Remove nb-parameters from t_forcerec
[gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecGB_VdwCSTab_GeomP1P1_sse2_single.c
blob2dd1b08824cc028fb43216351f2d6d15d2785973
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
36 * Note: this file was generated by the GROMACS sse2_single kernel generator.
38 #include "gmxpre.h"
40 #include "config.h"
42 #include <math.h>
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
47 #include "kernelutil_x86_sse2_single.h"
50 * Gromacs nonbonded kernel: nb_kernel_ElecGB_VdwCSTab_GeomP1P1_VF_sse2_single
51 * Electrostatics interaction: GeneralizedBorn
52 * VdW interaction: CubicSplineTable
53 * Geometry: Particle-Particle
54 * Calculate force/pot: PotentialAndForce
56 void
57 nb_kernel_ElecGB_VdwCSTab_GeomP1P1_VF_sse2_single
58 (t_nblist * gmx_restrict nlist,
59 rvec * gmx_restrict xx,
60 rvec * gmx_restrict ff,
61 struct t_forcerec * gmx_restrict fr,
62 t_mdatoms * gmx_restrict mdatoms,
63 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64 t_nrnb * gmx_restrict nrnb)
66 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67 * just 0 for non-waters.
68 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
69 * jnr indices corresponding to data put in the four positions in the SIMD register.
71 int i_shift_offset,i_coord_offset,outeriter,inneriter;
72 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73 int jnrA,jnrB,jnrC,jnrD;
74 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
76 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
77 real rcutoff_scalar;
78 real *shiftvec,*fshift,*x,*f;
79 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
80 real scratch[4*DIM];
81 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82 int vdwioffset0;
83 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
85 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
86 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
87 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
88 real *charge;
89 __m128i gbitab;
90 __m128 vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,dvdatmp;
91 __m128 minushalf = _mm_set1_ps(-0.5);
92 real *invsqrta,*dvda,*gbtab;
93 int nvdwtype;
94 __m128 rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
95 int *vdwtype;
96 real *vdwparam;
97 __m128 one_sixth = _mm_set1_ps(1.0/6.0);
98 __m128 one_twelfth = _mm_set1_ps(1.0/12.0);
99 __m128i vfitab;
100 __m128i ifour = _mm_set1_epi32(4);
101 __m128 rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
102 real *vftab;
103 __m128 dummy_mask,cutoff_mask;
104 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
105 __m128 one = _mm_set1_ps(1.0);
106 __m128 two = _mm_set1_ps(2.0);
107 x = xx[0];
108 f = ff[0];
110 nri = nlist->nri;
111 iinr = nlist->iinr;
112 jindex = nlist->jindex;
113 jjnr = nlist->jjnr;
114 shiftidx = nlist->shift;
115 gid = nlist->gid;
116 shiftvec = fr->shift_vec[0];
117 fshift = fr->fshift[0];
118 facel = _mm_set1_ps(fr->ic->epsfac);
119 charge = mdatoms->chargeA;
120 nvdwtype = fr->ntype;
121 vdwparam = fr->nbfp;
122 vdwtype = mdatoms->typeA;
124 vftab = kernel_data->table_vdw->data;
125 vftabscale = _mm_set1_ps(kernel_data->table_vdw->scale);
127 invsqrta = fr->invsqrta;
128 dvda = fr->dvda;
129 gbtabscale = _mm_set1_ps(fr->gbtab->scale);
130 gbtab = fr->gbtab->data;
131 gbinvepsdiff = _mm_set1_ps((1.0/fr->ic->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
133 /* Avoid stupid compiler warnings */
134 jnrA = jnrB = jnrC = jnrD = 0;
135 j_coord_offsetA = 0;
136 j_coord_offsetB = 0;
137 j_coord_offsetC = 0;
138 j_coord_offsetD = 0;
140 outeriter = 0;
141 inneriter = 0;
143 for(iidx=0;iidx<4*DIM;iidx++)
145 scratch[iidx] = 0.0;
148 /* Start outer loop over neighborlists */
149 for(iidx=0; iidx<nri; iidx++)
151 /* Load shift vector for this list */
152 i_shift_offset = DIM*shiftidx[iidx];
154 /* Load limits for loop over neighbors */
155 j_index_start = jindex[iidx];
156 j_index_end = jindex[iidx+1];
158 /* Get outer coordinate index */
159 inr = iinr[iidx];
160 i_coord_offset = DIM*inr;
162 /* Load i particle coords and add shift vector */
163 gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
165 fix0 = _mm_setzero_ps();
166 fiy0 = _mm_setzero_ps();
167 fiz0 = _mm_setzero_ps();
169 /* Load parameters for i particles */
170 iq0 = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
171 isai0 = _mm_load1_ps(invsqrta+inr+0);
172 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
174 /* Reset potential sums */
175 velecsum = _mm_setzero_ps();
176 vgbsum = _mm_setzero_ps();
177 vvdwsum = _mm_setzero_ps();
178 dvdasum = _mm_setzero_ps();
180 /* Start inner kernel loop */
181 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
184 /* Get j neighbor index, and coordinate index */
185 jnrA = jjnr[jidx];
186 jnrB = jjnr[jidx+1];
187 jnrC = jjnr[jidx+2];
188 jnrD = jjnr[jidx+3];
189 j_coord_offsetA = DIM*jnrA;
190 j_coord_offsetB = DIM*jnrB;
191 j_coord_offsetC = DIM*jnrC;
192 j_coord_offsetD = DIM*jnrD;
194 /* load j atom coordinates */
195 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
196 x+j_coord_offsetC,x+j_coord_offsetD,
197 &jx0,&jy0,&jz0);
199 /* Calculate displacement vector */
200 dx00 = _mm_sub_ps(ix0,jx0);
201 dy00 = _mm_sub_ps(iy0,jy0);
202 dz00 = _mm_sub_ps(iz0,jz0);
204 /* Calculate squared distance and things based on it */
205 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
207 rinv00 = sse2_invsqrt_f(rsq00);
209 /* Load parameters for j particles */
210 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
211 charge+jnrC+0,charge+jnrD+0);
212 isaj0 = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
213 invsqrta+jnrC+0,invsqrta+jnrD+0);
214 vdwjidx0A = 2*vdwtype[jnrA+0];
215 vdwjidx0B = 2*vdwtype[jnrB+0];
216 vdwjidx0C = 2*vdwtype[jnrC+0];
217 vdwjidx0D = 2*vdwtype[jnrD+0];
219 /**************************
220 * CALCULATE INTERACTIONS *
221 **************************/
223 r00 = _mm_mul_ps(rsq00,rinv00);
225 /* Compute parameters for interactions between i and j atoms */
226 qq00 = _mm_mul_ps(iq0,jq0);
227 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
228 vdwparam+vdwioffset0+vdwjidx0B,
229 vdwparam+vdwioffset0+vdwjidx0C,
230 vdwparam+vdwioffset0+vdwjidx0D,
231 &c6_00,&c12_00);
233 /* Calculate table index by multiplying r with table scale and truncate to integer */
234 rt = _mm_mul_ps(r00,vftabscale);
235 vfitab = _mm_cvttps_epi32(rt);
236 vfeps = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
237 vfitab = _mm_slli_epi32(vfitab,3);
239 /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
240 isaprod = _mm_mul_ps(isai0,isaj0);
241 gbqqfactor = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
242 gbscale = _mm_mul_ps(isaprod,gbtabscale);
244 /* Calculate generalized born table index - this is a separate table from the normal one,
245 * but we use the same procedure by multiplying r with scale and truncating to integer.
247 rt = _mm_mul_ps(r00,gbscale);
248 gbitab = _mm_cvttps_epi32(rt);
249 gbeps = _mm_sub_ps(rt,_mm_cvtepi32_ps(gbitab));
250 gbitab = _mm_slli_epi32(gbitab,2);
252 Y = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,0) );
253 F = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,1) );
254 G = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,2) );
255 H = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,3) );
256 _MM_TRANSPOSE4_PS(Y,F,G,H);
257 Heps = _mm_mul_ps(gbeps,H);
258 Fp = _mm_add_ps(F,_mm_mul_ps(gbeps,_mm_add_ps(G,Heps)));
259 VV = _mm_add_ps(Y,_mm_mul_ps(gbeps,Fp));
260 vgb = _mm_mul_ps(gbqqfactor,VV);
262 FF = _mm_add_ps(Fp,_mm_mul_ps(gbeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
263 fgb = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
264 dvdatmp = _mm_mul_ps(minushalf,_mm_add_ps(vgb,_mm_mul_ps(fgb,r00)));
265 dvdasum = _mm_add_ps(dvdasum,dvdatmp);
266 fjptrA = dvda+jnrA;
267 fjptrB = dvda+jnrB;
268 fjptrC = dvda+jnrC;
269 fjptrD = dvda+jnrD;
270 gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
271 velec = _mm_mul_ps(qq00,rinv00);
272 felec = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(velec,rinv00),fgb),rinv00);
274 /* CUBIC SPLINE TABLE DISPERSION */
275 Y = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
276 F = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
277 G = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
278 H = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
279 _MM_TRANSPOSE4_PS(Y,F,G,H);
280 Heps = _mm_mul_ps(vfeps,H);
281 Fp = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
282 VV = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
283 vvdw6 = _mm_mul_ps(c6_00,VV);
284 FF = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
285 fvdw6 = _mm_mul_ps(c6_00,FF);
287 /* CUBIC SPLINE TABLE REPULSION */
288 vfitab = _mm_add_epi32(vfitab,ifour);
289 Y = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
290 F = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
291 G = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
292 H = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
293 _MM_TRANSPOSE4_PS(Y,F,G,H);
294 Heps = _mm_mul_ps(vfeps,H);
295 Fp = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
296 VV = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
297 vvdw12 = _mm_mul_ps(c12_00,VV);
298 FF = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
299 fvdw12 = _mm_mul_ps(c12_00,FF);
300 vvdw = _mm_add_ps(vvdw12,vvdw6);
301 fvdw = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
303 /* Update potential sum for this i atom from the interaction with this j atom. */
304 velecsum = _mm_add_ps(velecsum,velec);
305 vgbsum = _mm_add_ps(vgbsum,vgb);
306 vvdwsum = _mm_add_ps(vvdwsum,vvdw);
308 fscal = _mm_add_ps(felec,fvdw);
310 /* Calculate temporary vectorial force */
311 tx = _mm_mul_ps(fscal,dx00);
312 ty = _mm_mul_ps(fscal,dy00);
313 tz = _mm_mul_ps(fscal,dz00);
315 /* Update vectorial force */
316 fix0 = _mm_add_ps(fix0,tx);
317 fiy0 = _mm_add_ps(fiy0,ty);
318 fiz0 = _mm_add_ps(fiz0,tz);
320 fjptrA = f+j_coord_offsetA;
321 fjptrB = f+j_coord_offsetB;
322 fjptrC = f+j_coord_offsetC;
323 fjptrD = f+j_coord_offsetD;
324 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
326 /* Inner loop uses 92 flops */
329 if(jidx<j_index_end)
332 /* Get j neighbor index, and coordinate index */
333 jnrlistA = jjnr[jidx];
334 jnrlistB = jjnr[jidx+1];
335 jnrlistC = jjnr[jidx+2];
336 jnrlistD = jjnr[jidx+3];
337 /* Sign of each element will be negative for non-real atoms.
338 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
339 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
341 dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
342 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
343 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
344 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
345 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
346 j_coord_offsetA = DIM*jnrA;
347 j_coord_offsetB = DIM*jnrB;
348 j_coord_offsetC = DIM*jnrC;
349 j_coord_offsetD = DIM*jnrD;
351 /* load j atom coordinates */
352 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
353 x+j_coord_offsetC,x+j_coord_offsetD,
354 &jx0,&jy0,&jz0);
356 /* Calculate displacement vector */
357 dx00 = _mm_sub_ps(ix0,jx0);
358 dy00 = _mm_sub_ps(iy0,jy0);
359 dz00 = _mm_sub_ps(iz0,jz0);
361 /* Calculate squared distance and things based on it */
362 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
364 rinv00 = sse2_invsqrt_f(rsq00);
366 /* Load parameters for j particles */
367 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
368 charge+jnrC+0,charge+jnrD+0);
369 isaj0 = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
370 invsqrta+jnrC+0,invsqrta+jnrD+0);
371 vdwjidx0A = 2*vdwtype[jnrA+0];
372 vdwjidx0B = 2*vdwtype[jnrB+0];
373 vdwjidx0C = 2*vdwtype[jnrC+0];
374 vdwjidx0D = 2*vdwtype[jnrD+0];
376 /**************************
377 * CALCULATE INTERACTIONS *
378 **************************/
380 r00 = _mm_mul_ps(rsq00,rinv00);
381 r00 = _mm_andnot_ps(dummy_mask,r00);
383 /* Compute parameters for interactions between i and j atoms */
384 qq00 = _mm_mul_ps(iq0,jq0);
385 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
386 vdwparam+vdwioffset0+vdwjidx0B,
387 vdwparam+vdwioffset0+vdwjidx0C,
388 vdwparam+vdwioffset0+vdwjidx0D,
389 &c6_00,&c12_00);
391 /* Calculate table index by multiplying r with table scale and truncate to integer */
392 rt = _mm_mul_ps(r00,vftabscale);
393 vfitab = _mm_cvttps_epi32(rt);
394 vfeps = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
395 vfitab = _mm_slli_epi32(vfitab,3);
397 /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
398 isaprod = _mm_mul_ps(isai0,isaj0);
399 gbqqfactor = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
400 gbscale = _mm_mul_ps(isaprod,gbtabscale);
402 /* Calculate generalized born table index - this is a separate table from the normal one,
403 * but we use the same procedure by multiplying r with scale and truncating to integer.
405 rt = _mm_mul_ps(r00,gbscale);
406 gbitab = _mm_cvttps_epi32(rt);
407 gbeps = _mm_sub_ps(rt,_mm_cvtepi32_ps(gbitab));
408 gbitab = _mm_slli_epi32(gbitab,2);
410 Y = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,0) );
411 F = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,1) );
412 G = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,2) );
413 H = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,3) );
414 _MM_TRANSPOSE4_PS(Y,F,G,H);
415 Heps = _mm_mul_ps(gbeps,H);
416 Fp = _mm_add_ps(F,_mm_mul_ps(gbeps,_mm_add_ps(G,Heps)));
417 VV = _mm_add_ps(Y,_mm_mul_ps(gbeps,Fp));
418 vgb = _mm_mul_ps(gbqqfactor,VV);
420 FF = _mm_add_ps(Fp,_mm_mul_ps(gbeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
421 fgb = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
422 dvdatmp = _mm_mul_ps(minushalf,_mm_add_ps(vgb,_mm_mul_ps(fgb,r00)));
423 dvdatmp = _mm_andnot_ps(dummy_mask,dvdatmp);
424 dvdasum = _mm_add_ps(dvdasum,dvdatmp);
425 /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
426 fjptrA = (jnrlistA>=0) ? dvda+jnrA : scratch;
427 fjptrB = (jnrlistB>=0) ? dvda+jnrB : scratch;
428 fjptrC = (jnrlistC>=0) ? dvda+jnrC : scratch;
429 fjptrD = (jnrlistD>=0) ? dvda+jnrD : scratch;
430 gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
431 velec = _mm_mul_ps(qq00,rinv00);
432 felec = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(velec,rinv00),fgb),rinv00);
434 /* CUBIC SPLINE TABLE DISPERSION */
435 Y = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
436 F = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
437 G = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
438 H = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
439 _MM_TRANSPOSE4_PS(Y,F,G,H);
440 Heps = _mm_mul_ps(vfeps,H);
441 Fp = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
442 VV = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
443 vvdw6 = _mm_mul_ps(c6_00,VV);
444 FF = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
445 fvdw6 = _mm_mul_ps(c6_00,FF);
447 /* CUBIC SPLINE TABLE REPULSION */
448 vfitab = _mm_add_epi32(vfitab,ifour);
449 Y = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
450 F = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
451 G = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
452 H = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
453 _MM_TRANSPOSE4_PS(Y,F,G,H);
454 Heps = _mm_mul_ps(vfeps,H);
455 Fp = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
456 VV = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
457 vvdw12 = _mm_mul_ps(c12_00,VV);
458 FF = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
459 fvdw12 = _mm_mul_ps(c12_00,FF);
460 vvdw = _mm_add_ps(vvdw12,vvdw6);
461 fvdw = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
463 /* Update potential sum for this i atom from the interaction with this j atom. */
464 velec = _mm_andnot_ps(dummy_mask,velec);
465 velecsum = _mm_add_ps(velecsum,velec);
466 vgb = _mm_andnot_ps(dummy_mask,vgb);
467 vgbsum = _mm_add_ps(vgbsum,vgb);
468 vvdw = _mm_andnot_ps(dummy_mask,vvdw);
469 vvdwsum = _mm_add_ps(vvdwsum,vvdw);
471 fscal = _mm_add_ps(felec,fvdw);
473 fscal = _mm_andnot_ps(dummy_mask,fscal);
475 /* Calculate temporary vectorial force */
476 tx = _mm_mul_ps(fscal,dx00);
477 ty = _mm_mul_ps(fscal,dy00);
478 tz = _mm_mul_ps(fscal,dz00);
480 /* Update vectorial force */
481 fix0 = _mm_add_ps(fix0,tx);
482 fiy0 = _mm_add_ps(fiy0,ty);
483 fiz0 = _mm_add_ps(fiz0,tz);
485 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
486 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
487 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
488 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
489 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
491 /* Inner loop uses 93 flops */
494 /* End of innermost loop */
496 gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
497 f+i_coord_offset,fshift+i_shift_offset);
499 ggid = gid[iidx];
500 /* Update potential energies */
501 gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
502 gmx_mm_update_1pot_ps(vgbsum,kernel_data->energygrp_polarization+ggid);
503 gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
504 dvdasum = _mm_mul_ps(dvdasum, _mm_mul_ps(isai0,isai0));
505 gmx_mm_update_1pot_ps(dvdasum,dvda+inr);
507 /* Increment number of inner iterations */
508 inneriter += j_index_end - j_index_start;
510 /* Outer loop uses 10 flops */
513 /* Increment number of outer iterations */
514 outeriter += nri;
516 /* Update outer/inner flops */
518 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*10 + inneriter*93);
521 * Gromacs nonbonded kernel: nb_kernel_ElecGB_VdwCSTab_GeomP1P1_F_sse2_single
522 * Electrostatics interaction: GeneralizedBorn
523 * VdW interaction: CubicSplineTable
524 * Geometry: Particle-Particle
525 * Calculate force/pot: Force
527 void
528 nb_kernel_ElecGB_VdwCSTab_GeomP1P1_F_sse2_single
529 (t_nblist * gmx_restrict nlist,
530 rvec * gmx_restrict xx,
531 rvec * gmx_restrict ff,
532 struct t_forcerec * gmx_restrict fr,
533 t_mdatoms * gmx_restrict mdatoms,
534 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
535 t_nrnb * gmx_restrict nrnb)
537 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
538 * just 0 for non-waters.
539 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
540 * jnr indices corresponding to data put in the four positions in the SIMD register.
542 int i_shift_offset,i_coord_offset,outeriter,inneriter;
543 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
544 int jnrA,jnrB,jnrC,jnrD;
545 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
546 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
547 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
548 real rcutoff_scalar;
549 real *shiftvec,*fshift,*x,*f;
550 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
551 real scratch[4*DIM];
552 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
553 int vdwioffset0;
554 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
555 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
556 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
557 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
558 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
559 real *charge;
560 __m128i gbitab;
561 __m128 vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,dvdatmp;
562 __m128 minushalf = _mm_set1_ps(-0.5);
563 real *invsqrta,*dvda,*gbtab;
564 int nvdwtype;
565 __m128 rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
566 int *vdwtype;
567 real *vdwparam;
568 __m128 one_sixth = _mm_set1_ps(1.0/6.0);
569 __m128 one_twelfth = _mm_set1_ps(1.0/12.0);
570 __m128i vfitab;
571 __m128i ifour = _mm_set1_epi32(4);
572 __m128 rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
573 real *vftab;
574 __m128 dummy_mask,cutoff_mask;
575 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
576 __m128 one = _mm_set1_ps(1.0);
577 __m128 two = _mm_set1_ps(2.0);
578 x = xx[0];
579 f = ff[0];
581 nri = nlist->nri;
582 iinr = nlist->iinr;
583 jindex = nlist->jindex;
584 jjnr = nlist->jjnr;
585 shiftidx = nlist->shift;
586 gid = nlist->gid;
587 shiftvec = fr->shift_vec[0];
588 fshift = fr->fshift[0];
589 facel = _mm_set1_ps(fr->ic->epsfac);
590 charge = mdatoms->chargeA;
591 nvdwtype = fr->ntype;
592 vdwparam = fr->nbfp;
593 vdwtype = mdatoms->typeA;
595 vftab = kernel_data->table_vdw->data;
596 vftabscale = _mm_set1_ps(kernel_data->table_vdw->scale);
598 invsqrta = fr->invsqrta;
599 dvda = fr->dvda;
600 gbtabscale = _mm_set1_ps(fr->gbtab->scale);
601 gbtab = fr->gbtab->data;
602 gbinvepsdiff = _mm_set1_ps((1.0/fr->ic->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
604 /* Avoid stupid compiler warnings */
605 jnrA = jnrB = jnrC = jnrD = 0;
606 j_coord_offsetA = 0;
607 j_coord_offsetB = 0;
608 j_coord_offsetC = 0;
609 j_coord_offsetD = 0;
611 outeriter = 0;
612 inneriter = 0;
614 for(iidx=0;iidx<4*DIM;iidx++)
616 scratch[iidx] = 0.0;
619 /* Start outer loop over neighborlists */
620 for(iidx=0; iidx<nri; iidx++)
622 /* Load shift vector for this list */
623 i_shift_offset = DIM*shiftidx[iidx];
625 /* Load limits for loop over neighbors */
626 j_index_start = jindex[iidx];
627 j_index_end = jindex[iidx+1];
629 /* Get outer coordinate index */
630 inr = iinr[iidx];
631 i_coord_offset = DIM*inr;
633 /* Load i particle coords and add shift vector */
634 gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
636 fix0 = _mm_setzero_ps();
637 fiy0 = _mm_setzero_ps();
638 fiz0 = _mm_setzero_ps();
640 /* Load parameters for i particles */
641 iq0 = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
642 isai0 = _mm_load1_ps(invsqrta+inr+0);
643 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
645 dvdasum = _mm_setzero_ps();
647 /* Start inner kernel loop */
648 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
651 /* Get j neighbor index, and coordinate index */
652 jnrA = jjnr[jidx];
653 jnrB = jjnr[jidx+1];
654 jnrC = jjnr[jidx+2];
655 jnrD = jjnr[jidx+3];
656 j_coord_offsetA = DIM*jnrA;
657 j_coord_offsetB = DIM*jnrB;
658 j_coord_offsetC = DIM*jnrC;
659 j_coord_offsetD = DIM*jnrD;
661 /* load j atom coordinates */
662 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
663 x+j_coord_offsetC,x+j_coord_offsetD,
664 &jx0,&jy0,&jz0);
666 /* Calculate displacement vector */
667 dx00 = _mm_sub_ps(ix0,jx0);
668 dy00 = _mm_sub_ps(iy0,jy0);
669 dz00 = _mm_sub_ps(iz0,jz0);
671 /* Calculate squared distance and things based on it */
672 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
674 rinv00 = sse2_invsqrt_f(rsq00);
676 /* Load parameters for j particles */
677 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
678 charge+jnrC+0,charge+jnrD+0);
679 isaj0 = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
680 invsqrta+jnrC+0,invsqrta+jnrD+0);
681 vdwjidx0A = 2*vdwtype[jnrA+0];
682 vdwjidx0B = 2*vdwtype[jnrB+0];
683 vdwjidx0C = 2*vdwtype[jnrC+0];
684 vdwjidx0D = 2*vdwtype[jnrD+0];
686 /**************************
687 * CALCULATE INTERACTIONS *
688 **************************/
690 r00 = _mm_mul_ps(rsq00,rinv00);
692 /* Compute parameters for interactions between i and j atoms */
693 qq00 = _mm_mul_ps(iq0,jq0);
694 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
695 vdwparam+vdwioffset0+vdwjidx0B,
696 vdwparam+vdwioffset0+vdwjidx0C,
697 vdwparam+vdwioffset0+vdwjidx0D,
698 &c6_00,&c12_00);
700 /* Calculate table index by multiplying r with table scale and truncate to integer */
701 rt = _mm_mul_ps(r00,vftabscale);
702 vfitab = _mm_cvttps_epi32(rt);
703 vfeps = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
704 vfitab = _mm_slli_epi32(vfitab,3);
706 /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
707 isaprod = _mm_mul_ps(isai0,isaj0);
708 gbqqfactor = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
709 gbscale = _mm_mul_ps(isaprod,gbtabscale);
711 /* Calculate generalized born table index - this is a separate table from the normal one,
712 * but we use the same procedure by multiplying r with scale and truncating to integer.
714 rt = _mm_mul_ps(r00,gbscale);
715 gbitab = _mm_cvttps_epi32(rt);
716 gbeps = _mm_sub_ps(rt,_mm_cvtepi32_ps(gbitab));
717 gbitab = _mm_slli_epi32(gbitab,2);
719 Y = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,0) );
720 F = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,1) );
721 G = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,2) );
722 H = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,3) );
723 _MM_TRANSPOSE4_PS(Y,F,G,H);
724 Heps = _mm_mul_ps(gbeps,H);
725 Fp = _mm_add_ps(F,_mm_mul_ps(gbeps,_mm_add_ps(G,Heps)));
726 VV = _mm_add_ps(Y,_mm_mul_ps(gbeps,Fp));
727 vgb = _mm_mul_ps(gbqqfactor,VV);
729 FF = _mm_add_ps(Fp,_mm_mul_ps(gbeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
730 fgb = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
731 dvdatmp = _mm_mul_ps(minushalf,_mm_add_ps(vgb,_mm_mul_ps(fgb,r00)));
732 dvdasum = _mm_add_ps(dvdasum,dvdatmp);
733 fjptrA = dvda+jnrA;
734 fjptrB = dvda+jnrB;
735 fjptrC = dvda+jnrC;
736 fjptrD = dvda+jnrD;
737 gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
738 velec = _mm_mul_ps(qq00,rinv00);
739 felec = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(velec,rinv00),fgb),rinv00);
741 /* CUBIC SPLINE TABLE DISPERSION */
742 Y = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
743 F = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
744 G = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
745 H = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
746 _MM_TRANSPOSE4_PS(Y,F,G,H);
747 Heps = _mm_mul_ps(vfeps,H);
748 Fp = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
749 FF = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
750 fvdw6 = _mm_mul_ps(c6_00,FF);
752 /* CUBIC SPLINE TABLE REPULSION */
753 vfitab = _mm_add_epi32(vfitab,ifour);
754 Y = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
755 F = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
756 G = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
757 H = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
758 _MM_TRANSPOSE4_PS(Y,F,G,H);
759 Heps = _mm_mul_ps(vfeps,H);
760 Fp = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
761 FF = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
762 fvdw12 = _mm_mul_ps(c12_00,FF);
763 fvdw = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
765 fscal = _mm_add_ps(felec,fvdw);
767 /* Calculate temporary vectorial force */
768 tx = _mm_mul_ps(fscal,dx00);
769 ty = _mm_mul_ps(fscal,dy00);
770 tz = _mm_mul_ps(fscal,dz00);
772 /* Update vectorial force */
773 fix0 = _mm_add_ps(fix0,tx);
774 fiy0 = _mm_add_ps(fiy0,ty);
775 fiz0 = _mm_add_ps(fiz0,tz);
777 fjptrA = f+j_coord_offsetA;
778 fjptrB = f+j_coord_offsetB;
779 fjptrC = f+j_coord_offsetC;
780 fjptrD = f+j_coord_offsetD;
781 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
783 /* Inner loop uses 82 flops */
786 if(jidx<j_index_end)
789 /* Get j neighbor index, and coordinate index */
790 jnrlistA = jjnr[jidx];
791 jnrlistB = jjnr[jidx+1];
792 jnrlistC = jjnr[jidx+2];
793 jnrlistD = jjnr[jidx+3];
794 /* Sign of each element will be negative for non-real atoms.
795 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
796 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
798 dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
799 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
800 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
801 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
802 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
803 j_coord_offsetA = DIM*jnrA;
804 j_coord_offsetB = DIM*jnrB;
805 j_coord_offsetC = DIM*jnrC;
806 j_coord_offsetD = DIM*jnrD;
808 /* load j atom coordinates */
809 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
810 x+j_coord_offsetC,x+j_coord_offsetD,
811 &jx0,&jy0,&jz0);
813 /* Calculate displacement vector */
814 dx00 = _mm_sub_ps(ix0,jx0);
815 dy00 = _mm_sub_ps(iy0,jy0);
816 dz00 = _mm_sub_ps(iz0,jz0);
818 /* Calculate squared distance and things based on it */
819 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
821 rinv00 = sse2_invsqrt_f(rsq00);
823 /* Load parameters for j particles */
824 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
825 charge+jnrC+0,charge+jnrD+0);
826 isaj0 = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
827 invsqrta+jnrC+0,invsqrta+jnrD+0);
828 vdwjidx0A = 2*vdwtype[jnrA+0];
829 vdwjidx0B = 2*vdwtype[jnrB+0];
830 vdwjidx0C = 2*vdwtype[jnrC+0];
831 vdwjidx0D = 2*vdwtype[jnrD+0];
833 /**************************
834 * CALCULATE INTERACTIONS *
835 **************************/
837 r00 = _mm_mul_ps(rsq00,rinv00);
838 r00 = _mm_andnot_ps(dummy_mask,r00);
840 /* Compute parameters for interactions between i and j atoms */
841 qq00 = _mm_mul_ps(iq0,jq0);
842 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
843 vdwparam+vdwioffset0+vdwjidx0B,
844 vdwparam+vdwioffset0+vdwjidx0C,
845 vdwparam+vdwioffset0+vdwjidx0D,
846 &c6_00,&c12_00);
848 /* Calculate table index by multiplying r with table scale and truncate to integer */
849 rt = _mm_mul_ps(r00,vftabscale);
850 vfitab = _mm_cvttps_epi32(rt);
851 vfeps = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
852 vfitab = _mm_slli_epi32(vfitab,3);
854 /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
855 isaprod = _mm_mul_ps(isai0,isaj0);
856 gbqqfactor = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
857 gbscale = _mm_mul_ps(isaprod,gbtabscale);
859 /* Calculate generalized born table index - this is a separate table from the normal one,
860 * but we use the same procedure by multiplying r with scale and truncating to integer.
862 rt = _mm_mul_ps(r00,gbscale);
863 gbitab = _mm_cvttps_epi32(rt);
864 gbeps = _mm_sub_ps(rt,_mm_cvtepi32_ps(gbitab));
865 gbitab = _mm_slli_epi32(gbitab,2);
867 Y = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,0) );
868 F = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,1) );
869 G = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,2) );
870 H = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,3) );
871 _MM_TRANSPOSE4_PS(Y,F,G,H);
872 Heps = _mm_mul_ps(gbeps,H);
873 Fp = _mm_add_ps(F,_mm_mul_ps(gbeps,_mm_add_ps(G,Heps)));
874 VV = _mm_add_ps(Y,_mm_mul_ps(gbeps,Fp));
875 vgb = _mm_mul_ps(gbqqfactor,VV);
877 FF = _mm_add_ps(Fp,_mm_mul_ps(gbeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
878 fgb = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
879 dvdatmp = _mm_mul_ps(minushalf,_mm_add_ps(vgb,_mm_mul_ps(fgb,r00)));
880 dvdatmp = _mm_andnot_ps(dummy_mask,dvdatmp);
881 dvdasum = _mm_add_ps(dvdasum,dvdatmp);
882 /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
883 fjptrA = (jnrlistA>=0) ? dvda+jnrA : scratch;
884 fjptrB = (jnrlistB>=0) ? dvda+jnrB : scratch;
885 fjptrC = (jnrlistC>=0) ? dvda+jnrC : scratch;
886 fjptrD = (jnrlistD>=0) ? dvda+jnrD : scratch;
887 gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
888 velec = _mm_mul_ps(qq00,rinv00);
889 felec = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(velec,rinv00),fgb),rinv00);
891 /* CUBIC SPLINE TABLE DISPERSION */
892 Y = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
893 F = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
894 G = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
895 H = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
896 _MM_TRANSPOSE4_PS(Y,F,G,H);
897 Heps = _mm_mul_ps(vfeps,H);
898 Fp = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
899 FF = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
900 fvdw6 = _mm_mul_ps(c6_00,FF);
902 /* CUBIC SPLINE TABLE REPULSION */
903 vfitab = _mm_add_epi32(vfitab,ifour);
904 Y = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
905 F = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
906 G = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
907 H = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
908 _MM_TRANSPOSE4_PS(Y,F,G,H);
909 Heps = _mm_mul_ps(vfeps,H);
910 Fp = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
911 FF = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
912 fvdw12 = _mm_mul_ps(c12_00,FF);
913 fvdw = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
915 fscal = _mm_add_ps(felec,fvdw);
917 fscal = _mm_andnot_ps(dummy_mask,fscal);
919 /* Calculate temporary vectorial force */
920 tx = _mm_mul_ps(fscal,dx00);
921 ty = _mm_mul_ps(fscal,dy00);
922 tz = _mm_mul_ps(fscal,dz00);
924 /* Update vectorial force */
925 fix0 = _mm_add_ps(fix0,tx);
926 fiy0 = _mm_add_ps(fiy0,ty);
927 fiz0 = _mm_add_ps(fiz0,tz);
929 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
930 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
931 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
932 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
933 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
935 /* Inner loop uses 83 flops */
938 /* End of innermost loop */
940 gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
941 f+i_coord_offset,fshift+i_shift_offset);
943 dvdasum = _mm_mul_ps(dvdasum, _mm_mul_ps(isai0,isai0));
944 gmx_mm_update_1pot_ps(dvdasum,dvda+inr);
946 /* Increment number of inner iterations */
947 inneriter += j_index_end - j_index_start;
949 /* Outer loop uses 7 flops */
952 /* Increment number of outer iterations */
953 outeriter += nri;
955 /* Update outer/inner flops */
957 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*83);