Remove nb-parameters from t_forcerec
[gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_sse4_1_double.c
blobeffb07fb6008f4cee002fdf0e3e7e7eb901925a4
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
36 * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
38 #include "gmxpre.h"
40 #include "config.h"
42 #include <math.h>
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
47 #include "kernelutil_x86_sse4_1_double.h"
50 * Gromacs nonbonded kernel: nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_VF_sse4_1_double
51 * Electrostatics interaction: ReactionField
52 * VdW interaction: CubicSplineTable
53 * Geometry: Water4-Particle
54 * Calculate force/pot: PotentialAndForce
56 void
57 nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_VF_sse4_1_double
58 (t_nblist * gmx_restrict nlist,
59 rvec * gmx_restrict xx,
60 rvec * gmx_restrict ff,
61 struct t_forcerec * gmx_restrict fr,
62 t_mdatoms * gmx_restrict mdatoms,
63 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64 t_nrnb * gmx_restrict nrnb)
66 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67 * just 0 for non-waters.
68 * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
69 * jnr indices corresponding to data put in the four positions in the SIMD register.
71 int i_shift_offset,i_coord_offset,outeriter,inneriter;
72 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73 int jnrA,jnrB;
74 int j_coord_offsetA,j_coord_offsetB;
75 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
76 real rcutoff_scalar;
77 real *shiftvec,*fshift,*x,*f;
78 __m128d tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79 int vdwioffset0;
80 __m128d ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81 int vdwioffset1;
82 __m128d ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
83 int vdwioffset2;
84 __m128d ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
85 int vdwioffset3;
86 __m128d ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
87 int vdwjidx0A,vdwjidx0B;
88 __m128d jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89 __m128d dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90 __m128d dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
91 __m128d dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
92 __m128d dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
93 __m128d velec,felec,velecsum,facel,crf,krf,krf2;
94 real *charge;
95 int nvdwtype;
96 __m128d rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
97 int *vdwtype;
98 real *vdwparam;
99 __m128d one_sixth = _mm_set1_pd(1.0/6.0);
100 __m128d one_twelfth = _mm_set1_pd(1.0/12.0);
101 __m128i vfitab;
102 __m128i ifour = _mm_set1_epi32(4);
103 __m128d rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
104 real *vftab;
105 __m128d dummy_mask,cutoff_mask;
106 __m128d signbit = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
107 __m128d one = _mm_set1_pd(1.0);
108 __m128d two = _mm_set1_pd(2.0);
109 x = xx[0];
110 f = ff[0];
112 nri = nlist->nri;
113 iinr = nlist->iinr;
114 jindex = nlist->jindex;
115 jjnr = nlist->jjnr;
116 shiftidx = nlist->shift;
117 gid = nlist->gid;
118 shiftvec = fr->shift_vec[0];
119 fshift = fr->fshift[0];
120 facel = _mm_set1_pd(fr->ic->epsfac);
121 charge = mdatoms->chargeA;
122 krf = _mm_set1_pd(fr->ic->k_rf);
123 krf2 = _mm_set1_pd(fr->ic->k_rf*2.0);
124 crf = _mm_set1_pd(fr->ic->c_rf);
125 nvdwtype = fr->ntype;
126 vdwparam = fr->nbfp;
127 vdwtype = mdatoms->typeA;
129 vftab = kernel_data->table_vdw->data;
130 vftabscale = _mm_set1_pd(kernel_data->table_vdw->scale);
132 /* Setup water-specific parameters */
133 inr = nlist->iinr[0];
134 iq1 = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
135 iq2 = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
136 iq3 = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
137 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
139 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
140 rcutoff_scalar = fr->ic->rcoulomb;
141 rcutoff = _mm_set1_pd(rcutoff_scalar);
142 rcutoff2 = _mm_mul_pd(rcutoff,rcutoff);
144 /* Avoid stupid compiler warnings */
145 jnrA = jnrB = 0;
146 j_coord_offsetA = 0;
147 j_coord_offsetB = 0;
149 outeriter = 0;
150 inneriter = 0;
152 /* Start outer loop over neighborlists */
153 for(iidx=0; iidx<nri; iidx++)
155 /* Load shift vector for this list */
156 i_shift_offset = DIM*shiftidx[iidx];
158 /* Load limits for loop over neighbors */
159 j_index_start = jindex[iidx];
160 j_index_end = jindex[iidx+1];
162 /* Get outer coordinate index */
163 inr = iinr[iidx];
164 i_coord_offset = DIM*inr;
166 /* Load i particle coords and add shift vector */
167 gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
168 &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
170 fix0 = _mm_setzero_pd();
171 fiy0 = _mm_setzero_pd();
172 fiz0 = _mm_setzero_pd();
173 fix1 = _mm_setzero_pd();
174 fiy1 = _mm_setzero_pd();
175 fiz1 = _mm_setzero_pd();
176 fix2 = _mm_setzero_pd();
177 fiy2 = _mm_setzero_pd();
178 fiz2 = _mm_setzero_pd();
179 fix3 = _mm_setzero_pd();
180 fiy3 = _mm_setzero_pd();
181 fiz3 = _mm_setzero_pd();
183 /* Reset potential sums */
184 velecsum = _mm_setzero_pd();
185 vvdwsum = _mm_setzero_pd();
187 /* Start inner kernel loop */
188 for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
191 /* Get j neighbor index, and coordinate index */
192 jnrA = jjnr[jidx];
193 jnrB = jjnr[jidx+1];
194 j_coord_offsetA = DIM*jnrA;
195 j_coord_offsetB = DIM*jnrB;
197 /* load j atom coordinates */
198 gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
199 &jx0,&jy0,&jz0);
201 /* Calculate displacement vector */
202 dx00 = _mm_sub_pd(ix0,jx0);
203 dy00 = _mm_sub_pd(iy0,jy0);
204 dz00 = _mm_sub_pd(iz0,jz0);
205 dx10 = _mm_sub_pd(ix1,jx0);
206 dy10 = _mm_sub_pd(iy1,jy0);
207 dz10 = _mm_sub_pd(iz1,jz0);
208 dx20 = _mm_sub_pd(ix2,jx0);
209 dy20 = _mm_sub_pd(iy2,jy0);
210 dz20 = _mm_sub_pd(iz2,jz0);
211 dx30 = _mm_sub_pd(ix3,jx0);
212 dy30 = _mm_sub_pd(iy3,jy0);
213 dz30 = _mm_sub_pd(iz3,jz0);
215 /* Calculate squared distance and things based on it */
216 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
217 rsq10 = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
218 rsq20 = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
219 rsq30 = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
221 rinv00 = sse41_invsqrt_d(rsq00);
222 rinv10 = sse41_invsqrt_d(rsq10);
223 rinv20 = sse41_invsqrt_d(rsq20);
224 rinv30 = sse41_invsqrt_d(rsq30);
226 rinvsq10 = _mm_mul_pd(rinv10,rinv10);
227 rinvsq20 = _mm_mul_pd(rinv20,rinv20);
228 rinvsq30 = _mm_mul_pd(rinv30,rinv30);
230 /* Load parameters for j particles */
231 jq0 = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
232 vdwjidx0A = 2*vdwtype[jnrA+0];
233 vdwjidx0B = 2*vdwtype[jnrB+0];
235 fjx0 = _mm_setzero_pd();
236 fjy0 = _mm_setzero_pd();
237 fjz0 = _mm_setzero_pd();
239 /**************************
240 * CALCULATE INTERACTIONS *
241 **************************/
243 r00 = _mm_mul_pd(rsq00,rinv00);
245 /* Compute parameters for interactions between i and j atoms */
246 gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
247 vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
249 /* Calculate table index by multiplying r with table scale and truncate to integer */
250 rt = _mm_mul_pd(r00,vftabscale);
251 vfitab = _mm_cvttpd_epi32(rt);
252 vfeps = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
253 vfitab = _mm_slli_epi32(vfitab,3);
255 /* CUBIC SPLINE TABLE DISPERSION */
256 Y = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
257 F = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
258 GMX_MM_TRANSPOSE2_PD(Y,F);
259 G = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
260 H = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
261 GMX_MM_TRANSPOSE2_PD(G,H);
262 Heps = _mm_mul_pd(vfeps,H);
263 Fp = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
264 VV = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
265 vvdw6 = _mm_mul_pd(c6_00,VV);
266 FF = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
267 fvdw6 = _mm_mul_pd(c6_00,FF);
269 /* CUBIC SPLINE TABLE REPULSION */
270 vfitab = _mm_add_epi32(vfitab,ifour);
271 Y = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
272 F = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
273 GMX_MM_TRANSPOSE2_PD(Y,F);
274 G = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
275 H = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
276 GMX_MM_TRANSPOSE2_PD(G,H);
277 Heps = _mm_mul_pd(vfeps,H);
278 Fp = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
279 VV = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
280 vvdw12 = _mm_mul_pd(c12_00,VV);
281 FF = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
282 fvdw12 = _mm_mul_pd(c12_00,FF);
283 vvdw = _mm_add_pd(vvdw12,vvdw6);
284 fvdw = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
286 /* Update potential sum for this i atom from the interaction with this j atom. */
287 vvdwsum = _mm_add_pd(vvdwsum,vvdw);
289 fscal = fvdw;
291 /* Calculate temporary vectorial force */
292 tx = _mm_mul_pd(fscal,dx00);
293 ty = _mm_mul_pd(fscal,dy00);
294 tz = _mm_mul_pd(fscal,dz00);
296 /* Update vectorial force */
297 fix0 = _mm_add_pd(fix0,tx);
298 fiy0 = _mm_add_pd(fiy0,ty);
299 fiz0 = _mm_add_pd(fiz0,tz);
301 fjx0 = _mm_add_pd(fjx0,tx);
302 fjy0 = _mm_add_pd(fjy0,ty);
303 fjz0 = _mm_add_pd(fjz0,tz);
305 /**************************
306 * CALCULATE INTERACTIONS *
307 **************************/
309 if (gmx_mm_any_lt(rsq10,rcutoff2))
312 /* Compute parameters for interactions between i and j atoms */
313 qq10 = _mm_mul_pd(iq1,jq0);
315 /* REACTION-FIELD ELECTROSTATICS */
316 velec = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
317 felec = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
319 cutoff_mask = _mm_cmplt_pd(rsq10,rcutoff2);
321 /* Update potential sum for this i atom from the interaction with this j atom. */
322 velec = _mm_and_pd(velec,cutoff_mask);
323 velecsum = _mm_add_pd(velecsum,velec);
325 fscal = felec;
327 fscal = _mm_and_pd(fscal,cutoff_mask);
329 /* Calculate temporary vectorial force */
330 tx = _mm_mul_pd(fscal,dx10);
331 ty = _mm_mul_pd(fscal,dy10);
332 tz = _mm_mul_pd(fscal,dz10);
334 /* Update vectorial force */
335 fix1 = _mm_add_pd(fix1,tx);
336 fiy1 = _mm_add_pd(fiy1,ty);
337 fiz1 = _mm_add_pd(fiz1,tz);
339 fjx0 = _mm_add_pd(fjx0,tx);
340 fjy0 = _mm_add_pd(fjy0,ty);
341 fjz0 = _mm_add_pd(fjz0,tz);
345 /**************************
346 * CALCULATE INTERACTIONS *
347 **************************/
349 if (gmx_mm_any_lt(rsq20,rcutoff2))
352 /* Compute parameters for interactions between i and j atoms */
353 qq20 = _mm_mul_pd(iq2,jq0);
355 /* REACTION-FIELD ELECTROSTATICS */
356 velec = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
357 felec = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
359 cutoff_mask = _mm_cmplt_pd(rsq20,rcutoff2);
361 /* Update potential sum for this i atom from the interaction with this j atom. */
362 velec = _mm_and_pd(velec,cutoff_mask);
363 velecsum = _mm_add_pd(velecsum,velec);
365 fscal = felec;
367 fscal = _mm_and_pd(fscal,cutoff_mask);
369 /* Calculate temporary vectorial force */
370 tx = _mm_mul_pd(fscal,dx20);
371 ty = _mm_mul_pd(fscal,dy20);
372 tz = _mm_mul_pd(fscal,dz20);
374 /* Update vectorial force */
375 fix2 = _mm_add_pd(fix2,tx);
376 fiy2 = _mm_add_pd(fiy2,ty);
377 fiz2 = _mm_add_pd(fiz2,tz);
379 fjx0 = _mm_add_pd(fjx0,tx);
380 fjy0 = _mm_add_pd(fjy0,ty);
381 fjz0 = _mm_add_pd(fjz0,tz);
385 /**************************
386 * CALCULATE INTERACTIONS *
387 **************************/
389 if (gmx_mm_any_lt(rsq30,rcutoff2))
392 /* Compute parameters for interactions between i and j atoms */
393 qq30 = _mm_mul_pd(iq3,jq0);
395 /* REACTION-FIELD ELECTROSTATICS */
396 velec = _mm_mul_pd(qq30,_mm_sub_pd(_mm_add_pd(rinv30,_mm_mul_pd(krf,rsq30)),crf));
397 felec = _mm_mul_pd(qq30,_mm_sub_pd(_mm_mul_pd(rinv30,rinvsq30),krf2));
399 cutoff_mask = _mm_cmplt_pd(rsq30,rcutoff2);
401 /* Update potential sum for this i atom from the interaction with this j atom. */
402 velec = _mm_and_pd(velec,cutoff_mask);
403 velecsum = _mm_add_pd(velecsum,velec);
405 fscal = felec;
407 fscal = _mm_and_pd(fscal,cutoff_mask);
409 /* Calculate temporary vectorial force */
410 tx = _mm_mul_pd(fscal,dx30);
411 ty = _mm_mul_pd(fscal,dy30);
412 tz = _mm_mul_pd(fscal,dz30);
414 /* Update vectorial force */
415 fix3 = _mm_add_pd(fix3,tx);
416 fiy3 = _mm_add_pd(fiy3,ty);
417 fiz3 = _mm_add_pd(fiz3,tz);
419 fjx0 = _mm_add_pd(fjx0,tx);
420 fjy0 = _mm_add_pd(fjy0,ty);
421 fjz0 = _mm_add_pd(fjz0,tz);
425 gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
427 /* Inner loop uses 167 flops */
430 if(jidx<j_index_end)
433 jnrA = jjnr[jidx];
434 j_coord_offsetA = DIM*jnrA;
436 /* load j atom coordinates */
437 gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
438 &jx0,&jy0,&jz0);
440 /* Calculate displacement vector */
441 dx00 = _mm_sub_pd(ix0,jx0);
442 dy00 = _mm_sub_pd(iy0,jy0);
443 dz00 = _mm_sub_pd(iz0,jz0);
444 dx10 = _mm_sub_pd(ix1,jx0);
445 dy10 = _mm_sub_pd(iy1,jy0);
446 dz10 = _mm_sub_pd(iz1,jz0);
447 dx20 = _mm_sub_pd(ix2,jx0);
448 dy20 = _mm_sub_pd(iy2,jy0);
449 dz20 = _mm_sub_pd(iz2,jz0);
450 dx30 = _mm_sub_pd(ix3,jx0);
451 dy30 = _mm_sub_pd(iy3,jy0);
452 dz30 = _mm_sub_pd(iz3,jz0);
454 /* Calculate squared distance and things based on it */
455 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
456 rsq10 = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
457 rsq20 = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
458 rsq30 = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
460 rinv00 = sse41_invsqrt_d(rsq00);
461 rinv10 = sse41_invsqrt_d(rsq10);
462 rinv20 = sse41_invsqrt_d(rsq20);
463 rinv30 = sse41_invsqrt_d(rsq30);
465 rinvsq10 = _mm_mul_pd(rinv10,rinv10);
466 rinvsq20 = _mm_mul_pd(rinv20,rinv20);
467 rinvsq30 = _mm_mul_pd(rinv30,rinv30);
469 /* Load parameters for j particles */
470 jq0 = _mm_load_sd(charge+jnrA+0);
471 vdwjidx0A = 2*vdwtype[jnrA+0];
473 fjx0 = _mm_setzero_pd();
474 fjy0 = _mm_setzero_pd();
475 fjz0 = _mm_setzero_pd();
477 /**************************
478 * CALCULATE INTERACTIONS *
479 **************************/
481 r00 = _mm_mul_pd(rsq00,rinv00);
483 /* Compute parameters for interactions between i and j atoms */
484 gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
486 /* Calculate table index by multiplying r with table scale and truncate to integer */
487 rt = _mm_mul_pd(r00,vftabscale);
488 vfitab = _mm_cvttpd_epi32(rt);
489 vfeps = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
490 vfitab = _mm_slli_epi32(vfitab,3);
492 /* CUBIC SPLINE TABLE DISPERSION */
493 Y = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
494 F = _mm_setzero_pd();
495 GMX_MM_TRANSPOSE2_PD(Y,F);
496 G = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
497 H = _mm_setzero_pd();
498 GMX_MM_TRANSPOSE2_PD(G,H);
499 Heps = _mm_mul_pd(vfeps,H);
500 Fp = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
501 VV = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
502 vvdw6 = _mm_mul_pd(c6_00,VV);
503 FF = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
504 fvdw6 = _mm_mul_pd(c6_00,FF);
506 /* CUBIC SPLINE TABLE REPULSION */
507 vfitab = _mm_add_epi32(vfitab,ifour);
508 Y = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
509 F = _mm_setzero_pd();
510 GMX_MM_TRANSPOSE2_PD(Y,F);
511 G = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
512 H = _mm_setzero_pd();
513 GMX_MM_TRANSPOSE2_PD(G,H);
514 Heps = _mm_mul_pd(vfeps,H);
515 Fp = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
516 VV = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
517 vvdw12 = _mm_mul_pd(c12_00,VV);
518 FF = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
519 fvdw12 = _mm_mul_pd(c12_00,FF);
520 vvdw = _mm_add_pd(vvdw12,vvdw6);
521 fvdw = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
523 /* Update potential sum for this i atom from the interaction with this j atom. */
524 vvdw = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
525 vvdwsum = _mm_add_pd(vvdwsum,vvdw);
527 fscal = fvdw;
529 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
531 /* Calculate temporary vectorial force */
532 tx = _mm_mul_pd(fscal,dx00);
533 ty = _mm_mul_pd(fscal,dy00);
534 tz = _mm_mul_pd(fscal,dz00);
536 /* Update vectorial force */
537 fix0 = _mm_add_pd(fix0,tx);
538 fiy0 = _mm_add_pd(fiy0,ty);
539 fiz0 = _mm_add_pd(fiz0,tz);
541 fjx0 = _mm_add_pd(fjx0,tx);
542 fjy0 = _mm_add_pd(fjy0,ty);
543 fjz0 = _mm_add_pd(fjz0,tz);
545 /**************************
546 * CALCULATE INTERACTIONS *
547 **************************/
549 if (gmx_mm_any_lt(rsq10,rcutoff2))
552 /* Compute parameters for interactions between i and j atoms */
553 qq10 = _mm_mul_pd(iq1,jq0);
555 /* REACTION-FIELD ELECTROSTATICS */
556 velec = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
557 felec = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
559 cutoff_mask = _mm_cmplt_pd(rsq10,rcutoff2);
561 /* Update potential sum for this i atom from the interaction with this j atom. */
562 velec = _mm_and_pd(velec,cutoff_mask);
563 velec = _mm_unpacklo_pd(velec,_mm_setzero_pd());
564 velecsum = _mm_add_pd(velecsum,velec);
566 fscal = felec;
568 fscal = _mm_and_pd(fscal,cutoff_mask);
570 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
572 /* Calculate temporary vectorial force */
573 tx = _mm_mul_pd(fscal,dx10);
574 ty = _mm_mul_pd(fscal,dy10);
575 tz = _mm_mul_pd(fscal,dz10);
577 /* Update vectorial force */
578 fix1 = _mm_add_pd(fix1,tx);
579 fiy1 = _mm_add_pd(fiy1,ty);
580 fiz1 = _mm_add_pd(fiz1,tz);
582 fjx0 = _mm_add_pd(fjx0,tx);
583 fjy0 = _mm_add_pd(fjy0,ty);
584 fjz0 = _mm_add_pd(fjz0,tz);
588 /**************************
589 * CALCULATE INTERACTIONS *
590 **************************/
592 if (gmx_mm_any_lt(rsq20,rcutoff2))
595 /* Compute parameters for interactions between i and j atoms */
596 qq20 = _mm_mul_pd(iq2,jq0);
598 /* REACTION-FIELD ELECTROSTATICS */
599 velec = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
600 felec = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
602 cutoff_mask = _mm_cmplt_pd(rsq20,rcutoff2);
604 /* Update potential sum for this i atom from the interaction with this j atom. */
605 velec = _mm_and_pd(velec,cutoff_mask);
606 velec = _mm_unpacklo_pd(velec,_mm_setzero_pd());
607 velecsum = _mm_add_pd(velecsum,velec);
609 fscal = felec;
611 fscal = _mm_and_pd(fscal,cutoff_mask);
613 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
615 /* Calculate temporary vectorial force */
616 tx = _mm_mul_pd(fscal,dx20);
617 ty = _mm_mul_pd(fscal,dy20);
618 tz = _mm_mul_pd(fscal,dz20);
620 /* Update vectorial force */
621 fix2 = _mm_add_pd(fix2,tx);
622 fiy2 = _mm_add_pd(fiy2,ty);
623 fiz2 = _mm_add_pd(fiz2,tz);
625 fjx0 = _mm_add_pd(fjx0,tx);
626 fjy0 = _mm_add_pd(fjy0,ty);
627 fjz0 = _mm_add_pd(fjz0,tz);
631 /**************************
632 * CALCULATE INTERACTIONS *
633 **************************/
635 if (gmx_mm_any_lt(rsq30,rcutoff2))
638 /* Compute parameters for interactions between i and j atoms */
639 qq30 = _mm_mul_pd(iq3,jq0);
641 /* REACTION-FIELD ELECTROSTATICS */
642 velec = _mm_mul_pd(qq30,_mm_sub_pd(_mm_add_pd(rinv30,_mm_mul_pd(krf,rsq30)),crf));
643 felec = _mm_mul_pd(qq30,_mm_sub_pd(_mm_mul_pd(rinv30,rinvsq30),krf2));
645 cutoff_mask = _mm_cmplt_pd(rsq30,rcutoff2);
647 /* Update potential sum for this i atom from the interaction with this j atom. */
648 velec = _mm_and_pd(velec,cutoff_mask);
649 velec = _mm_unpacklo_pd(velec,_mm_setzero_pd());
650 velecsum = _mm_add_pd(velecsum,velec);
652 fscal = felec;
654 fscal = _mm_and_pd(fscal,cutoff_mask);
656 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
658 /* Calculate temporary vectorial force */
659 tx = _mm_mul_pd(fscal,dx30);
660 ty = _mm_mul_pd(fscal,dy30);
661 tz = _mm_mul_pd(fscal,dz30);
663 /* Update vectorial force */
664 fix3 = _mm_add_pd(fix3,tx);
665 fiy3 = _mm_add_pd(fiy3,ty);
666 fiz3 = _mm_add_pd(fiz3,tz);
668 fjx0 = _mm_add_pd(fjx0,tx);
669 fjy0 = _mm_add_pd(fjy0,ty);
670 fjz0 = _mm_add_pd(fjz0,tz);
674 gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
676 /* Inner loop uses 167 flops */
679 /* End of innermost loop */
681 gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
682 f+i_coord_offset,fshift+i_shift_offset);
684 ggid = gid[iidx];
685 /* Update potential energies */
686 gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
687 gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
689 /* Increment number of inner iterations */
690 inneriter += j_index_end - j_index_start;
692 /* Outer loop uses 26 flops */
695 /* Increment number of outer iterations */
696 outeriter += nri;
698 /* Update outer/inner flops */
700 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*167);
703 * Gromacs nonbonded kernel: nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_F_sse4_1_double
704 * Electrostatics interaction: ReactionField
705 * VdW interaction: CubicSplineTable
706 * Geometry: Water4-Particle
707 * Calculate force/pot: Force
709 void
710 nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_F_sse4_1_double
711 (t_nblist * gmx_restrict nlist,
712 rvec * gmx_restrict xx,
713 rvec * gmx_restrict ff,
714 struct t_forcerec * gmx_restrict fr,
715 t_mdatoms * gmx_restrict mdatoms,
716 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
717 t_nrnb * gmx_restrict nrnb)
719 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
720 * just 0 for non-waters.
721 * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
722 * jnr indices corresponding to data put in the four positions in the SIMD register.
724 int i_shift_offset,i_coord_offset,outeriter,inneriter;
725 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
726 int jnrA,jnrB;
727 int j_coord_offsetA,j_coord_offsetB;
728 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
729 real rcutoff_scalar;
730 real *shiftvec,*fshift,*x,*f;
731 __m128d tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
732 int vdwioffset0;
733 __m128d ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
734 int vdwioffset1;
735 __m128d ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
736 int vdwioffset2;
737 __m128d ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
738 int vdwioffset3;
739 __m128d ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
740 int vdwjidx0A,vdwjidx0B;
741 __m128d jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
742 __m128d dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
743 __m128d dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
744 __m128d dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
745 __m128d dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
746 __m128d velec,felec,velecsum,facel,crf,krf,krf2;
747 real *charge;
748 int nvdwtype;
749 __m128d rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
750 int *vdwtype;
751 real *vdwparam;
752 __m128d one_sixth = _mm_set1_pd(1.0/6.0);
753 __m128d one_twelfth = _mm_set1_pd(1.0/12.0);
754 __m128i vfitab;
755 __m128i ifour = _mm_set1_epi32(4);
756 __m128d rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
757 real *vftab;
758 __m128d dummy_mask,cutoff_mask;
759 __m128d signbit = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
760 __m128d one = _mm_set1_pd(1.0);
761 __m128d two = _mm_set1_pd(2.0);
762 x = xx[0];
763 f = ff[0];
765 nri = nlist->nri;
766 iinr = nlist->iinr;
767 jindex = nlist->jindex;
768 jjnr = nlist->jjnr;
769 shiftidx = nlist->shift;
770 gid = nlist->gid;
771 shiftvec = fr->shift_vec[0];
772 fshift = fr->fshift[0];
773 facel = _mm_set1_pd(fr->ic->epsfac);
774 charge = mdatoms->chargeA;
775 krf = _mm_set1_pd(fr->ic->k_rf);
776 krf2 = _mm_set1_pd(fr->ic->k_rf*2.0);
777 crf = _mm_set1_pd(fr->ic->c_rf);
778 nvdwtype = fr->ntype;
779 vdwparam = fr->nbfp;
780 vdwtype = mdatoms->typeA;
782 vftab = kernel_data->table_vdw->data;
783 vftabscale = _mm_set1_pd(kernel_data->table_vdw->scale);
785 /* Setup water-specific parameters */
786 inr = nlist->iinr[0];
787 iq1 = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
788 iq2 = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
789 iq3 = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
790 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
792 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
793 rcutoff_scalar = fr->ic->rcoulomb;
794 rcutoff = _mm_set1_pd(rcutoff_scalar);
795 rcutoff2 = _mm_mul_pd(rcutoff,rcutoff);
797 /* Avoid stupid compiler warnings */
798 jnrA = jnrB = 0;
799 j_coord_offsetA = 0;
800 j_coord_offsetB = 0;
802 outeriter = 0;
803 inneriter = 0;
805 /* Start outer loop over neighborlists */
806 for(iidx=0; iidx<nri; iidx++)
808 /* Load shift vector for this list */
809 i_shift_offset = DIM*shiftidx[iidx];
811 /* Load limits for loop over neighbors */
812 j_index_start = jindex[iidx];
813 j_index_end = jindex[iidx+1];
815 /* Get outer coordinate index */
816 inr = iinr[iidx];
817 i_coord_offset = DIM*inr;
819 /* Load i particle coords and add shift vector */
820 gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
821 &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
823 fix0 = _mm_setzero_pd();
824 fiy0 = _mm_setzero_pd();
825 fiz0 = _mm_setzero_pd();
826 fix1 = _mm_setzero_pd();
827 fiy1 = _mm_setzero_pd();
828 fiz1 = _mm_setzero_pd();
829 fix2 = _mm_setzero_pd();
830 fiy2 = _mm_setzero_pd();
831 fiz2 = _mm_setzero_pd();
832 fix3 = _mm_setzero_pd();
833 fiy3 = _mm_setzero_pd();
834 fiz3 = _mm_setzero_pd();
836 /* Start inner kernel loop */
837 for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
840 /* Get j neighbor index, and coordinate index */
841 jnrA = jjnr[jidx];
842 jnrB = jjnr[jidx+1];
843 j_coord_offsetA = DIM*jnrA;
844 j_coord_offsetB = DIM*jnrB;
846 /* load j atom coordinates */
847 gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
848 &jx0,&jy0,&jz0);
850 /* Calculate displacement vector */
851 dx00 = _mm_sub_pd(ix0,jx0);
852 dy00 = _mm_sub_pd(iy0,jy0);
853 dz00 = _mm_sub_pd(iz0,jz0);
854 dx10 = _mm_sub_pd(ix1,jx0);
855 dy10 = _mm_sub_pd(iy1,jy0);
856 dz10 = _mm_sub_pd(iz1,jz0);
857 dx20 = _mm_sub_pd(ix2,jx0);
858 dy20 = _mm_sub_pd(iy2,jy0);
859 dz20 = _mm_sub_pd(iz2,jz0);
860 dx30 = _mm_sub_pd(ix3,jx0);
861 dy30 = _mm_sub_pd(iy3,jy0);
862 dz30 = _mm_sub_pd(iz3,jz0);
864 /* Calculate squared distance and things based on it */
865 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
866 rsq10 = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
867 rsq20 = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
868 rsq30 = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
870 rinv00 = sse41_invsqrt_d(rsq00);
871 rinv10 = sse41_invsqrt_d(rsq10);
872 rinv20 = sse41_invsqrt_d(rsq20);
873 rinv30 = sse41_invsqrt_d(rsq30);
875 rinvsq10 = _mm_mul_pd(rinv10,rinv10);
876 rinvsq20 = _mm_mul_pd(rinv20,rinv20);
877 rinvsq30 = _mm_mul_pd(rinv30,rinv30);
879 /* Load parameters for j particles */
880 jq0 = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
881 vdwjidx0A = 2*vdwtype[jnrA+0];
882 vdwjidx0B = 2*vdwtype[jnrB+0];
884 fjx0 = _mm_setzero_pd();
885 fjy0 = _mm_setzero_pd();
886 fjz0 = _mm_setzero_pd();
888 /**************************
889 * CALCULATE INTERACTIONS *
890 **************************/
892 r00 = _mm_mul_pd(rsq00,rinv00);
894 /* Compute parameters for interactions between i and j atoms */
895 gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
896 vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
898 /* Calculate table index by multiplying r with table scale and truncate to integer */
899 rt = _mm_mul_pd(r00,vftabscale);
900 vfitab = _mm_cvttpd_epi32(rt);
901 vfeps = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
902 vfitab = _mm_slli_epi32(vfitab,3);
904 /* CUBIC SPLINE TABLE DISPERSION */
905 Y = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
906 F = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
907 GMX_MM_TRANSPOSE2_PD(Y,F);
908 G = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
909 H = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
910 GMX_MM_TRANSPOSE2_PD(G,H);
911 Heps = _mm_mul_pd(vfeps,H);
912 Fp = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
913 FF = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
914 fvdw6 = _mm_mul_pd(c6_00,FF);
916 /* CUBIC SPLINE TABLE REPULSION */
917 vfitab = _mm_add_epi32(vfitab,ifour);
918 Y = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
919 F = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
920 GMX_MM_TRANSPOSE2_PD(Y,F);
921 G = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
922 H = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
923 GMX_MM_TRANSPOSE2_PD(G,H);
924 Heps = _mm_mul_pd(vfeps,H);
925 Fp = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
926 FF = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
927 fvdw12 = _mm_mul_pd(c12_00,FF);
928 fvdw = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
930 fscal = fvdw;
932 /* Calculate temporary vectorial force */
933 tx = _mm_mul_pd(fscal,dx00);
934 ty = _mm_mul_pd(fscal,dy00);
935 tz = _mm_mul_pd(fscal,dz00);
937 /* Update vectorial force */
938 fix0 = _mm_add_pd(fix0,tx);
939 fiy0 = _mm_add_pd(fiy0,ty);
940 fiz0 = _mm_add_pd(fiz0,tz);
942 fjx0 = _mm_add_pd(fjx0,tx);
943 fjy0 = _mm_add_pd(fjy0,ty);
944 fjz0 = _mm_add_pd(fjz0,tz);
946 /**************************
947 * CALCULATE INTERACTIONS *
948 **************************/
950 if (gmx_mm_any_lt(rsq10,rcutoff2))
953 /* Compute parameters for interactions between i and j atoms */
954 qq10 = _mm_mul_pd(iq1,jq0);
956 /* REACTION-FIELD ELECTROSTATICS */
957 felec = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
959 cutoff_mask = _mm_cmplt_pd(rsq10,rcutoff2);
961 fscal = felec;
963 fscal = _mm_and_pd(fscal,cutoff_mask);
965 /* Calculate temporary vectorial force */
966 tx = _mm_mul_pd(fscal,dx10);
967 ty = _mm_mul_pd(fscal,dy10);
968 tz = _mm_mul_pd(fscal,dz10);
970 /* Update vectorial force */
971 fix1 = _mm_add_pd(fix1,tx);
972 fiy1 = _mm_add_pd(fiy1,ty);
973 fiz1 = _mm_add_pd(fiz1,tz);
975 fjx0 = _mm_add_pd(fjx0,tx);
976 fjy0 = _mm_add_pd(fjy0,ty);
977 fjz0 = _mm_add_pd(fjz0,tz);
981 /**************************
982 * CALCULATE INTERACTIONS *
983 **************************/
985 if (gmx_mm_any_lt(rsq20,rcutoff2))
988 /* Compute parameters for interactions between i and j atoms */
989 qq20 = _mm_mul_pd(iq2,jq0);
991 /* REACTION-FIELD ELECTROSTATICS */
992 felec = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
994 cutoff_mask = _mm_cmplt_pd(rsq20,rcutoff2);
996 fscal = felec;
998 fscal = _mm_and_pd(fscal,cutoff_mask);
1000 /* Calculate temporary vectorial force */
1001 tx = _mm_mul_pd(fscal,dx20);
1002 ty = _mm_mul_pd(fscal,dy20);
1003 tz = _mm_mul_pd(fscal,dz20);
1005 /* Update vectorial force */
1006 fix2 = _mm_add_pd(fix2,tx);
1007 fiy2 = _mm_add_pd(fiy2,ty);
1008 fiz2 = _mm_add_pd(fiz2,tz);
1010 fjx0 = _mm_add_pd(fjx0,tx);
1011 fjy0 = _mm_add_pd(fjy0,ty);
1012 fjz0 = _mm_add_pd(fjz0,tz);
1016 /**************************
1017 * CALCULATE INTERACTIONS *
1018 **************************/
1020 if (gmx_mm_any_lt(rsq30,rcutoff2))
1023 /* Compute parameters for interactions between i and j atoms */
1024 qq30 = _mm_mul_pd(iq3,jq0);
1026 /* REACTION-FIELD ELECTROSTATICS */
1027 felec = _mm_mul_pd(qq30,_mm_sub_pd(_mm_mul_pd(rinv30,rinvsq30),krf2));
1029 cutoff_mask = _mm_cmplt_pd(rsq30,rcutoff2);
1031 fscal = felec;
1033 fscal = _mm_and_pd(fscal,cutoff_mask);
1035 /* Calculate temporary vectorial force */
1036 tx = _mm_mul_pd(fscal,dx30);
1037 ty = _mm_mul_pd(fscal,dy30);
1038 tz = _mm_mul_pd(fscal,dz30);
1040 /* Update vectorial force */
1041 fix3 = _mm_add_pd(fix3,tx);
1042 fiy3 = _mm_add_pd(fiy3,ty);
1043 fiz3 = _mm_add_pd(fiz3,tz);
1045 fjx0 = _mm_add_pd(fjx0,tx);
1046 fjy0 = _mm_add_pd(fjy0,ty);
1047 fjz0 = _mm_add_pd(fjz0,tz);
1051 gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1053 /* Inner loop uses 141 flops */
1056 if(jidx<j_index_end)
1059 jnrA = jjnr[jidx];
1060 j_coord_offsetA = DIM*jnrA;
1062 /* load j atom coordinates */
1063 gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1064 &jx0,&jy0,&jz0);
1066 /* Calculate displacement vector */
1067 dx00 = _mm_sub_pd(ix0,jx0);
1068 dy00 = _mm_sub_pd(iy0,jy0);
1069 dz00 = _mm_sub_pd(iz0,jz0);
1070 dx10 = _mm_sub_pd(ix1,jx0);
1071 dy10 = _mm_sub_pd(iy1,jy0);
1072 dz10 = _mm_sub_pd(iz1,jz0);
1073 dx20 = _mm_sub_pd(ix2,jx0);
1074 dy20 = _mm_sub_pd(iy2,jy0);
1075 dz20 = _mm_sub_pd(iz2,jz0);
1076 dx30 = _mm_sub_pd(ix3,jx0);
1077 dy30 = _mm_sub_pd(iy3,jy0);
1078 dz30 = _mm_sub_pd(iz3,jz0);
1080 /* Calculate squared distance and things based on it */
1081 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1082 rsq10 = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1083 rsq20 = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1084 rsq30 = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
1086 rinv00 = sse41_invsqrt_d(rsq00);
1087 rinv10 = sse41_invsqrt_d(rsq10);
1088 rinv20 = sse41_invsqrt_d(rsq20);
1089 rinv30 = sse41_invsqrt_d(rsq30);
1091 rinvsq10 = _mm_mul_pd(rinv10,rinv10);
1092 rinvsq20 = _mm_mul_pd(rinv20,rinv20);
1093 rinvsq30 = _mm_mul_pd(rinv30,rinv30);
1095 /* Load parameters for j particles */
1096 jq0 = _mm_load_sd(charge+jnrA+0);
1097 vdwjidx0A = 2*vdwtype[jnrA+0];
1099 fjx0 = _mm_setzero_pd();
1100 fjy0 = _mm_setzero_pd();
1101 fjz0 = _mm_setzero_pd();
1103 /**************************
1104 * CALCULATE INTERACTIONS *
1105 **************************/
1107 r00 = _mm_mul_pd(rsq00,rinv00);
1109 /* Compute parameters for interactions between i and j atoms */
1110 gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1112 /* Calculate table index by multiplying r with table scale and truncate to integer */
1113 rt = _mm_mul_pd(r00,vftabscale);
1114 vfitab = _mm_cvttpd_epi32(rt);
1115 vfeps = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1116 vfitab = _mm_slli_epi32(vfitab,3);
1118 /* CUBIC SPLINE TABLE DISPERSION */
1119 Y = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1120 F = _mm_setzero_pd();
1121 GMX_MM_TRANSPOSE2_PD(Y,F);
1122 G = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1123 H = _mm_setzero_pd();
1124 GMX_MM_TRANSPOSE2_PD(G,H);
1125 Heps = _mm_mul_pd(vfeps,H);
1126 Fp = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1127 FF = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1128 fvdw6 = _mm_mul_pd(c6_00,FF);
1130 /* CUBIC SPLINE TABLE REPULSION */
1131 vfitab = _mm_add_epi32(vfitab,ifour);
1132 Y = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1133 F = _mm_setzero_pd();
1134 GMX_MM_TRANSPOSE2_PD(Y,F);
1135 G = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1136 H = _mm_setzero_pd();
1137 GMX_MM_TRANSPOSE2_PD(G,H);
1138 Heps = _mm_mul_pd(vfeps,H);
1139 Fp = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1140 FF = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1141 fvdw12 = _mm_mul_pd(c12_00,FF);
1142 fvdw = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
1144 fscal = fvdw;
1146 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1148 /* Calculate temporary vectorial force */
1149 tx = _mm_mul_pd(fscal,dx00);
1150 ty = _mm_mul_pd(fscal,dy00);
1151 tz = _mm_mul_pd(fscal,dz00);
1153 /* Update vectorial force */
1154 fix0 = _mm_add_pd(fix0,tx);
1155 fiy0 = _mm_add_pd(fiy0,ty);
1156 fiz0 = _mm_add_pd(fiz0,tz);
1158 fjx0 = _mm_add_pd(fjx0,tx);
1159 fjy0 = _mm_add_pd(fjy0,ty);
1160 fjz0 = _mm_add_pd(fjz0,tz);
1162 /**************************
1163 * CALCULATE INTERACTIONS *
1164 **************************/
1166 if (gmx_mm_any_lt(rsq10,rcutoff2))
1169 /* Compute parameters for interactions between i and j atoms */
1170 qq10 = _mm_mul_pd(iq1,jq0);
1172 /* REACTION-FIELD ELECTROSTATICS */
1173 felec = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
1175 cutoff_mask = _mm_cmplt_pd(rsq10,rcutoff2);
1177 fscal = felec;
1179 fscal = _mm_and_pd(fscal,cutoff_mask);
1181 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1183 /* Calculate temporary vectorial force */
1184 tx = _mm_mul_pd(fscal,dx10);
1185 ty = _mm_mul_pd(fscal,dy10);
1186 tz = _mm_mul_pd(fscal,dz10);
1188 /* Update vectorial force */
1189 fix1 = _mm_add_pd(fix1,tx);
1190 fiy1 = _mm_add_pd(fiy1,ty);
1191 fiz1 = _mm_add_pd(fiz1,tz);
1193 fjx0 = _mm_add_pd(fjx0,tx);
1194 fjy0 = _mm_add_pd(fjy0,ty);
1195 fjz0 = _mm_add_pd(fjz0,tz);
1199 /**************************
1200 * CALCULATE INTERACTIONS *
1201 **************************/
1203 if (gmx_mm_any_lt(rsq20,rcutoff2))
1206 /* Compute parameters for interactions between i and j atoms */
1207 qq20 = _mm_mul_pd(iq2,jq0);
1209 /* REACTION-FIELD ELECTROSTATICS */
1210 felec = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
1212 cutoff_mask = _mm_cmplt_pd(rsq20,rcutoff2);
1214 fscal = felec;
1216 fscal = _mm_and_pd(fscal,cutoff_mask);
1218 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1220 /* Calculate temporary vectorial force */
1221 tx = _mm_mul_pd(fscal,dx20);
1222 ty = _mm_mul_pd(fscal,dy20);
1223 tz = _mm_mul_pd(fscal,dz20);
1225 /* Update vectorial force */
1226 fix2 = _mm_add_pd(fix2,tx);
1227 fiy2 = _mm_add_pd(fiy2,ty);
1228 fiz2 = _mm_add_pd(fiz2,tz);
1230 fjx0 = _mm_add_pd(fjx0,tx);
1231 fjy0 = _mm_add_pd(fjy0,ty);
1232 fjz0 = _mm_add_pd(fjz0,tz);
1236 /**************************
1237 * CALCULATE INTERACTIONS *
1238 **************************/
1240 if (gmx_mm_any_lt(rsq30,rcutoff2))
1243 /* Compute parameters for interactions between i and j atoms */
1244 qq30 = _mm_mul_pd(iq3,jq0);
1246 /* REACTION-FIELD ELECTROSTATICS */
1247 felec = _mm_mul_pd(qq30,_mm_sub_pd(_mm_mul_pd(rinv30,rinvsq30),krf2));
1249 cutoff_mask = _mm_cmplt_pd(rsq30,rcutoff2);
1251 fscal = felec;
1253 fscal = _mm_and_pd(fscal,cutoff_mask);
1255 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1257 /* Calculate temporary vectorial force */
1258 tx = _mm_mul_pd(fscal,dx30);
1259 ty = _mm_mul_pd(fscal,dy30);
1260 tz = _mm_mul_pd(fscal,dz30);
1262 /* Update vectorial force */
1263 fix3 = _mm_add_pd(fix3,tx);
1264 fiy3 = _mm_add_pd(fiy3,ty);
1265 fiz3 = _mm_add_pd(fiz3,tz);
1267 fjx0 = _mm_add_pd(fjx0,tx);
1268 fjy0 = _mm_add_pd(fjy0,ty);
1269 fjz0 = _mm_add_pd(fjz0,tz);
1273 gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1275 /* Inner loop uses 141 flops */
1278 /* End of innermost loop */
1280 gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1281 f+i_coord_offset,fshift+i_shift_offset);
1283 /* Increment number of inner iterations */
1284 inneriter += j_index_end - j_index_start;
1286 /* Outer loop uses 24 flops */
1289 /* Increment number of outer iterations */
1290 outeriter += nri;
1292 /* Update outer/inner flops */
1294 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*141);