Remove nb-parameters from t_forcerec
[gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecCSTab_VdwCSTab_GeomP1P1_sse2_single.c
blob33e79f62a6f5811e132288f657095d8e533e1843
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
36 * Note: this file was generated by the GROMACS sse2_single kernel generator.
38 #include "gmxpre.h"
40 #include "config.h"
42 #include <math.h>
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
47 #include "kernelutil_x86_sse2_single.h"
50 * Gromacs nonbonded kernel: nb_kernel_ElecCSTab_VdwCSTab_GeomP1P1_VF_sse2_single
51 * Electrostatics interaction: CubicSplineTable
52 * VdW interaction: CubicSplineTable
53 * Geometry: Particle-Particle
54 * Calculate force/pot: PotentialAndForce
56 void
57 nb_kernel_ElecCSTab_VdwCSTab_GeomP1P1_VF_sse2_single
58 (t_nblist * gmx_restrict nlist,
59 rvec * gmx_restrict xx,
60 rvec * gmx_restrict ff,
61 struct t_forcerec * gmx_restrict fr,
62 t_mdatoms * gmx_restrict mdatoms,
63 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64 t_nrnb * gmx_restrict nrnb)
66 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67 * just 0 for non-waters.
68 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
69 * jnr indices corresponding to data put in the four positions in the SIMD register.
71 int i_shift_offset,i_coord_offset,outeriter,inneriter;
72 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73 int jnrA,jnrB,jnrC,jnrD;
74 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
76 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
77 real rcutoff_scalar;
78 real *shiftvec,*fshift,*x,*f;
79 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
80 real scratch[4*DIM];
81 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82 int vdwioffset0;
83 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
85 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
86 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
87 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
88 real *charge;
89 int nvdwtype;
90 __m128 rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
91 int *vdwtype;
92 real *vdwparam;
93 __m128 one_sixth = _mm_set1_ps(1.0/6.0);
94 __m128 one_twelfth = _mm_set1_ps(1.0/12.0);
95 __m128i vfitab;
96 __m128i ifour = _mm_set1_epi32(4);
97 __m128 rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
98 real *vftab;
99 __m128 dummy_mask,cutoff_mask;
100 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
101 __m128 one = _mm_set1_ps(1.0);
102 __m128 two = _mm_set1_ps(2.0);
103 x = xx[0];
104 f = ff[0];
106 nri = nlist->nri;
107 iinr = nlist->iinr;
108 jindex = nlist->jindex;
109 jjnr = nlist->jjnr;
110 shiftidx = nlist->shift;
111 gid = nlist->gid;
112 shiftvec = fr->shift_vec[0];
113 fshift = fr->fshift[0];
114 facel = _mm_set1_ps(fr->ic->epsfac);
115 charge = mdatoms->chargeA;
116 nvdwtype = fr->ntype;
117 vdwparam = fr->nbfp;
118 vdwtype = mdatoms->typeA;
120 vftab = kernel_data->table_elec_vdw->data;
121 vftabscale = _mm_set1_ps(kernel_data->table_elec_vdw->scale);
123 /* Avoid stupid compiler warnings */
124 jnrA = jnrB = jnrC = jnrD = 0;
125 j_coord_offsetA = 0;
126 j_coord_offsetB = 0;
127 j_coord_offsetC = 0;
128 j_coord_offsetD = 0;
130 outeriter = 0;
131 inneriter = 0;
133 for(iidx=0;iidx<4*DIM;iidx++)
135 scratch[iidx] = 0.0;
138 /* Start outer loop over neighborlists */
139 for(iidx=0; iidx<nri; iidx++)
141 /* Load shift vector for this list */
142 i_shift_offset = DIM*shiftidx[iidx];
144 /* Load limits for loop over neighbors */
145 j_index_start = jindex[iidx];
146 j_index_end = jindex[iidx+1];
148 /* Get outer coordinate index */
149 inr = iinr[iidx];
150 i_coord_offset = DIM*inr;
152 /* Load i particle coords and add shift vector */
153 gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
155 fix0 = _mm_setzero_ps();
156 fiy0 = _mm_setzero_ps();
157 fiz0 = _mm_setzero_ps();
159 /* Load parameters for i particles */
160 iq0 = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
161 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
163 /* Reset potential sums */
164 velecsum = _mm_setzero_ps();
165 vvdwsum = _mm_setzero_ps();
167 /* Start inner kernel loop */
168 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
171 /* Get j neighbor index, and coordinate index */
172 jnrA = jjnr[jidx];
173 jnrB = jjnr[jidx+1];
174 jnrC = jjnr[jidx+2];
175 jnrD = jjnr[jidx+3];
176 j_coord_offsetA = DIM*jnrA;
177 j_coord_offsetB = DIM*jnrB;
178 j_coord_offsetC = DIM*jnrC;
179 j_coord_offsetD = DIM*jnrD;
181 /* load j atom coordinates */
182 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
183 x+j_coord_offsetC,x+j_coord_offsetD,
184 &jx0,&jy0,&jz0);
186 /* Calculate displacement vector */
187 dx00 = _mm_sub_ps(ix0,jx0);
188 dy00 = _mm_sub_ps(iy0,jy0);
189 dz00 = _mm_sub_ps(iz0,jz0);
191 /* Calculate squared distance and things based on it */
192 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
194 rinv00 = sse2_invsqrt_f(rsq00);
196 /* Load parameters for j particles */
197 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
198 charge+jnrC+0,charge+jnrD+0);
199 vdwjidx0A = 2*vdwtype[jnrA+0];
200 vdwjidx0B = 2*vdwtype[jnrB+0];
201 vdwjidx0C = 2*vdwtype[jnrC+0];
202 vdwjidx0D = 2*vdwtype[jnrD+0];
204 /**************************
205 * CALCULATE INTERACTIONS *
206 **************************/
208 r00 = _mm_mul_ps(rsq00,rinv00);
210 /* Compute parameters for interactions between i and j atoms */
211 qq00 = _mm_mul_ps(iq0,jq0);
212 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
213 vdwparam+vdwioffset0+vdwjidx0B,
214 vdwparam+vdwioffset0+vdwjidx0C,
215 vdwparam+vdwioffset0+vdwjidx0D,
216 &c6_00,&c12_00);
218 /* Calculate table index by multiplying r with table scale and truncate to integer */
219 rt = _mm_mul_ps(r00,vftabscale);
220 vfitab = _mm_cvttps_epi32(rt);
221 vfeps = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
222 vfitab = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
224 /* CUBIC SPLINE TABLE ELECTROSTATICS */
225 Y = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
226 F = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
227 G = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
228 H = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
229 _MM_TRANSPOSE4_PS(Y,F,G,H);
230 Heps = _mm_mul_ps(vfeps,H);
231 Fp = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
232 VV = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
233 velec = _mm_mul_ps(qq00,VV);
234 FF = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
235 felec = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
237 /* CUBIC SPLINE TABLE DISPERSION */
238 vfitab = _mm_add_epi32(vfitab,ifour);
239 Y = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
240 F = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
241 G = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
242 H = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
243 _MM_TRANSPOSE4_PS(Y,F,G,H);
244 Heps = _mm_mul_ps(vfeps,H);
245 Fp = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
246 VV = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
247 vvdw6 = _mm_mul_ps(c6_00,VV);
248 FF = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
249 fvdw6 = _mm_mul_ps(c6_00,FF);
251 /* CUBIC SPLINE TABLE REPULSION */
252 vfitab = _mm_add_epi32(vfitab,ifour);
253 Y = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
254 F = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
255 G = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
256 H = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
257 _MM_TRANSPOSE4_PS(Y,F,G,H);
258 Heps = _mm_mul_ps(vfeps,H);
259 Fp = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
260 VV = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
261 vvdw12 = _mm_mul_ps(c12_00,VV);
262 FF = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
263 fvdw12 = _mm_mul_ps(c12_00,FF);
264 vvdw = _mm_add_ps(vvdw12,vvdw6);
265 fvdw = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
267 /* Update potential sum for this i atom from the interaction with this j atom. */
268 velecsum = _mm_add_ps(velecsum,velec);
269 vvdwsum = _mm_add_ps(vvdwsum,vvdw);
271 fscal = _mm_add_ps(felec,fvdw);
273 /* Calculate temporary vectorial force */
274 tx = _mm_mul_ps(fscal,dx00);
275 ty = _mm_mul_ps(fscal,dy00);
276 tz = _mm_mul_ps(fscal,dz00);
278 /* Update vectorial force */
279 fix0 = _mm_add_ps(fix0,tx);
280 fiy0 = _mm_add_ps(fiy0,ty);
281 fiz0 = _mm_add_ps(fiz0,tz);
283 fjptrA = f+j_coord_offsetA;
284 fjptrB = f+j_coord_offsetB;
285 fjptrC = f+j_coord_offsetC;
286 fjptrD = f+j_coord_offsetD;
287 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
289 /* Inner loop uses 73 flops */
292 if(jidx<j_index_end)
295 /* Get j neighbor index, and coordinate index */
296 jnrlistA = jjnr[jidx];
297 jnrlistB = jjnr[jidx+1];
298 jnrlistC = jjnr[jidx+2];
299 jnrlistD = jjnr[jidx+3];
300 /* Sign of each element will be negative for non-real atoms.
301 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
302 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
304 dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
305 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
306 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
307 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
308 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
309 j_coord_offsetA = DIM*jnrA;
310 j_coord_offsetB = DIM*jnrB;
311 j_coord_offsetC = DIM*jnrC;
312 j_coord_offsetD = DIM*jnrD;
314 /* load j atom coordinates */
315 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
316 x+j_coord_offsetC,x+j_coord_offsetD,
317 &jx0,&jy0,&jz0);
319 /* Calculate displacement vector */
320 dx00 = _mm_sub_ps(ix0,jx0);
321 dy00 = _mm_sub_ps(iy0,jy0);
322 dz00 = _mm_sub_ps(iz0,jz0);
324 /* Calculate squared distance and things based on it */
325 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
327 rinv00 = sse2_invsqrt_f(rsq00);
329 /* Load parameters for j particles */
330 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
331 charge+jnrC+0,charge+jnrD+0);
332 vdwjidx0A = 2*vdwtype[jnrA+0];
333 vdwjidx0B = 2*vdwtype[jnrB+0];
334 vdwjidx0C = 2*vdwtype[jnrC+0];
335 vdwjidx0D = 2*vdwtype[jnrD+0];
337 /**************************
338 * CALCULATE INTERACTIONS *
339 **************************/
341 r00 = _mm_mul_ps(rsq00,rinv00);
342 r00 = _mm_andnot_ps(dummy_mask,r00);
344 /* Compute parameters for interactions between i and j atoms */
345 qq00 = _mm_mul_ps(iq0,jq0);
346 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
347 vdwparam+vdwioffset0+vdwjidx0B,
348 vdwparam+vdwioffset0+vdwjidx0C,
349 vdwparam+vdwioffset0+vdwjidx0D,
350 &c6_00,&c12_00);
352 /* Calculate table index by multiplying r with table scale and truncate to integer */
353 rt = _mm_mul_ps(r00,vftabscale);
354 vfitab = _mm_cvttps_epi32(rt);
355 vfeps = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
356 vfitab = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
358 /* CUBIC SPLINE TABLE ELECTROSTATICS */
359 Y = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
360 F = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
361 G = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
362 H = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
363 _MM_TRANSPOSE4_PS(Y,F,G,H);
364 Heps = _mm_mul_ps(vfeps,H);
365 Fp = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
366 VV = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
367 velec = _mm_mul_ps(qq00,VV);
368 FF = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
369 felec = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
371 /* CUBIC SPLINE TABLE DISPERSION */
372 vfitab = _mm_add_epi32(vfitab,ifour);
373 Y = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
374 F = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
375 G = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
376 H = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
377 _MM_TRANSPOSE4_PS(Y,F,G,H);
378 Heps = _mm_mul_ps(vfeps,H);
379 Fp = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
380 VV = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
381 vvdw6 = _mm_mul_ps(c6_00,VV);
382 FF = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
383 fvdw6 = _mm_mul_ps(c6_00,FF);
385 /* CUBIC SPLINE TABLE REPULSION */
386 vfitab = _mm_add_epi32(vfitab,ifour);
387 Y = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
388 F = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
389 G = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
390 H = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
391 _MM_TRANSPOSE4_PS(Y,F,G,H);
392 Heps = _mm_mul_ps(vfeps,H);
393 Fp = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
394 VV = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
395 vvdw12 = _mm_mul_ps(c12_00,VV);
396 FF = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
397 fvdw12 = _mm_mul_ps(c12_00,FF);
398 vvdw = _mm_add_ps(vvdw12,vvdw6);
399 fvdw = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
401 /* Update potential sum for this i atom from the interaction with this j atom. */
402 velec = _mm_andnot_ps(dummy_mask,velec);
403 velecsum = _mm_add_ps(velecsum,velec);
404 vvdw = _mm_andnot_ps(dummy_mask,vvdw);
405 vvdwsum = _mm_add_ps(vvdwsum,vvdw);
407 fscal = _mm_add_ps(felec,fvdw);
409 fscal = _mm_andnot_ps(dummy_mask,fscal);
411 /* Calculate temporary vectorial force */
412 tx = _mm_mul_ps(fscal,dx00);
413 ty = _mm_mul_ps(fscal,dy00);
414 tz = _mm_mul_ps(fscal,dz00);
416 /* Update vectorial force */
417 fix0 = _mm_add_ps(fix0,tx);
418 fiy0 = _mm_add_ps(fiy0,ty);
419 fiz0 = _mm_add_ps(fiz0,tz);
421 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
422 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
423 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
424 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
425 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
427 /* Inner loop uses 74 flops */
430 /* End of innermost loop */
432 gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
433 f+i_coord_offset,fshift+i_shift_offset);
435 ggid = gid[iidx];
436 /* Update potential energies */
437 gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
438 gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
440 /* Increment number of inner iterations */
441 inneriter += j_index_end - j_index_start;
443 /* Outer loop uses 9 flops */
446 /* Increment number of outer iterations */
447 outeriter += nri;
449 /* Update outer/inner flops */
451 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*74);
454 * Gromacs nonbonded kernel: nb_kernel_ElecCSTab_VdwCSTab_GeomP1P1_F_sse2_single
455 * Electrostatics interaction: CubicSplineTable
456 * VdW interaction: CubicSplineTable
457 * Geometry: Particle-Particle
458 * Calculate force/pot: Force
460 void
461 nb_kernel_ElecCSTab_VdwCSTab_GeomP1P1_F_sse2_single
462 (t_nblist * gmx_restrict nlist,
463 rvec * gmx_restrict xx,
464 rvec * gmx_restrict ff,
465 struct t_forcerec * gmx_restrict fr,
466 t_mdatoms * gmx_restrict mdatoms,
467 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
468 t_nrnb * gmx_restrict nrnb)
470 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
471 * just 0 for non-waters.
472 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
473 * jnr indices corresponding to data put in the four positions in the SIMD register.
475 int i_shift_offset,i_coord_offset,outeriter,inneriter;
476 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
477 int jnrA,jnrB,jnrC,jnrD;
478 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
479 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
480 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
481 real rcutoff_scalar;
482 real *shiftvec,*fshift,*x,*f;
483 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
484 real scratch[4*DIM];
485 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
486 int vdwioffset0;
487 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
488 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
489 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
490 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
491 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
492 real *charge;
493 int nvdwtype;
494 __m128 rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
495 int *vdwtype;
496 real *vdwparam;
497 __m128 one_sixth = _mm_set1_ps(1.0/6.0);
498 __m128 one_twelfth = _mm_set1_ps(1.0/12.0);
499 __m128i vfitab;
500 __m128i ifour = _mm_set1_epi32(4);
501 __m128 rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
502 real *vftab;
503 __m128 dummy_mask,cutoff_mask;
504 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
505 __m128 one = _mm_set1_ps(1.0);
506 __m128 two = _mm_set1_ps(2.0);
507 x = xx[0];
508 f = ff[0];
510 nri = nlist->nri;
511 iinr = nlist->iinr;
512 jindex = nlist->jindex;
513 jjnr = nlist->jjnr;
514 shiftidx = nlist->shift;
515 gid = nlist->gid;
516 shiftvec = fr->shift_vec[0];
517 fshift = fr->fshift[0];
518 facel = _mm_set1_ps(fr->ic->epsfac);
519 charge = mdatoms->chargeA;
520 nvdwtype = fr->ntype;
521 vdwparam = fr->nbfp;
522 vdwtype = mdatoms->typeA;
524 vftab = kernel_data->table_elec_vdw->data;
525 vftabscale = _mm_set1_ps(kernel_data->table_elec_vdw->scale);
527 /* Avoid stupid compiler warnings */
528 jnrA = jnrB = jnrC = jnrD = 0;
529 j_coord_offsetA = 0;
530 j_coord_offsetB = 0;
531 j_coord_offsetC = 0;
532 j_coord_offsetD = 0;
534 outeriter = 0;
535 inneriter = 0;
537 for(iidx=0;iidx<4*DIM;iidx++)
539 scratch[iidx] = 0.0;
542 /* Start outer loop over neighborlists */
543 for(iidx=0; iidx<nri; iidx++)
545 /* Load shift vector for this list */
546 i_shift_offset = DIM*shiftidx[iidx];
548 /* Load limits for loop over neighbors */
549 j_index_start = jindex[iidx];
550 j_index_end = jindex[iidx+1];
552 /* Get outer coordinate index */
553 inr = iinr[iidx];
554 i_coord_offset = DIM*inr;
556 /* Load i particle coords and add shift vector */
557 gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
559 fix0 = _mm_setzero_ps();
560 fiy0 = _mm_setzero_ps();
561 fiz0 = _mm_setzero_ps();
563 /* Load parameters for i particles */
564 iq0 = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
565 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
567 /* Start inner kernel loop */
568 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
571 /* Get j neighbor index, and coordinate index */
572 jnrA = jjnr[jidx];
573 jnrB = jjnr[jidx+1];
574 jnrC = jjnr[jidx+2];
575 jnrD = jjnr[jidx+3];
576 j_coord_offsetA = DIM*jnrA;
577 j_coord_offsetB = DIM*jnrB;
578 j_coord_offsetC = DIM*jnrC;
579 j_coord_offsetD = DIM*jnrD;
581 /* load j atom coordinates */
582 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
583 x+j_coord_offsetC,x+j_coord_offsetD,
584 &jx0,&jy0,&jz0);
586 /* Calculate displacement vector */
587 dx00 = _mm_sub_ps(ix0,jx0);
588 dy00 = _mm_sub_ps(iy0,jy0);
589 dz00 = _mm_sub_ps(iz0,jz0);
591 /* Calculate squared distance and things based on it */
592 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
594 rinv00 = sse2_invsqrt_f(rsq00);
596 /* Load parameters for j particles */
597 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
598 charge+jnrC+0,charge+jnrD+0);
599 vdwjidx0A = 2*vdwtype[jnrA+0];
600 vdwjidx0B = 2*vdwtype[jnrB+0];
601 vdwjidx0C = 2*vdwtype[jnrC+0];
602 vdwjidx0D = 2*vdwtype[jnrD+0];
604 /**************************
605 * CALCULATE INTERACTIONS *
606 **************************/
608 r00 = _mm_mul_ps(rsq00,rinv00);
610 /* Compute parameters for interactions between i and j atoms */
611 qq00 = _mm_mul_ps(iq0,jq0);
612 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
613 vdwparam+vdwioffset0+vdwjidx0B,
614 vdwparam+vdwioffset0+vdwjidx0C,
615 vdwparam+vdwioffset0+vdwjidx0D,
616 &c6_00,&c12_00);
618 /* Calculate table index by multiplying r with table scale and truncate to integer */
619 rt = _mm_mul_ps(r00,vftabscale);
620 vfitab = _mm_cvttps_epi32(rt);
621 vfeps = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
622 vfitab = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
624 /* CUBIC SPLINE TABLE ELECTROSTATICS */
625 Y = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
626 F = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
627 G = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
628 H = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
629 _MM_TRANSPOSE4_PS(Y,F,G,H);
630 Heps = _mm_mul_ps(vfeps,H);
631 Fp = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
632 FF = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
633 felec = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
635 /* CUBIC SPLINE TABLE DISPERSION */
636 vfitab = _mm_add_epi32(vfitab,ifour);
637 Y = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
638 F = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
639 G = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
640 H = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
641 _MM_TRANSPOSE4_PS(Y,F,G,H);
642 Heps = _mm_mul_ps(vfeps,H);
643 Fp = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
644 FF = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
645 fvdw6 = _mm_mul_ps(c6_00,FF);
647 /* CUBIC SPLINE TABLE REPULSION */
648 vfitab = _mm_add_epi32(vfitab,ifour);
649 Y = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
650 F = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
651 G = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
652 H = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
653 _MM_TRANSPOSE4_PS(Y,F,G,H);
654 Heps = _mm_mul_ps(vfeps,H);
655 Fp = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
656 FF = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
657 fvdw12 = _mm_mul_ps(c12_00,FF);
658 fvdw = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
660 fscal = _mm_add_ps(felec,fvdw);
662 /* Calculate temporary vectorial force */
663 tx = _mm_mul_ps(fscal,dx00);
664 ty = _mm_mul_ps(fscal,dy00);
665 tz = _mm_mul_ps(fscal,dz00);
667 /* Update vectorial force */
668 fix0 = _mm_add_ps(fix0,tx);
669 fiy0 = _mm_add_ps(fiy0,ty);
670 fiz0 = _mm_add_ps(fiz0,tz);
672 fjptrA = f+j_coord_offsetA;
673 fjptrB = f+j_coord_offsetB;
674 fjptrC = f+j_coord_offsetC;
675 fjptrD = f+j_coord_offsetD;
676 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
678 /* Inner loop uses 61 flops */
681 if(jidx<j_index_end)
684 /* Get j neighbor index, and coordinate index */
685 jnrlistA = jjnr[jidx];
686 jnrlistB = jjnr[jidx+1];
687 jnrlistC = jjnr[jidx+2];
688 jnrlistD = jjnr[jidx+3];
689 /* Sign of each element will be negative for non-real atoms.
690 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
691 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
693 dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
694 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
695 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
696 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
697 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
698 j_coord_offsetA = DIM*jnrA;
699 j_coord_offsetB = DIM*jnrB;
700 j_coord_offsetC = DIM*jnrC;
701 j_coord_offsetD = DIM*jnrD;
703 /* load j atom coordinates */
704 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
705 x+j_coord_offsetC,x+j_coord_offsetD,
706 &jx0,&jy0,&jz0);
708 /* Calculate displacement vector */
709 dx00 = _mm_sub_ps(ix0,jx0);
710 dy00 = _mm_sub_ps(iy0,jy0);
711 dz00 = _mm_sub_ps(iz0,jz0);
713 /* Calculate squared distance and things based on it */
714 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
716 rinv00 = sse2_invsqrt_f(rsq00);
718 /* Load parameters for j particles */
719 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
720 charge+jnrC+0,charge+jnrD+0);
721 vdwjidx0A = 2*vdwtype[jnrA+0];
722 vdwjidx0B = 2*vdwtype[jnrB+0];
723 vdwjidx0C = 2*vdwtype[jnrC+0];
724 vdwjidx0D = 2*vdwtype[jnrD+0];
726 /**************************
727 * CALCULATE INTERACTIONS *
728 **************************/
730 r00 = _mm_mul_ps(rsq00,rinv00);
731 r00 = _mm_andnot_ps(dummy_mask,r00);
733 /* Compute parameters for interactions between i and j atoms */
734 qq00 = _mm_mul_ps(iq0,jq0);
735 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
736 vdwparam+vdwioffset0+vdwjidx0B,
737 vdwparam+vdwioffset0+vdwjidx0C,
738 vdwparam+vdwioffset0+vdwjidx0D,
739 &c6_00,&c12_00);
741 /* Calculate table index by multiplying r with table scale and truncate to integer */
742 rt = _mm_mul_ps(r00,vftabscale);
743 vfitab = _mm_cvttps_epi32(rt);
744 vfeps = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
745 vfitab = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
747 /* CUBIC SPLINE TABLE ELECTROSTATICS */
748 Y = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
749 F = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
750 G = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
751 H = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
752 _MM_TRANSPOSE4_PS(Y,F,G,H);
753 Heps = _mm_mul_ps(vfeps,H);
754 Fp = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
755 FF = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
756 felec = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
758 /* CUBIC SPLINE TABLE DISPERSION */
759 vfitab = _mm_add_epi32(vfitab,ifour);
760 Y = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
761 F = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
762 G = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
763 H = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
764 _MM_TRANSPOSE4_PS(Y,F,G,H);
765 Heps = _mm_mul_ps(vfeps,H);
766 Fp = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
767 FF = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
768 fvdw6 = _mm_mul_ps(c6_00,FF);
770 /* CUBIC SPLINE TABLE REPULSION */
771 vfitab = _mm_add_epi32(vfitab,ifour);
772 Y = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
773 F = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
774 G = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
775 H = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
776 _MM_TRANSPOSE4_PS(Y,F,G,H);
777 Heps = _mm_mul_ps(vfeps,H);
778 Fp = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
779 FF = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
780 fvdw12 = _mm_mul_ps(c12_00,FF);
781 fvdw = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
783 fscal = _mm_add_ps(felec,fvdw);
785 fscal = _mm_andnot_ps(dummy_mask,fscal);
787 /* Calculate temporary vectorial force */
788 tx = _mm_mul_ps(fscal,dx00);
789 ty = _mm_mul_ps(fscal,dy00);
790 tz = _mm_mul_ps(fscal,dz00);
792 /* Update vectorial force */
793 fix0 = _mm_add_ps(fix0,tx);
794 fiy0 = _mm_add_ps(fiy0,ty);
795 fiz0 = _mm_add_ps(fiz0,tz);
797 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
798 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
799 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
800 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
801 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
803 /* Inner loop uses 62 flops */
806 /* End of innermost loop */
808 gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
809 f+i_coord_offset,fshift+i_shift_offset);
811 /* Increment number of inner iterations */
812 inneriter += j_index_end - j_index_start;
814 /* Outer loop uses 7 flops */
817 /* Increment number of outer iterations */
818 outeriter += nri;
820 /* Update outer/inner flops */
822 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*62);