Remove nb-parameters from t_forcerec
[gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecEw_VdwCSTab_GeomP1P1_sse4_1_double.c
blobb5690748434ec736a3ac0d342d88b0f498edbb2f
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
36 * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
38 #include "gmxpre.h"
40 #include "config.h"
42 #include <math.h>
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
47 #include "kernelutil_x86_sse4_1_double.h"
50 * Gromacs nonbonded kernel: nb_kernel_ElecEw_VdwCSTab_GeomP1P1_VF_sse4_1_double
51 * Electrostatics interaction: Ewald
52 * VdW interaction: CubicSplineTable
53 * Geometry: Particle-Particle
54 * Calculate force/pot: PotentialAndForce
56 void
57 nb_kernel_ElecEw_VdwCSTab_GeomP1P1_VF_sse4_1_double
58 (t_nblist * gmx_restrict nlist,
59 rvec * gmx_restrict xx,
60 rvec * gmx_restrict ff,
61 struct t_forcerec * gmx_restrict fr,
62 t_mdatoms * gmx_restrict mdatoms,
63 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64 t_nrnb * gmx_restrict nrnb)
66 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67 * just 0 for non-waters.
68 * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
69 * jnr indices corresponding to data put in the four positions in the SIMD register.
71 int i_shift_offset,i_coord_offset,outeriter,inneriter;
72 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73 int jnrA,jnrB;
74 int j_coord_offsetA,j_coord_offsetB;
75 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
76 real rcutoff_scalar;
77 real *shiftvec,*fshift,*x,*f;
78 __m128d tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79 int vdwioffset0;
80 __m128d ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81 int vdwjidx0A,vdwjidx0B;
82 __m128d jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
83 __m128d dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
84 __m128d velec,felec,velecsum,facel,crf,krf,krf2;
85 real *charge;
86 int nvdwtype;
87 __m128d rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
88 int *vdwtype;
89 real *vdwparam;
90 __m128d one_sixth = _mm_set1_pd(1.0/6.0);
91 __m128d one_twelfth = _mm_set1_pd(1.0/12.0);
92 __m128i vfitab;
93 __m128i ifour = _mm_set1_epi32(4);
94 __m128d rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
95 real *vftab;
96 __m128i ewitab;
97 __m128d ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
98 real *ewtab;
99 __m128d dummy_mask,cutoff_mask;
100 __m128d signbit = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
101 __m128d one = _mm_set1_pd(1.0);
102 __m128d two = _mm_set1_pd(2.0);
103 x = xx[0];
104 f = ff[0];
106 nri = nlist->nri;
107 iinr = nlist->iinr;
108 jindex = nlist->jindex;
109 jjnr = nlist->jjnr;
110 shiftidx = nlist->shift;
111 gid = nlist->gid;
112 shiftvec = fr->shift_vec[0];
113 fshift = fr->fshift[0];
114 facel = _mm_set1_pd(fr->ic->epsfac);
115 charge = mdatoms->chargeA;
116 nvdwtype = fr->ntype;
117 vdwparam = fr->nbfp;
118 vdwtype = mdatoms->typeA;
120 vftab = kernel_data->table_vdw->data;
121 vftabscale = _mm_set1_pd(kernel_data->table_vdw->scale);
123 sh_ewald = _mm_set1_pd(fr->ic->sh_ewald);
124 ewtab = fr->ic->tabq_coul_FDV0;
125 ewtabscale = _mm_set1_pd(fr->ic->tabq_scale);
126 ewtabhalfspace = _mm_set1_pd(0.5/fr->ic->tabq_scale);
128 /* Avoid stupid compiler warnings */
129 jnrA = jnrB = 0;
130 j_coord_offsetA = 0;
131 j_coord_offsetB = 0;
133 outeriter = 0;
134 inneriter = 0;
136 /* Start outer loop over neighborlists */
137 for(iidx=0; iidx<nri; iidx++)
139 /* Load shift vector for this list */
140 i_shift_offset = DIM*shiftidx[iidx];
142 /* Load limits for loop over neighbors */
143 j_index_start = jindex[iidx];
144 j_index_end = jindex[iidx+1];
146 /* Get outer coordinate index */
147 inr = iinr[iidx];
148 i_coord_offset = DIM*inr;
150 /* Load i particle coords and add shift vector */
151 gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
153 fix0 = _mm_setzero_pd();
154 fiy0 = _mm_setzero_pd();
155 fiz0 = _mm_setzero_pd();
157 /* Load parameters for i particles */
158 iq0 = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
159 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
161 /* Reset potential sums */
162 velecsum = _mm_setzero_pd();
163 vvdwsum = _mm_setzero_pd();
165 /* Start inner kernel loop */
166 for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
169 /* Get j neighbor index, and coordinate index */
170 jnrA = jjnr[jidx];
171 jnrB = jjnr[jidx+1];
172 j_coord_offsetA = DIM*jnrA;
173 j_coord_offsetB = DIM*jnrB;
175 /* load j atom coordinates */
176 gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
177 &jx0,&jy0,&jz0);
179 /* Calculate displacement vector */
180 dx00 = _mm_sub_pd(ix0,jx0);
181 dy00 = _mm_sub_pd(iy0,jy0);
182 dz00 = _mm_sub_pd(iz0,jz0);
184 /* Calculate squared distance and things based on it */
185 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
187 rinv00 = sse41_invsqrt_d(rsq00);
189 rinvsq00 = _mm_mul_pd(rinv00,rinv00);
191 /* Load parameters for j particles */
192 jq0 = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
193 vdwjidx0A = 2*vdwtype[jnrA+0];
194 vdwjidx0B = 2*vdwtype[jnrB+0];
196 /**************************
197 * CALCULATE INTERACTIONS *
198 **************************/
200 r00 = _mm_mul_pd(rsq00,rinv00);
202 /* Compute parameters for interactions between i and j atoms */
203 qq00 = _mm_mul_pd(iq0,jq0);
204 gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
205 vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
207 /* Calculate table index by multiplying r with table scale and truncate to integer */
208 rt = _mm_mul_pd(r00,vftabscale);
209 vfitab = _mm_cvttpd_epi32(rt);
210 vfeps = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
211 vfitab = _mm_slli_epi32(vfitab,3);
213 /* EWALD ELECTROSTATICS */
215 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
216 ewrt = _mm_mul_pd(r00,ewtabscale);
217 ewitab = _mm_cvttpd_epi32(ewrt);
218 eweps = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
219 ewitab = _mm_slli_epi32(ewitab,2);
220 ewtabF = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
221 ewtabD = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
222 GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
223 ewtabV = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
224 ewtabFn = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
225 GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
226 felec = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
227 velec = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
228 velec = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
229 felec = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
231 /* CUBIC SPLINE TABLE DISPERSION */
232 Y = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
233 F = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
234 GMX_MM_TRANSPOSE2_PD(Y,F);
235 G = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
236 H = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
237 GMX_MM_TRANSPOSE2_PD(G,H);
238 Heps = _mm_mul_pd(vfeps,H);
239 Fp = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
240 VV = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
241 vvdw6 = _mm_mul_pd(c6_00,VV);
242 FF = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
243 fvdw6 = _mm_mul_pd(c6_00,FF);
245 /* CUBIC SPLINE TABLE REPULSION */
246 vfitab = _mm_add_epi32(vfitab,ifour);
247 Y = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
248 F = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
249 GMX_MM_TRANSPOSE2_PD(Y,F);
250 G = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
251 H = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
252 GMX_MM_TRANSPOSE2_PD(G,H);
253 Heps = _mm_mul_pd(vfeps,H);
254 Fp = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
255 VV = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
256 vvdw12 = _mm_mul_pd(c12_00,VV);
257 FF = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
258 fvdw12 = _mm_mul_pd(c12_00,FF);
259 vvdw = _mm_add_pd(vvdw12,vvdw6);
260 fvdw = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
262 /* Update potential sum for this i atom from the interaction with this j atom. */
263 velecsum = _mm_add_pd(velecsum,velec);
264 vvdwsum = _mm_add_pd(vvdwsum,vvdw);
266 fscal = _mm_add_pd(felec,fvdw);
268 /* Calculate temporary vectorial force */
269 tx = _mm_mul_pd(fscal,dx00);
270 ty = _mm_mul_pd(fscal,dy00);
271 tz = _mm_mul_pd(fscal,dz00);
273 /* Update vectorial force */
274 fix0 = _mm_add_pd(fix0,tx);
275 fiy0 = _mm_add_pd(fiy0,ty);
276 fiz0 = _mm_add_pd(fiz0,tz);
278 gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
280 /* Inner loop uses 75 flops */
283 if(jidx<j_index_end)
286 jnrA = jjnr[jidx];
287 j_coord_offsetA = DIM*jnrA;
289 /* load j atom coordinates */
290 gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
291 &jx0,&jy0,&jz0);
293 /* Calculate displacement vector */
294 dx00 = _mm_sub_pd(ix0,jx0);
295 dy00 = _mm_sub_pd(iy0,jy0);
296 dz00 = _mm_sub_pd(iz0,jz0);
298 /* Calculate squared distance and things based on it */
299 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
301 rinv00 = sse41_invsqrt_d(rsq00);
303 rinvsq00 = _mm_mul_pd(rinv00,rinv00);
305 /* Load parameters for j particles */
306 jq0 = _mm_load_sd(charge+jnrA+0);
307 vdwjidx0A = 2*vdwtype[jnrA+0];
309 /**************************
310 * CALCULATE INTERACTIONS *
311 **************************/
313 r00 = _mm_mul_pd(rsq00,rinv00);
315 /* Compute parameters for interactions between i and j atoms */
316 qq00 = _mm_mul_pd(iq0,jq0);
317 gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
319 /* Calculate table index by multiplying r with table scale and truncate to integer */
320 rt = _mm_mul_pd(r00,vftabscale);
321 vfitab = _mm_cvttpd_epi32(rt);
322 vfeps = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
323 vfitab = _mm_slli_epi32(vfitab,3);
325 /* EWALD ELECTROSTATICS */
327 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
328 ewrt = _mm_mul_pd(r00,ewtabscale);
329 ewitab = _mm_cvttpd_epi32(ewrt);
330 eweps = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
331 ewitab = _mm_slli_epi32(ewitab,2);
332 ewtabF = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
333 ewtabD = _mm_setzero_pd();
334 GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
335 ewtabV = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
336 ewtabFn = _mm_setzero_pd();
337 GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
338 felec = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
339 velec = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
340 velec = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
341 felec = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
343 /* CUBIC SPLINE TABLE DISPERSION */
344 Y = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
345 F = _mm_setzero_pd();
346 GMX_MM_TRANSPOSE2_PD(Y,F);
347 G = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
348 H = _mm_setzero_pd();
349 GMX_MM_TRANSPOSE2_PD(G,H);
350 Heps = _mm_mul_pd(vfeps,H);
351 Fp = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
352 VV = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
353 vvdw6 = _mm_mul_pd(c6_00,VV);
354 FF = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
355 fvdw6 = _mm_mul_pd(c6_00,FF);
357 /* CUBIC SPLINE TABLE REPULSION */
358 vfitab = _mm_add_epi32(vfitab,ifour);
359 Y = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
360 F = _mm_setzero_pd();
361 GMX_MM_TRANSPOSE2_PD(Y,F);
362 G = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
363 H = _mm_setzero_pd();
364 GMX_MM_TRANSPOSE2_PD(G,H);
365 Heps = _mm_mul_pd(vfeps,H);
366 Fp = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
367 VV = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
368 vvdw12 = _mm_mul_pd(c12_00,VV);
369 FF = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
370 fvdw12 = _mm_mul_pd(c12_00,FF);
371 vvdw = _mm_add_pd(vvdw12,vvdw6);
372 fvdw = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
374 /* Update potential sum for this i atom from the interaction with this j atom. */
375 velec = _mm_unpacklo_pd(velec,_mm_setzero_pd());
376 velecsum = _mm_add_pd(velecsum,velec);
377 vvdw = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
378 vvdwsum = _mm_add_pd(vvdwsum,vvdw);
380 fscal = _mm_add_pd(felec,fvdw);
382 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
384 /* Calculate temporary vectorial force */
385 tx = _mm_mul_pd(fscal,dx00);
386 ty = _mm_mul_pd(fscal,dy00);
387 tz = _mm_mul_pd(fscal,dz00);
389 /* Update vectorial force */
390 fix0 = _mm_add_pd(fix0,tx);
391 fiy0 = _mm_add_pd(fiy0,ty);
392 fiz0 = _mm_add_pd(fiz0,tz);
394 gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
396 /* Inner loop uses 75 flops */
399 /* End of innermost loop */
401 gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
402 f+i_coord_offset,fshift+i_shift_offset);
404 ggid = gid[iidx];
405 /* Update potential energies */
406 gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
407 gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
409 /* Increment number of inner iterations */
410 inneriter += j_index_end - j_index_start;
412 /* Outer loop uses 9 flops */
415 /* Increment number of outer iterations */
416 outeriter += nri;
418 /* Update outer/inner flops */
420 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*75);
423 * Gromacs nonbonded kernel: nb_kernel_ElecEw_VdwCSTab_GeomP1P1_F_sse4_1_double
424 * Electrostatics interaction: Ewald
425 * VdW interaction: CubicSplineTable
426 * Geometry: Particle-Particle
427 * Calculate force/pot: Force
429 void
430 nb_kernel_ElecEw_VdwCSTab_GeomP1P1_F_sse4_1_double
431 (t_nblist * gmx_restrict nlist,
432 rvec * gmx_restrict xx,
433 rvec * gmx_restrict ff,
434 struct t_forcerec * gmx_restrict fr,
435 t_mdatoms * gmx_restrict mdatoms,
436 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
437 t_nrnb * gmx_restrict nrnb)
439 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
440 * just 0 for non-waters.
441 * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
442 * jnr indices corresponding to data put in the four positions in the SIMD register.
444 int i_shift_offset,i_coord_offset,outeriter,inneriter;
445 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
446 int jnrA,jnrB;
447 int j_coord_offsetA,j_coord_offsetB;
448 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
449 real rcutoff_scalar;
450 real *shiftvec,*fshift,*x,*f;
451 __m128d tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
452 int vdwioffset0;
453 __m128d ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
454 int vdwjidx0A,vdwjidx0B;
455 __m128d jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
456 __m128d dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
457 __m128d velec,felec,velecsum,facel,crf,krf,krf2;
458 real *charge;
459 int nvdwtype;
460 __m128d rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
461 int *vdwtype;
462 real *vdwparam;
463 __m128d one_sixth = _mm_set1_pd(1.0/6.0);
464 __m128d one_twelfth = _mm_set1_pd(1.0/12.0);
465 __m128i vfitab;
466 __m128i ifour = _mm_set1_epi32(4);
467 __m128d rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
468 real *vftab;
469 __m128i ewitab;
470 __m128d ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
471 real *ewtab;
472 __m128d dummy_mask,cutoff_mask;
473 __m128d signbit = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
474 __m128d one = _mm_set1_pd(1.0);
475 __m128d two = _mm_set1_pd(2.0);
476 x = xx[0];
477 f = ff[0];
479 nri = nlist->nri;
480 iinr = nlist->iinr;
481 jindex = nlist->jindex;
482 jjnr = nlist->jjnr;
483 shiftidx = nlist->shift;
484 gid = nlist->gid;
485 shiftvec = fr->shift_vec[0];
486 fshift = fr->fshift[0];
487 facel = _mm_set1_pd(fr->ic->epsfac);
488 charge = mdatoms->chargeA;
489 nvdwtype = fr->ntype;
490 vdwparam = fr->nbfp;
491 vdwtype = mdatoms->typeA;
493 vftab = kernel_data->table_vdw->data;
494 vftabscale = _mm_set1_pd(kernel_data->table_vdw->scale);
496 sh_ewald = _mm_set1_pd(fr->ic->sh_ewald);
497 ewtab = fr->ic->tabq_coul_F;
498 ewtabscale = _mm_set1_pd(fr->ic->tabq_scale);
499 ewtabhalfspace = _mm_set1_pd(0.5/fr->ic->tabq_scale);
501 /* Avoid stupid compiler warnings */
502 jnrA = jnrB = 0;
503 j_coord_offsetA = 0;
504 j_coord_offsetB = 0;
506 outeriter = 0;
507 inneriter = 0;
509 /* Start outer loop over neighborlists */
510 for(iidx=0; iidx<nri; iidx++)
512 /* Load shift vector for this list */
513 i_shift_offset = DIM*shiftidx[iidx];
515 /* Load limits for loop over neighbors */
516 j_index_start = jindex[iidx];
517 j_index_end = jindex[iidx+1];
519 /* Get outer coordinate index */
520 inr = iinr[iidx];
521 i_coord_offset = DIM*inr;
523 /* Load i particle coords and add shift vector */
524 gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
526 fix0 = _mm_setzero_pd();
527 fiy0 = _mm_setzero_pd();
528 fiz0 = _mm_setzero_pd();
530 /* Load parameters for i particles */
531 iq0 = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
532 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
534 /* Start inner kernel loop */
535 for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
538 /* Get j neighbor index, and coordinate index */
539 jnrA = jjnr[jidx];
540 jnrB = jjnr[jidx+1];
541 j_coord_offsetA = DIM*jnrA;
542 j_coord_offsetB = DIM*jnrB;
544 /* load j atom coordinates */
545 gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
546 &jx0,&jy0,&jz0);
548 /* Calculate displacement vector */
549 dx00 = _mm_sub_pd(ix0,jx0);
550 dy00 = _mm_sub_pd(iy0,jy0);
551 dz00 = _mm_sub_pd(iz0,jz0);
553 /* Calculate squared distance and things based on it */
554 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
556 rinv00 = sse41_invsqrt_d(rsq00);
558 rinvsq00 = _mm_mul_pd(rinv00,rinv00);
560 /* Load parameters for j particles */
561 jq0 = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
562 vdwjidx0A = 2*vdwtype[jnrA+0];
563 vdwjidx0B = 2*vdwtype[jnrB+0];
565 /**************************
566 * CALCULATE INTERACTIONS *
567 **************************/
569 r00 = _mm_mul_pd(rsq00,rinv00);
571 /* Compute parameters for interactions between i and j atoms */
572 qq00 = _mm_mul_pd(iq0,jq0);
573 gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
574 vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
576 /* Calculate table index by multiplying r with table scale and truncate to integer */
577 rt = _mm_mul_pd(r00,vftabscale);
578 vfitab = _mm_cvttpd_epi32(rt);
579 vfeps = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
580 vfitab = _mm_slli_epi32(vfitab,3);
582 /* EWALD ELECTROSTATICS */
584 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
585 ewrt = _mm_mul_pd(r00,ewtabscale);
586 ewitab = _mm_cvttpd_epi32(ewrt);
587 eweps = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
588 gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
589 &ewtabF,&ewtabFn);
590 felec = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
591 felec = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
593 /* CUBIC SPLINE TABLE DISPERSION */
594 Y = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
595 F = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
596 GMX_MM_TRANSPOSE2_PD(Y,F);
597 G = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
598 H = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
599 GMX_MM_TRANSPOSE2_PD(G,H);
600 Heps = _mm_mul_pd(vfeps,H);
601 Fp = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
602 FF = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
603 fvdw6 = _mm_mul_pd(c6_00,FF);
605 /* CUBIC SPLINE TABLE REPULSION */
606 vfitab = _mm_add_epi32(vfitab,ifour);
607 Y = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
608 F = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
609 GMX_MM_TRANSPOSE2_PD(Y,F);
610 G = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
611 H = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
612 GMX_MM_TRANSPOSE2_PD(G,H);
613 Heps = _mm_mul_pd(vfeps,H);
614 Fp = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
615 FF = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
616 fvdw12 = _mm_mul_pd(c12_00,FF);
617 fvdw = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
619 fscal = _mm_add_pd(felec,fvdw);
621 /* Calculate temporary vectorial force */
622 tx = _mm_mul_pd(fscal,dx00);
623 ty = _mm_mul_pd(fscal,dy00);
624 tz = _mm_mul_pd(fscal,dz00);
626 /* Update vectorial force */
627 fix0 = _mm_add_pd(fix0,tx);
628 fiy0 = _mm_add_pd(fiy0,ty);
629 fiz0 = _mm_add_pd(fiz0,tz);
631 gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
633 /* Inner loop uses 62 flops */
636 if(jidx<j_index_end)
639 jnrA = jjnr[jidx];
640 j_coord_offsetA = DIM*jnrA;
642 /* load j atom coordinates */
643 gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
644 &jx0,&jy0,&jz0);
646 /* Calculate displacement vector */
647 dx00 = _mm_sub_pd(ix0,jx0);
648 dy00 = _mm_sub_pd(iy0,jy0);
649 dz00 = _mm_sub_pd(iz0,jz0);
651 /* Calculate squared distance and things based on it */
652 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
654 rinv00 = sse41_invsqrt_d(rsq00);
656 rinvsq00 = _mm_mul_pd(rinv00,rinv00);
658 /* Load parameters for j particles */
659 jq0 = _mm_load_sd(charge+jnrA+0);
660 vdwjidx0A = 2*vdwtype[jnrA+0];
662 /**************************
663 * CALCULATE INTERACTIONS *
664 **************************/
666 r00 = _mm_mul_pd(rsq00,rinv00);
668 /* Compute parameters for interactions between i and j atoms */
669 qq00 = _mm_mul_pd(iq0,jq0);
670 gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
672 /* Calculate table index by multiplying r with table scale and truncate to integer */
673 rt = _mm_mul_pd(r00,vftabscale);
674 vfitab = _mm_cvttpd_epi32(rt);
675 vfeps = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
676 vfitab = _mm_slli_epi32(vfitab,3);
678 /* EWALD ELECTROSTATICS */
680 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
681 ewrt = _mm_mul_pd(r00,ewtabscale);
682 ewitab = _mm_cvttpd_epi32(ewrt);
683 eweps = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
684 gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
685 felec = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
686 felec = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
688 /* CUBIC SPLINE TABLE DISPERSION */
689 Y = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
690 F = _mm_setzero_pd();
691 GMX_MM_TRANSPOSE2_PD(Y,F);
692 G = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
693 H = _mm_setzero_pd();
694 GMX_MM_TRANSPOSE2_PD(G,H);
695 Heps = _mm_mul_pd(vfeps,H);
696 Fp = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
697 FF = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
698 fvdw6 = _mm_mul_pd(c6_00,FF);
700 /* CUBIC SPLINE TABLE REPULSION */
701 vfitab = _mm_add_epi32(vfitab,ifour);
702 Y = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
703 F = _mm_setzero_pd();
704 GMX_MM_TRANSPOSE2_PD(Y,F);
705 G = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
706 H = _mm_setzero_pd();
707 GMX_MM_TRANSPOSE2_PD(G,H);
708 Heps = _mm_mul_pd(vfeps,H);
709 Fp = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
710 FF = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
711 fvdw12 = _mm_mul_pd(c12_00,FF);
712 fvdw = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
714 fscal = _mm_add_pd(felec,fvdw);
716 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
718 /* Calculate temporary vectorial force */
719 tx = _mm_mul_pd(fscal,dx00);
720 ty = _mm_mul_pd(fscal,dy00);
721 tz = _mm_mul_pd(fscal,dz00);
723 /* Update vectorial force */
724 fix0 = _mm_add_pd(fix0,tx);
725 fiy0 = _mm_add_pd(fiy0,ty);
726 fiz0 = _mm_add_pd(fiz0,tz);
728 gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
730 /* Inner loop uses 62 flops */
733 /* End of innermost loop */
735 gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
736 f+i_coord_offset,fshift+i_shift_offset);
738 /* Increment number of inner iterations */
739 inneriter += j_index_end - j_index_start;
741 /* Outer loop uses 7 flops */
744 /* Increment number of outer iterations */
745 outeriter += nri;
747 /* Update outer/inner flops */
749 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*62);