Remove nb-parameters from t_forcerec
[gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecRFCut_VdwNone_GeomP1P1_sse2_single.c
blobd4b7617fc3432fa9b2a32a553e3f70f16d0de7ca
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
36 * Note: this file was generated by the GROMACS sse2_single kernel generator.
38 #include "gmxpre.h"
40 #include "config.h"
42 #include <math.h>
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
47 #include "kernelutil_x86_sse2_single.h"
50 * Gromacs nonbonded kernel: nb_kernel_ElecRFCut_VdwNone_GeomP1P1_VF_sse2_single
51 * Electrostatics interaction: ReactionField
52 * VdW interaction: None
53 * Geometry: Particle-Particle
54 * Calculate force/pot: PotentialAndForce
56 void
57 nb_kernel_ElecRFCut_VdwNone_GeomP1P1_VF_sse2_single
58 (t_nblist * gmx_restrict nlist,
59 rvec * gmx_restrict xx,
60 rvec * gmx_restrict ff,
61 struct t_forcerec * gmx_restrict fr,
62 t_mdatoms * gmx_restrict mdatoms,
63 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64 t_nrnb * gmx_restrict nrnb)
66 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67 * just 0 for non-waters.
68 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
69 * jnr indices corresponding to data put in the four positions in the SIMD register.
71 int i_shift_offset,i_coord_offset,outeriter,inneriter;
72 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73 int jnrA,jnrB,jnrC,jnrD;
74 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
76 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
77 real rcutoff_scalar;
78 real *shiftvec,*fshift,*x,*f;
79 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
80 real scratch[4*DIM];
81 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82 int vdwioffset0;
83 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
85 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
86 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
87 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
88 real *charge;
89 __m128 dummy_mask,cutoff_mask;
90 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
91 __m128 one = _mm_set1_ps(1.0);
92 __m128 two = _mm_set1_ps(2.0);
93 x = xx[0];
94 f = ff[0];
96 nri = nlist->nri;
97 iinr = nlist->iinr;
98 jindex = nlist->jindex;
99 jjnr = nlist->jjnr;
100 shiftidx = nlist->shift;
101 gid = nlist->gid;
102 shiftvec = fr->shift_vec[0];
103 fshift = fr->fshift[0];
104 facel = _mm_set1_ps(fr->ic->epsfac);
105 charge = mdatoms->chargeA;
106 krf = _mm_set1_ps(fr->ic->k_rf);
107 krf2 = _mm_set1_ps(fr->ic->k_rf*2.0);
108 crf = _mm_set1_ps(fr->ic->c_rf);
110 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
111 rcutoff_scalar = fr->ic->rcoulomb;
112 rcutoff = _mm_set1_ps(rcutoff_scalar);
113 rcutoff2 = _mm_mul_ps(rcutoff,rcutoff);
115 /* Avoid stupid compiler warnings */
116 jnrA = jnrB = jnrC = jnrD = 0;
117 j_coord_offsetA = 0;
118 j_coord_offsetB = 0;
119 j_coord_offsetC = 0;
120 j_coord_offsetD = 0;
122 outeriter = 0;
123 inneriter = 0;
125 for(iidx=0;iidx<4*DIM;iidx++)
127 scratch[iidx] = 0.0;
130 /* Start outer loop over neighborlists */
131 for(iidx=0; iidx<nri; iidx++)
133 /* Load shift vector for this list */
134 i_shift_offset = DIM*shiftidx[iidx];
136 /* Load limits for loop over neighbors */
137 j_index_start = jindex[iidx];
138 j_index_end = jindex[iidx+1];
140 /* Get outer coordinate index */
141 inr = iinr[iidx];
142 i_coord_offset = DIM*inr;
144 /* Load i particle coords and add shift vector */
145 gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
147 fix0 = _mm_setzero_ps();
148 fiy0 = _mm_setzero_ps();
149 fiz0 = _mm_setzero_ps();
151 /* Load parameters for i particles */
152 iq0 = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
154 /* Reset potential sums */
155 velecsum = _mm_setzero_ps();
157 /* Start inner kernel loop */
158 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
161 /* Get j neighbor index, and coordinate index */
162 jnrA = jjnr[jidx];
163 jnrB = jjnr[jidx+1];
164 jnrC = jjnr[jidx+2];
165 jnrD = jjnr[jidx+3];
166 j_coord_offsetA = DIM*jnrA;
167 j_coord_offsetB = DIM*jnrB;
168 j_coord_offsetC = DIM*jnrC;
169 j_coord_offsetD = DIM*jnrD;
171 /* load j atom coordinates */
172 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
173 x+j_coord_offsetC,x+j_coord_offsetD,
174 &jx0,&jy0,&jz0);
176 /* Calculate displacement vector */
177 dx00 = _mm_sub_ps(ix0,jx0);
178 dy00 = _mm_sub_ps(iy0,jy0);
179 dz00 = _mm_sub_ps(iz0,jz0);
181 /* Calculate squared distance and things based on it */
182 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
184 rinv00 = sse2_invsqrt_f(rsq00);
186 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
188 /* Load parameters for j particles */
189 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
190 charge+jnrC+0,charge+jnrD+0);
192 /**************************
193 * CALCULATE INTERACTIONS *
194 **************************/
196 if (gmx_mm_any_lt(rsq00,rcutoff2))
199 /* Compute parameters for interactions between i and j atoms */
200 qq00 = _mm_mul_ps(iq0,jq0);
202 /* REACTION-FIELD ELECTROSTATICS */
203 velec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
204 felec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
206 cutoff_mask = _mm_cmplt_ps(rsq00,rcutoff2);
208 /* Update potential sum for this i atom from the interaction with this j atom. */
209 velec = _mm_and_ps(velec,cutoff_mask);
210 velecsum = _mm_add_ps(velecsum,velec);
212 fscal = felec;
214 fscal = _mm_and_ps(fscal,cutoff_mask);
216 /* Calculate temporary vectorial force */
217 tx = _mm_mul_ps(fscal,dx00);
218 ty = _mm_mul_ps(fscal,dy00);
219 tz = _mm_mul_ps(fscal,dz00);
221 /* Update vectorial force */
222 fix0 = _mm_add_ps(fix0,tx);
223 fiy0 = _mm_add_ps(fiy0,ty);
224 fiz0 = _mm_add_ps(fiz0,tz);
226 fjptrA = f+j_coord_offsetA;
227 fjptrB = f+j_coord_offsetB;
228 fjptrC = f+j_coord_offsetC;
229 fjptrD = f+j_coord_offsetD;
230 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
234 /* Inner loop uses 36 flops */
237 if(jidx<j_index_end)
240 /* Get j neighbor index, and coordinate index */
241 jnrlistA = jjnr[jidx];
242 jnrlistB = jjnr[jidx+1];
243 jnrlistC = jjnr[jidx+2];
244 jnrlistD = jjnr[jidx+3];
245 /* Sign of each element will be negative for non-real atoms.
246 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
247 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
249 dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
250 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
251 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
252 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
253 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
254 j_coord_offsetA = DIM*jnrA;
255 j_coord_offsetB = DIM*jnrB;
256 j_coord_offsetC = DIM*jnrC;
257 j_coord_offsetD = DIM*jnrD;
259 /* load j atom coordinates */
260 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
261 x+j_coord_offsetC,x+j_coord_offsetD,
262 &jx0,&jy0,&jz0);
264 /* Calculate displacement vector */
265 dx00 = _mm_sub_ps(ix0,jx0);
266 dy00 = _mm_sub_ps(iy0,jy0);
267 dz00 = _mm_sub_ps(iz0,jz0);
269 /* Calculate squared distance and things based on it */
270 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
272 rinv00 = sse2_invsqrt_f(rsq00);
274 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
276 /* Load parameters for j particles */
277 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
278 charge+jnrC+0,charge+jnrD+0);
280 /**************************
281 * CALCULATE INTERACTIONS *
282 **************************/
284 if (gmx_mm_any_lt(rsq00,rcutoff2))
287 /* Compute parameters for interactions between i and j atoms */
288 qq00 = _mm_mul_ps(iq0,jq0);
290 /* REACTION-FIELD ELECTROSTATICS */
291 velec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
292 felec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
294 cutoff_mask = _mm_cmplt_ps(rsq00,rcutoff2);
296 /* Update potential sum for this i atom from the interaction with this j atom. */
297 velec = _mm_and_ps(velec,cutoff_mask);
298 velec = _mm_andnot_ps(dummy_mask,velec);
299 velecsum = _mm_add_ps(velecsum,velec);
301 fscal = felec;
303 fscal = _mm_and_ps(fscal,cutoff_mask);
305 fscal = _mm_andnot_ps(dummy_mask,fscal);
307 /* Calculate temporary vectorial force */
308 tx = _mm_mul_ps(fscal,dx00);
309 ty = _mm_mul_ps(fscal,dy00);
310 tz = _mm_mul_ps(fscal,dz00);
312 /* Update vectorial force */
313 fix0 = _mm_add_ps(fix0,tx);
314 fiy0 = _mm_add_ps(fiy0,ty);
315 fiz0 = _mm_add_ps(fiz0,tz);
317 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
318 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
319 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
320 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
321 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
325 /* Inner loop uses 36 flops */
328 /* End of innermost loop */
330 gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
331 f+i_coord_offset,fshift+i_shift_offset);
333 ggid = gid[iidx];
334 /* Update potential energies */
335 gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
337 /* Increment number of inner iterations */
338 inneriter += j_index_end - j_index_start;
340 /* Outer loop uses 8 flops */
343 /* Increment number of outer iterations */
344 outeriter += nri;
346 /* Update outer/inner flops */
348 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*36);
351 * Gromacs nonbonded kernel: nb_kernel_ElecRFCut_VdwNone_GeomP1P1_F_sse2_single
352 * Electrostatics interaction: ReactionField
353 * VdW interaction: None
354 * Geometry: Particle-Particle
355 * Calculate force/pot: Force
357 void
358 nb_kernel_ElecRFCut_VdwNone_GeomP1P1_F_sse2_single
359 (t_nblist * gmx_restrict nlist,
360 rvec * gmx_restrict xx,
361 rvec * gmx_restrict ff,
362 struct t_forcerec * gmx_restrict fr,
363 t_mdatoms * gmx_restrict mdatoms,
364 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
365 t_nrnb * gmx_restrict nrnb)
367 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
368 * just 0 for non-waters.
369 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
370 * jnr indices corresponding to data put in the four positions in the SIMD register.
372 int i_shift_offset,i_coord_offset,outeriter,inneriter;
373 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
374 int jnrA,jnrB,jnrC,jnrD;
375 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
376 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
377 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
378 real rcutoff_scalar;
379 real *shiftvec,*fshift,*x,*f;
380 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
381 real scratch[4*DIM];
382 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
383 int vdwioffset0;
384 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
385 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
386 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
387 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
388 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
389 real *charge;
390 __m128 dummy_mask,cutoff_mask;
391 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
392 __m128 one = _mm_set1_ps(1.0);
393 __m128 two = _mm_set1_ps(2.0);
394 x = xx[0];
395 f = ff[0];
397 nri = nlist->nri;
398 iinr = nlist->iinr;
399 jindex = nlist->jindex;
400 jjnr = nlist->jjnr;
401 shiftidx = nlist->shift;
402 gid = nlist->gid;
403 shiftvec = fr->shift_vec[0];
404 fshift = fr->fshift[0];
405 facel = _mm_set1_ps(fr->ic->epsfac);
406 charge = mdatoms->chargeA;
407 krf = _mm_set1_ps(fr->ic->k_rf);
408 krf2 = _mm_set1_ps(fr->ic->k_rf*2.0);
409 crf = _mm_set1_ps(fr->ic->c_rf);
411 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
412 rcutoff_scalar = fr->ic->rcoulomb;
413 rcutoff = _mm_set1_ps(rcutoff_scalar);
414 rcutoff2 = _mm_mul_ps(rcutoff,rcutoff);
416 /* Avoid stupid compiler warnings */
417 jnrA = jnrB = jnrC = jnrD = 0;
418 j_coord_offsetA = 0;
419 j_coord_offsetB = 0;
420 j_coord_offsetC = 0;
421 j_coord_offsetD = 0;
423 outeriter = 0;
424 inneriter = 0;
426 for(iidx=0;iidx<4*DIM;iidx++)
428 scratch[iidx] = 0.0;
431 /* Start outer loop over neighborlists */
432 for(iidx=0; iidx<nri; iidx++)
434 /* Load shift vector for this list */
435 i_shift_offset = DIM*shiftidx[iidx];
437 /* Load limits for loop over neighbors */
438 j_index_start = jindex[iidx];
439 j_index_end = jindex[iidx+1];
441 /* Get outer coordinate index */
442 inr = iinr[iidx];
443 i_coord_offset = DIM*inr;
445 /* Load i particle coords and add shift vector */
446 gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
448 fix0 = _mm_setzero_ps();
449 fiy0 = _mm_setzero_ps();
450 fiz0 = _mm_setzero_ps();
452 /* Load parameters for i particles */
453 iq0 = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
455 /* Start inner kernel loop */
456 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
459 /* Get j neighbor index, and coordinate index */
460 jnrA = jjnr[jidx];
461 jnrB = jjnr[jidx+1];
462 jnrC = jjnr[jidx+2];
463 jnrD = jjnr[jidx+3];
464 j_coord_offsetA = DIM*jnrA;
465 j_coord_offsetB = DIM*jnrB;
466 j_coord_offsetC = DIM*jnrC;
467 j_coord_offsetD = DIM*jnrD;
469 /* load j atom coordinates */
470 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
471 x+j_coord_offsetC,x+j_coord_offsetD,
472 &jx0,&jy0,&jz0);
474 /* Calculate displacement vector */
475 dx00 = _mm_sub_ps(ix0,jx0);
476 dy00 = _mm_sub_ps(iy0,jy0);
477 dz00 = _mm_sub_ps(iz0,jz0);
479 /* Calculate squared distance and things based on it */
480 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
482 rinv00 = sse2_invsqrt_f(rsq00);
484 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
486 /* Load parameters for j particles */
487 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
488 charge+jnrC+0,charge+jnrD+0);
490 /**************************
491 * CALCULATE INTERACTIONS *
492 **************************/
494 if (gmx_mm_any_lt(rsq00,rcutoff2))
497 /* Compute parameters for interactions between i and j atoms */
498 qq00 = _mm_mul_ps(iq0,jq0);
500 /* REACTION-FIELD ELECTROSTATICS */
501 felec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
503 cutoff_mask = _mm_cmplt_ps(rsq00,rcutoff2);
505 fscal = felec;
507 fscal = _mm_and_ps(fscal,cutoff_mask);
509 /* Calculate temporary vectorial force */
510 tx = _mm_mul_ps(fscal,dx00);
511 ty = _mm_mul_ps(fscal,dy00);
512 tz = _mm_mul_ps(fscal,dz00);
514 /* Update vectorial force */
515 fix0 = _mm_add_ps(fix0,tx);
516 fiy0 = _mm_add_ps(fiy0,ty);
517 fiz0 = _mm_add_ps(fiz0,tz);
519 fjptrA = f+j_coord_offsetA;
520 fjptrB = f+j_coord_offsetB;
521 fjptrC = f+j_coord_offsetC;
522 fjptrD = f+j_coord_offsetD;
523 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
527 /* Inner loop uses 30 flops */
530 if(jidx<j_index_end)
533 /* Get j neighbor index, and coordinate index */
534 jnrlistA = jjnr[jidx];
535 jnrlistB = jjnr[jidx+1];
536 jnrlistC = jjnr[jidx+2];
537 jnrlistD = jjnr[jidx+3];
538 /* Sign of each element will be negative for non-real atoms.
539 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
540 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
542 dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
543 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
544 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
545 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
546 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
547 j_coord_offsetA = DIM*jnrA;
548 j_coord_offsetB = DIM*jnrB;
549 j_coord_offsetC = DIM*jnrC;
550 j_coord_offsetD = DIM*jnrD;
552 /* load j atom coordinates */
553 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
554 x+j_coord_offsetC,x+j_coord_offsetD,
555 &jx0,&jy0,&jz0);
557 /* Calculate displacement vector */
558 dx00 = _mm_sub_ps(ix0,jx0);
559 dy00 = _mm_sub_ps(iy0,jy0);
560 dz00 = _mm_sub_ps(iz0,jz0);
562 /* Calculate squared distance and things based on it */
563 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
565 rinv00 = sse2_invsqrt_f(rsq00);
567 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
569 /* Load parameters for j particles */
570 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
571 charge+jnrC+0,charge+jnrD+0);
573 /**************************
574 * CALCULATE INTERACTIONS *
575 **************************/
577 if (gmx_mm_any_lt(rsq00,rcutoff2))
580 /* Compute parameters for interactions between i and j atoms */
581 qq00 = _mm_mul_ps(iq0,jq0);
583 /* REACTION-FIELD ELECTROSTATICS */
584 felec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
586 cutoff_mask = _mm_cmplt_ps(rsq00,rcutoff2);
588 fscal = felec;
590 fscal = _mm_and_ps(fscal,cutoff_mask);
592 fscal = _mm_andnot_ps(dummy_mask,fscal);
594 /* Calculate temporary vectorial force */
595 tx = _mm_mul_ps(fscal,dx00);
596 ty = _mm_mul_ps(fscal,dy00);
597 tz = _mm_mul_ps(fscal,dz00);
599 /* Update vectorial force */
600 fix0 = _mm_add_ps(fix0,tx);
601 fiy0 = _mm_add_ps(fiy0,ty);
602 fiz0 = _mm_add_ps(fiz0,tz);
604 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
605 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
606 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
607 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
608 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
612 /* Inner loop uses 30 flops */
615 /* End of innermost loop */
617 gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
618 f+i_coord_offset,fshift+i_shift_offset);
620 /* Increment number of inner iterations */
621 inneriter += j_index_end - j_index_start;
623 /* Outer loop uses 7 flops */
626 /* Increment number of outer iterations */
627 outeriter += nri;
629 /* Update outer/inner flops */
631 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*30);