 else
1056 kT_fac = BOLTZ*reference_temperature*gmx::square(list_lifetime*ir->delta_t);
1059 mass_min = att[0].prop.mass;
1060 for (i = 1; i < natt; i++)
1062 mass_min = std::min(mass_min, att[i].prop.mass);
1065 if (debug)
1067 fprintf(debug, "Derivatives of non-bonded potentials at the cut-off:\n");
1068 fprintf(debug, "LJ disp. -V' %9.2e V'' %9.2e -V''' %9.2e\n", ljDisp.md1, ljDisp.d2, ljDisp.md3);
1069 fprintf(debug, "LJ rep. -V' %9.2e V'' %9.2e -V''' %9.2e\n", ljRep.md1, ljRep.d2, ljRep.md3);
1070 fprintf(debug, "Electro. -V' %9.2e V'' %9.2e\n", elec.md1, elec.d2);
1071 fprintf(debug, "sqrt(kT_fac) %f\n", std::sqrt(kT_fac));
1072 fprintf(debug, "mass_min %f\n", mass_min);
1075 /* Search using bisection */
1076 ib0 = -1;
1077 /* The drift will be neglible at 5 times the max sigma */
1078 ib1 = (int)(5*2*std::sqrt(kT_fac/mass_min)/resolution) + 1;
1079 while (ib1 - ib0 > 1)
1081 ib = (ib0 + ib1)/2;
1082 rb = ib*resolution;
1083 rl = std::max(ir->rvdw, ir->rcoulomb) + rb;
1085 /* Calculate the average energy drift at the last step
1086 * of the nstlist steps at which the pair-list is used.
1088 drift = energyDrift(att, natt, &mtop->ffparams,
1089 kT_fac,
1090 &ljDisp, &ljRep, &elec,
1091 ir->rvdw, ir->rcoulomb,
1092 rl, boxvol);
1094 /* Correct for the fact that we are using a Ni x Nj particle pair list
1095 * and not a 1 x 1 particle pair list. This reduces the drift.
1097 /* We don't have a formula for 8 (yet), use 4 which is conservative */
1098 nb_clust_frac_pairs_not_in_list_at_cutoff =
1099 surface_frac(std::min(list_setup->cluster_size_i, 4),
1100 particle_distance, rl)*
1101 surface_frac(std::min(list_setup->cluster_size_j, 4),
1102 particle_distance, rl);
1103 drift *= nb_clust_frac_pairs_not_in_list_at_cutoff;
1105 /* Convert the drift to drift per unit time per atom */
1106 drift /= nstlist*ir->delta_t*mtop->natoms;
1108 if (debug)
1110 fprintf(debug, "ib %3d %3d %3d rb %.3f %dx%d fac %.3f drift %.1e\n",
1111 ib0, ib, ib1, rb,
1112 list_setup->cluster_size_i, list_setup->cluster_size_j,
1113 nb_clust_frac_pairs_not_in_list_at_cutoff,
1114 drift);
1117 if (std::abs(drift) > ir->verletbuf_tol)
1119 ib0 = ib;
1121 else
1123 ib1 = ib;
1127 sfree(att);
1129 *rlist = std::max(ir->rvdw, ir->rcoulomb) + ib1*resolution;