Remove nb-parameters from t_forcerec
[gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecEwSh_VdwLJSh_GeomW3W3_sse2_double.c
blobb84d96a6a1908f12de3fec3ebcfe892d8f38bc39
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
36 * Note: this file was generated by the GROMACS sse2_double kernel generator.
38 #include "gmxpre.h"
40 #include "config.h"
42 #include <math.h>
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
47 #include "kernelutil_x86_sse2_double.h"
50 * Gromacs nonbonded kernel: nb_kernel_ElecEwSh_VdwLJSh_GeomW3W3_VF_sse2_double
51 * Electrostatics interaction: Ewald
52 * VdW interaction: LennardJones
53 * Geometry: Water3-Water3
54 * Calculate force/pot: PotentialAndForce
56 void
57 nb_kernel_ElecEwSh_VdwLJSh_GeomW3W3_VF_sse2_double
58 (t_nblist * gmx_restrict nlist,
59 rvec * gmx_restrict xx,
60 rvec * gmx_restrict ff,
61 struct t_forcerec * gmx_restrict fr,
62 t_mdatoms * gmx_restrict mdatoms,
63 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64 t_nrnb * gmx_restrict nrnb)
66 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67 * just 0 for non-waters.
68 * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
69 * jnr indices corresponding to data put in the four positions in the SIMD register.
71 int i_shift_offset,i_coord_offset,outeriter,inneriter;
72 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73 int jnrA,jnrB;
74 int j_coord_offsetA,j_coord_offsetB;
75 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
76 real rcutoff_scalar;
77 real *shiftvec,*fshift,*x,*f;
78 __m128d tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79 int vdwioffset0;
80 __m128d ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81 int vdwioffset1;
82 __m128d ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
83 int vdwioffset2;
84 __m128d ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
85 int vdwjidx0A,vdwjidx0B;
86 __m128d jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87 int vdwjidx1A,vdwjidx1B;
88 __m128d jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
89 int vdwjidx2A,vdwjidx2B;
90 __m128d jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
91 __m128d dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
92 __m128d dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01;
93 __m128d dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02;
94 __m128d dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
95 __m128d dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
96 __m128d dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
97 __m128d dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
98 __m128d dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
99 __m128d dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
100 __m128d velec,felec,velecsum,facel,crf,krf,krf2;
101 real *charge;
102 int nvdwtype;
103 __m128d rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
104 int *vdwtype;
105 real *vdwparam;
106 __m128d one_sixth = _mm_set1_pd(1.0/6.0);
107 __m128d one_twelfth = _mm_set1_pd(1.0/12.0);
108 __m128i ewitab;
109 __m128d ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
110 real *ewtab;
111 __m128d dummy_mask,cutoff_mask;
112 __m128d signbit = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
113 __m128d one = _mm_set1_pd(1.0);
114 __m128d two = _mm_set1_pd(2.0);
115 x = xx[0];
116 f = ff[0];
118 nri = nlist->nri;
119 iinr = nlist->iinr;
120 jindex = nlist->jindex;
121 jjnr = nlist->jjnr;
122 shiftidx = nlist->shift;
123 gid = nlist->gid;
124 shiftvec = fr->shift_vec[0];
125 fshift = fr->fshift[0];
126 facel = _mm_set1_pd(fr->ic->epsfac);
127 charge = mdatoms->chargeA;
128 nvdwtype = fr->ntype;
129 vdwparam = fr->nbfp;
130 vdwtype = mdatoms->typeA;
132 sh_ewald = _mm_set1_pd(fr->ic->sh_ewald);
133 ewtab = fr->ic->tabq_coul_FDV0;
134 ewtabscale = _mm_set1_pd(fr->ic->tabq_scale);
135 ewtabhalfspace = _mm_set1_pd(0.5/fr->ic->tabq_scale);
137 /* Setup water-specific parameters */
138 inr = nlist->iinr[0];
139 iq0 = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
140 iq1 = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
141 iq2 = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
142 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
144 jq0 = _mm_set1_pd(charge[inr+0]);
145 jq1 = _mm_set1_pd(charge[inr+1]);
146 jq2 = _mm_set1_pd(charge[inr+2]);
147 vdwjidx0A = 2*vdwtype[inr+0];
148 qq00 = _mm_mul_pd(iq0,jq0);
149 c6_00 = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A]);
150 c12_00 = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A+1]);
151 qq01 = _mm_mul_pd(iq0,jq1);
152 qq02 = _mm_mul_pd(iq0,jq2);
153 qq10 = _mm_mul_pd(iq1,jq0);
154 qq11 = _mm_mul_pd(iq1,jq1);
155 qq12 = _mm_mul_pd(iq1,jq2);
156 qq20 = _mm_mul_pd(iq2,jq0);
157 qq21 = _mm_mul_pd(iq2,jq1);
158 qq22 = _mm_mul_pd(iq2,jq2);
160 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
161 rcutoff_scalar = fr->ic->rcoulomb;
162 rcutoff = _mm_set1_pd(rcutoff_scalar);
163 rcutoff2 = _mm_mul_pd(rcutoff,rcutoff);
165 sh_vdw_invrcut6 = _mm_set1_pd(fr->ic->sh_invrc6);
166 rvdw = _mm_set1_pd(fr->ic->rvdw);
168 /* Avoid stupid compiler warnings */
169 jnrA = jnrB = 0;
170 j_coord_offsetA = 0;
171 j_coord_offsetB = 0;
173 outeriter = 0;
174 inneriter = 0;
176 /* Start outer loop over neighborlists */
177 for(iidx=0; iidx<nri; iidx++)
179 /* Load shift vector for this list */
180 i_shift_offset = DIM*shiftidx[iidx];
182 /* Load limits for loop over neighbors */
183 j_index_start = jindex[iidx];
184 j_index_end = jindex[iidx+1];
186 /* Get outer coordinate index */
187 inr = iinr[iidx];
188 i_coord_offset = DIM*inr;
190 /* Load i particle coords and add shift vector */
191 gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
192 &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
194 fix0 = _mm_setzero_pd();
195 fiy0 = _mm_setzero_pd();
196 fiz0 = _mm_setzero_pd();
197 fix1 = _mm_setzero_pd();
198 fiy1 = _mm_setzero_pd();
199 fiz1 = _mm_setzero_pd();
200 fix2 = _mm_setzero_pd();
201 fiy2 = _mm_setzero_pd();
202 fiz2 = _mm_setzero_pd();
204 /* Reset potential sums */
205 velecsum = _mm_setzero_pd();
206 vvdwsum = _mm_setzero_pd();
208 /* Start inner kernel loop */
209 for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
212 /* Get j neighbor index, and coordinate index */
213 jnrA = jjnr[jidx];
214 jnrB = jjnr[jidx+1];
215 j_coord_offsetA = DIM*jnrA;
216 j_coord_offsetB = DIM*jnrB;
218 /* load j atom coordinates */
219 gmx_mm_load_3rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
220 &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
222 /* Calculate displacement vector */
223 dx00 = _mm_sub_pd(ix0,jx0);
224 dy00 = _mm_sub_pd(iy0,jy0);
225 dz00 = _mm_sub_pd(iz0,jz0);
226 dx01 = _mm_sub_pd(ix0,jx1);
227 dy01 = _mm_sub_pd(iy0,jy1);
228 dz01 = _mm_sub_pd(iz0,jz1);
229 dx02 = _mm_sub_pd(ix0,jx2);
230 dy02 = _mm_sub_pd(iy0,jy2);
231 dz02 = _mm_sub_pd(iz0,jz2);
232 dx10 = _mm_sub_pd(ix1,jx0);
233 dy10 = _mm_sub_pd(iy1,jy0);
234 dz10 = _mm_sub_pd(iz1,jz0);
235 dx11 = _mm_sub_pd(ix1,jx1);
236 dy11 = _mm_sub_pd(iy1,jy1);
237 dz11 = _mm_sub_pd(iz1,jz1);
238 dx12 = _mm_sub_pd(ix1,jx2);
239 dy12 = _mm_sub_pd(iy1,jy2);
240 dz12 = _mm_sub_pd(iz1,jz2);
241 dx20 = _mm_sub_pd(ix2,jx0);
242 dy20 = _mm_sub_pd(iy2,jy0);
243 dz20 = _mm_sub_pd(iz2,jz0);
244 dx21 = _mm_sub_pd(ix2,jx1);
245 dy21 = _mm_sub_pd(iy2,jy1);
246 dz21 = _mm_sub_pd(iz2,jz1);
247 dx22 = _mm_sub_pd(ix2,jx2);
248 dy22 = _mm_sub_pd(iy2,jy2);
249 dz22 = _mm_sub_pd(iz2,jz2);
251 /* Calculate squared distance and things based on it */
252 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
253 rsq01 = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
254 rsq02 = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
255 rsq10 = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
256 rsq11 = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
257 rsq12 = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
258 rsq20 = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
259 rsq21 = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
260 rsq22 = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
262 rinv00 = sse2_invsqrt_d(rsq00);
263 rinv01 = sse2_invsqrt_d(rsq01);
264 rinv02 = sse2_invsqrt_d(rsq02);
265 rinv10 = sse2_invsqrt_d(rsq10);
266 rinv11 = sse2_invsqrt_d(rsq11);
267 rinv12 = sse2_invsqrt_d(rsq12);
268 rinv20 = sse2_invsqrt_d(rsq20);
269 rinv21 = sse2_invsqrt_d(rsq21);
270 rinv22 = sse2_invsqrt_d(rsq22);
272 rinvsq00 = _mm_mul_pd(rinv00,rinv00);
273 rinvsq01 = _mm_mul_pd(rinv01,rinv01);
274 rinvsq02 = _mm_mul_pd(rinv02,rinv02);
275 rinvsq10 = _mm_mul_pd(rinv10,rinv10);
276 rinvsq11 = _mm_mul_pd(rinv11,rinv11);
277 rinvsq12 = _mm_mul_pd(rinv12,rinv12);
278 rinvsq20 = _mm_mul_pd(rinv20,rinv20);
279 rinvsq21 = _mm_mul_pd(rinv21,rinv21);
280 rinvsq22 = _mm_mul_pd(rinv22,rinv22);
282 fjx0 = _mm_setzero_pd();
283 fjy0 = _mm_setzero_pd();
284 fjz0 = _mm_setzero_pd();
285 fjx1 = _mm_setzero_pd();
286 fjy1 = _mm_setzero_pd();
287 fjz1 = _mm_setzero_pd();
288 fjx2 = _mm_setzero_pd();
289 fjy2 = _mm_setzero_pd();
290 fjz2 = _mm_setzero_pd();
292 /**************************
293 * CALCULATE INTERACTIONS *
294 **************************/
296 if (gmx_mm_any_lt(rsq00,rcutoff2))
299 r00 = _mm_mul_pd(rsq00,rinv00);
301 /* EWALD ELECTROSTATICS */
303 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
304 ewrt = _mm_mul_pd(r00,ewtabscale);
305 ewitab = _mm_cvttpd_epi32(ewrt);
306 eweps = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
307 ewitab = _mm_slli_epi32(ewitab,2);
308 ewtabF = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
309 ewtabD = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
310 GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
311 ewtabV = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
312 ewtabFn = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
313 GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
314 felec = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
315 velec = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
316 velec = _mm_mul_pd(qq00,_mm_sub_pd(_mm_sub_pd(rinv00,sh_ewald),velec));
317 felec = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
319 /* LENNARD-JONES DISPERSION/REPULSION */
321 rinvsix = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
322 vvdw6 = _mm_mul_pd(c6_00,rinvsix);
323 vvdw12 = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
324 vvdw = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
325 _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
326 fvdw = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
328 cutoff_mask = _mm_cmplt_pd(rsq00,rcutoff2);
330 /* Update potential sum for this i atom from the interaction with this j atom. */
331 velec = _mm_and_pd(velec,cutoff_mask);
332 velecsum = _mm_add_pd(velecsum,velec);
333 vvdw = _mm_and_pd(vvdw,cutoff_mask);
334 vvdwsum = _mm_add_pd(vvdwsum,vvdw);
336 fscal = _mm_add_pd(felec,fvdw);
338 fscal = _mm_and_pd(fscal,cutoff_mask);
340 /* Calculate temporary vectorial force */
341 tx = _mm_mul_pd(fscal,dx00);
342 ty = _mm_mul_pd(fscal,dy00);
343 tz = _mm_mul_pd(fscal,dz00);
345 /* Update vectorial force */
346 fix0 = _mm_add_pd(fix0,tx);
347 fiy0 = _mm_add_pd(fiy0,ty);
348 fiz0 = _mm_add_pd(fiz0,tz);
350 fjx0 = _mm_add_pd(fjx0,tx);
351 fjy0 = _mm_add_pd(fjy0,ty);
352 fjz0 = _mm_add_pd(fjz0,tz);
356 /**************************
357 * CALCULATE INTERACTIONS *
358 **************************/
360 if (gmx_mm_any_lt(rsq01,rcutoff2))
363 r01 = _mm_mul_pd(rsq01,rinv01);
365 /* EWALD ELECTROSTATICS */
367 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
368 ewrt = _mm_mul_pd(r01,ewtabscale);
369 ewitab = _mm_cvttpd_epi32(ewrt);
370 eweps = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
371 ewitab = _mm_slli_epi32(ewitab,2);
372 ewtabF = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
373 ewtabD = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
374 GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
375 ewtabV = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
376 ewtabFn = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
377 GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
378 felec = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
379 velec = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
380 velec = _mm_mul_pd(qq01,_mm_sub_pd(_mm_sub_pd(rinv01,sh_ewald),velec));
381 felec = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
383 cutoff_mask = _mm_cmplt_pd(rsq01,rcutoff2);
385 /* Update potential sum for this i atom from the interaction with this j atom. */
386 velec = _mm_and_pd(velec,cutoff_mask);
387 velecsum = _mm_add_pd(velecsum,velec);
389 fscal = felec;
391 fscal = _mm_and_pd(fscal,cutoff_mask);
393 /* Calculate temporary vectorial force */
394 tx = _mm_mul_pd(fscal,dx01);
395 ty = _mm_mul_pd(fscal,dy01);
396 tz = _mm_mul_pd(fscal,dz01);
398 /* Update vectorial force */
399 fix0 = _mm_add_pd(fix0,tx);
400 fiy0 = _mm_add_pd(fiy0,ty);
401 fiz0 = _mm_add_pd(fiz0,tz);
403 fjx1 = _mm_add_pd(fjx1,tx);
404 fjy1 = _mm_add_pd(fjy1,ty);
405 fjz1 = _mm_add_pd(fjz1,tz);
409 /**************************
410 * CALCULATE INTERACTIONS *
411 **************************/
413 if (gmx_mm_any_lt(rsq02,rcutoff2))
416 r02 = _mm_mul_pd(rsq02,rinv02);
418 /* EWALD ELECTROSTATICS */
420 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
421 ewrt = _mm_mul_pd(r02,ewtabscale);
422 ewitab = _mm_cvttpd_epi32(ewrt);
423 eweps = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
424 ewitab = _mm_slli_epi32(ewitab,2);
425 ewtabF = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
426 ewtabD = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
427 GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
428 ewtabV = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
429 ewtabFn = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
430 GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
431 felec = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
432 velec = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
433 velec = _mm_mul_pd(qq02,_mm_sub_pd(_mm_sub_pd(rinv02,sh_ewald),velec));
434 felec = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
436 cutoff_mask = _mm_cmplt_pd(rsq02,rcutoff2);
438 /* Update potential sum for this i atom from the interaction with this j atom. */
439 velec = _mm_and_pd(velec,cutoff_mask);
440 velecsum = _mm_add_pd(velecsum,velec);
442 fscal = felec;
444 fscal = _mm_and_pd(fscal,cutoff_mask);
446 /* Calculate temporary vectorial force */
447 tx = _mm_mul_pd(fscal,dx02);
448 ty = _mm_mul_pd(fscal,dy02);
449 tz = _mm_mul_pd(fscal,dz02);
451 /* Update vectorial force */
452 fix0 = _mm_add_pd(fix0,tx);
453 fiy0 = _mm_add_pd(fiy0,ty);
454 fiz0 = _mm_add_pd(fiz0,tz);
456 fjx2 = _mm_add_pd(fjx2,tx);
457 fjy2 = _mm_add_pd(fjy2,ty);
458 fjz2 = _mm_add_pd(fjz2,tz);
462 /**************************
463 * CALCULATE INTERACTIONS *
464 **************************/
466 if (gmx_mm_any_lt(rsq10,rcutoff2))
469 r10 = _mm_mul_pd(rsq10,rinv10);
471 /* EWALD ELECTROSTATICS */
473 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
474 ewrt = _mm_mul_pd(r10,ewtabscale);
475 ewitab = _mm_cvttpd_epi32(ewrt);
476 eweps = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
477 ewitab = _mm_slli_epi32(ewitab,2);
478 ewtabF = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
479 ewtabD = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
480 GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
481 ewtabV = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
482 ewtabFn = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
483 GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
484 felec = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
485 velec = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
486 velec = _mm_mul_pd(qq10,_mm_sub_pd(_mm_sub_pd(rinv10,sh_ewald),velec));
487 felec = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
489 cutoff_mask = _mm_cmplt_pd(rsq10,rcutoff2);
491 /* Update potential sum for this i atom from the interaction with this j atom. */
492 velec = _mm_and_pd(velec,cutoff_mask);
493 velecsum = _mm_add_pd(velecsum,velec);
495 fscal = felec;
497 fscal = _mm_and_pd(fscal,cutoff_mask);
499 /* Calculate temporary vectorial force */
500 tx = _mm_mul_pd(fscal,dx10);
501 ty = _mm_mul_pd(fscal,dy10);
502 tz = _mm_mul_pd(fscal,dz10);
504 /* Update vectorial force */
505 fix1 = _mm_add_pd(fix1,tx);
506 fiy1 = _mm_add_pd(fiy1,ty);
507 fiz1 = _mm_add_pd(fiz1,tz);
509 fjx0 = _mm_add_pd(fjx0,tx);
510 fjy0 = _mm_add_pd(fjy0,ty);
511 fjz0 = _mm_add_pd(fjz0,tz);
515 /**************************
516 * CALCULATE INTERACTIONS *
517 **************************/
519 if (gmx_mm_any_lt(rsq11,rcutoff2))
522 r11 = _mm_mul_pd(rsq11,rinv11);
524 /* EWALD ELECTROSTATICS */
526 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
527 ewrt = _mm_mul_pd(r11,ewtabscale);
528 ewitab = _mm_cvttpd_epi32(ewrt);
529 eweps = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
530 ewitab = _mm_slli_epi32(ewitab,2);
531 ewtabF = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
532 ewtabD = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
533 GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
534 ewtabV = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
535 ewtabFn = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
536 GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
537 felec = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
538 velec = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
539 velec = _mm_mul_pd(qq11,_mm_sub_pd(_mm_sub_pd(rinv11,sh_ewald),velec));
540 felec = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
542 cutoff_mask = _mm_cmplt_pd(rsq11,rcutoff2);
544 /* Update potential sum for this i atom from the interaction with this j atom. */
545 velec = _mm_and_pd(velec,cutoff_mask);
546 velecsum = _mm_add_pd(velecsum,velec);
548 fscal = felec;
550 fscal = _mm_and_pd(fscal,cutoff_mask);
552 /* Calculate temporary vectorial force */
553 tx = _mm_mul_pd(fscal,dx11);
554 ty = _mm_mul_pd(fscal,dy11);
555 tz = _mm_mul_pd(fscal,dz11);
557 /* Update vectorial force */
558 fix1 = _mm_add_pd(fix1,tx);
559 fiy1 = _mm_add_pd(fiy1,ty);
560 fiz1 = _mm_add_pd(fiz1,tz);
562 fjx1 = _mm_add_pd(fjx1,tx);
563 fjy1 = _mm_add_pd(fjy1,ty);
564 fjz1 = _mm_add_pd(fjz1,tz);
568 /**************************
569 * CALCULATE INTERACTIONS *
570 **************************/
572 if (gmx_mm_any_lt(rsq12,rcutoff2))
575 r12 = _mm_mul_pd(rsq12,rinv12);
577 /* EWALD ELECTROSTATICS */
579 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
580 ewrt = _mm_mul_pd(r12,ewtabscale);
581 ewitab = _mm_cvttpd_epi32(ewrt);
582 eweps = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
583 ewitab = _mm_slli_epi32(ewitab,2);
584 ewtabF = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
585 ewtabD = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
586 GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
587 ewtabV = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
588 ewtabFn = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
589 GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
590 felec = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
591 velec = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
592 velec = _mm_mul_pd(qq12,_mm_sub_pd(_mm_sub_pd(rinv12,sh_ewald),velec));
593 felec = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
595 cutoff_mask = _mm_cmplt_pd(rsq12,rcutoff2);
597 /* Update potential sum for this i atom from the interaction with this j atom. */
598 velec = _mm_and_pd(velec,cutoff_mask);
599 velecsum = _mm_add_pd(velecsum,velec);
601 fscal = felec;
603 fscal = _mm_and_pd(fscal,cutoff_mask);
605 /* Calculate temporary vectorial force */
606 tx = _mm_mul_pd(fscal,dx12);
607 ty = _mm_mul_pd(fscal,dy12);
608 tz = _mm_mul_pd(fscal,dz12);
610 /* Update vectorial force */
611 fix1 = _mm_add_pd(fix1,tx);
612 fiy1 = _mm_add_pd(fiy1,ty);
613 fiz1 = _mm_add_pd(fiz1,tz);
615 fjx2 = _mm_add_pd(fjx2,tx);
616 fjy2 = _mm_add_pd(fjy2,ty);
617 fjz2 = _mm_add_pd(fjz2,tz);
621 /**************************
622 * CALCULATE INTERACTIONS *
623 **************************/
625 if (gmx_mm_any_lt(rsq20,rcutoff2))
628 r20 = _mm_mul_pd(rsq20,rinv20);
630 /* EWALD ELECTROSTATICS */
632 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
633 ewrt = _mm_mul_pd(r20,ewtabscale);
634 ewitab = _mm_cvttpd_epi32(ewrt);
635 eweps = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
636 ewitab = _mm_slli_epi32(ewitab,2);
637 ewtabF = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
638 ewtabD = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
639 GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
640 ewtabV = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
641 ewtabFn = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
642 GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
643 felec = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
644 velec = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
645 velec = _mm_mul_pd(qq20,_mm_sub_pd(_mm_sub_pd(rinv20,sh_ewald),velec));
646 felec = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
648 cutoff_mask = _mm_cmplt_pd(rsq20,rcutoff2);
650 /* Update potential sum for this i atom from the interaction with this j atom. */
651 velec = _mm_and_pd(velec,cutoff_mask);
652 velecsum = _mm_add_pd(velecsum,velec);
654 fscal = felec;
656 fscal = _mm_and_pd(fscal,cutoff_mask);
658 /* Calculate temporary vectorial force */
659 tx = _mm_mul_pd(fscal,dx20);
660 ty = _mm_mul_pd(fscal,dy20);
661 tz = _mm_mul_pd(fscal,dz20);
663 /* Update vectorial force */
664 fix2 = _mm_add_pd(fix2,tx);
665 fiy2 = _mm_add_pd(fiy2,ty);
666 fiz2 = _mm_add_pd(fiz2,tz);
668 fjx0 = _mm_add_pd(fjx0,tx);
669 fjy0 = _mm_add_pd(fjy0,ty);
670 fjz0 = _mm_add_pd(fjz0,tz);
674 /**************************
675 * CALCULATE INTERACTIONS *
676 **************************/
678 if (gmx_mm_any_lt(rsq21,rcutoff2))
681 r21 = _mm_mul_pd(rsq21,rinv21);
683 /* EWALD ELECTROSTATICS */
685 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
686 ewrt = _mm_mul_pd(r21,ewtabscale);
687 ewitab = _mm_cvttpd_epi32(ewrt);
688 eweps = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
689 ewitab = _mm_slli_epi32(ewitab,2);
690 ewtabF = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
691 ewtabD = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
692 GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
693 ewtabV = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
694 ewtabFn = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
695 GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
696 felec = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
697 velec = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
698 velec = _mm_mul_pd(qq21,_mm_sub_pd(_mm_sub_pd(rinv21,sh_ewald),velec));
699 felec = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
701 cutoff_mask = _mm_cmplt_pd(rsq21,rcutoff2);
703 /* Update potential sum for this i atom from the interaction with this j atom. */
704 velec = _mm_and_pd(velec,cutoff_mask);
705 velecsum = _mm_add_pd(velecsum,velec);
707 fscal = felec;
709 fscal = _mm_and_pd(fscal,cutoff_mask);
711 /* Calculate temporary vectorial force */
712 tx = _mm_mul_pd(fscal,dx21);
713 ty = _mm_mul_pd(fscal,dy21);
714 tz = _mm_mul_pd(fscal,dz21);
716 /* Update vectorial force */
717 fix2 = _mm_add_pd(fix2,tx);
718 fiy2 = _mm_add_pd(fiy2,ty);
719 fiz2 = _mm_add_pd(fiz2,tz);
721 fjx1 = _mm_add_pd(fjx1,tx);
722 fjy1 = _mm_add_pd(fjy1,ty);
723 fjz1 = _mm_add_pd(fjz1,tz);
727 /**************************
728 * CALCULATE INTERACTIONS *
729 **************************/
731 if (gmx_mm_any_lt(rsq22,rcutoff2))
734 r22 = _mm_mul_pd(rsq22,rinv22);
736 /* EWALD ELECTROSTATICS */
738 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
739 ewrt = _mm_mul_pd(r22,ewtabscale);
740 ewitab = _mm_cvttpd_epi32(ewrt);
741 eweps = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
742 ewitab = _mm_slli_epi32(ewitab,2);
743 ewtabF = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
744 ewtabD = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
745 GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
746 ewtabV = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
747 ewtabFn = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
748 GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
749 felec = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
750 velec = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
751 velec = _mm_mul_pd(qq22,_mm_sub_pd(_mm_sub_pd(rinv22,sh_ewald),velec));
752 felec = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
754 cutoff_mask = _mm_cmplt_pd(rsq22,rcutoff2);
756 /* Update potential sum for this i atom from the interaction with this j atom. */
757 velec = _mm_and_pd(velec,cutoff_mask);
758 velecsum = _mm_add_pd(velecsum,velec);
760 fscal = felec;
762 fscal = _mm_and_pd(fscal,cutoff_mask);
764 /* Calculate temporary vectorial force */
765 tx = _mm_mul_pd(fscal,dx22);
766 ty = _mm_mul_pd(fscal,dy22);
767 tz = _mm_mul_pd(fscal,dz22);
769 /* Update vectorial force */
770 fix2 = _mm_add_pd(fix2,tx);
771 fiy2 = _mm_add_pd(fiy2,ty);
772 fiz2 = _mm_add_pd(fiz2,tz);
774 fjx2 = _mm_add_pd(fjx2,tx);
775 fjy2 = _mm_add_pd(fjy2,ty);
776 fjz2 = _mm_add_pd(fjz2,tz);
780 gmx_mm_decrement_3rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
782 /* Inner loop uses 432 flops */
785 if(jidx<j_index_end)
788 jnrA = jjnr[jidx];
789 j_coord_offsetA = DIM*jnrA;
791 /* load j atom coordinates */
792 gmx_mm_load_3rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
793 &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
795 /* Calculate displacement vector */
796 dx00 = _mm_sub_pd(ix0,jx0);
797 dy00 = _mm_sub_pd(iy0,jy0);
798 dz00 = _mm_sub_pd(iz0,jz0);
799 dx01 = _mm_sub_pd(ix0,jx1);
800 dy01 = _mm_sub_pd(iy0,jy1);
801 dz01 = _mm_sub_pd(iz0,jz1);
802 dx02 = _mm_sub_pd(ix0,jx2);
803 dy02 = _mm_sub_pd(iy0,jy2);
804 dz02 = _mm_sub_pd(iz0,jz2);
805 dx10 = _mm_sub_pd(ix1,jx0);
806 dy10 = _mm_sub_pd(iy1,jy0);
807 dz10 = _mm_sub_pd(iz1,jz0);
808 dx11 = _mm_sub_pd(ix1,jx1);
809 dy11 = _mm_sub_pd(iy1,jy1);
810 dz11 = _mm_sub_pd(iz1,jz1);
811 dx12 = _mm_sub_pd(ix1,jx2);
812 dy12 = _mm_sub_pd(iy1,jy2);
813 dz12 = _mm_sub_pd(iz1,jz2);
814 dx20 = _mm_sub_pd(ix2,jx0);
815 dy20 = _mm_sub_pd(iy2,jy0);
816 dz20 = _mm_sub_pd(iz2,jz0);
817 dx21 = _mm_sub_pd(ix2,jx1);
818 dy21 = _mm_sub_pd(iy2,jy1);
819 dz21 = _mm_sub_pd(iz2,jz1);
820 dx22 = _mm_sub_pd(ix2,jx2);
821 dy22 = _mm_sub_pd(iy2,jy2);
822 dz22 = _mm_sub_pd(iz2,jz2);
824 /* Calculate squared distance and things based on it */
825 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
826 rsq01 = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
827 rsq02 = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
828 rsq10 = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
829 rsq11 = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
830 rsq12 = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
831 rsq20 = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
832 rsq21 = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
833 rsq22 = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
835 rinv00 = sse2_invsqrt_d(rsq00);
836 rinv01 = sse2_invsqrt_d(rsq01);
837 rinv02 = sse2_invsqrt_d(rsq02);
838 rinv10 = sse2_invsqrt_d(rsq10);
839 rinv11 = sse2_invsqrt_d(rsq11);
840 rinv12 = sse2_invsqrt_d(rsq12);
841 rinv20 = sse2_invsqrt_d(rsq20);
842 rinv21 = sse2_invsqrt_d(rsq21);
843 rinv22 = sse2_invsqrt_d(rsq22);
845 rinvsq00 = _mm_mul_pd(rinv00,rinv00);
846 rinvsq01 = _mm_mul_pd(rinv01,rinv01);
847 rinvsq02 = _mm_mul_pd(rinv02,rinv02);
848 rinvsq10 = _mm_mul_pd(rinv10,rinv10);
849 rinvsq11 = _mm_mul_pd(rinv11,rinv11);
850 rinvsq12 = _mm_mul_pd(rinv12,rinv12);
851 rinvsq20 = _mm_mul_pd(rinv20,rinv20);
852 rinvsq21 = _mm_mul_pd(rinv21,rinv21);
853 rinvsq22 = _mm_mul_pd(rinv22,rinv22);
855 fjx0 = _mm_setzero_pd();
856 fjy0 = _mm_setzero_pd();
857 fjz0 = _mm_setzero_pd();
858 fjx1 = _mm_setzero_pd();
859 fjy1 = _mm_setzero_pd();
860 fjz1 = _mm_setzero_pd();
861 fjx2 = _mm_setzero_pd();
862 fjy2 = _mm_setzero_pd();
863 fjz2 = _mm_setzero_pd();
865 /**************************
866 * CALCULATE INTERACTIONS *
867 **************************/
869 if (gmx_mm_any_lt(rsq00,rcutoff2))
872 r00 = _mm_mul_pd(rsq00,rinv00);
874 /* EWALD ELECTROSTATICS */
876 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
877 ewrt = _mm_mul_pd(r00,ewtabscale);
878 ewitab = _mm_cvttpd_epi32(ewrt);
879 eweps = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
880 ewitab = _mm_slli_epi32(ewitab,2);
881 ewtabF = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
882 ewtabD = _mm_setzero_pd();
883 GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
884 ewtabV = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
885 ewtabFn = _mm_setzero_pd();
886 GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
887 felec = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
888 velec = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
889 velec = _mm_mul_pd(qq00,_mm_sub_pd(_mm_sub_pd(rinv00,sh_ewald),velec));
890 felec = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
892 /* LENNARD-JONES DISPERSION/REPULSION */
894 rinvsix = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
895 vvdw6 = _mm_mul_pd(c6_00,rinvsix);
896 vvdw12 = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
897 vvdw = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
898 _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
899 fvdw = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
901 cutoff_mask = _mm_cmplt_pd(rsq00,rcutoff2);
903 /* Update potential sum for this i atom from the interaction with this j atom. */
904 velec = _mm_and_pd(velec,cutoff_mask);
905 velec = _mm_unpacklo_pd(velec,_mm_setzero_pd());
906 velecsum = _mm_add_pd(velecsum,velec);
907 vvdw = _mm_and_pd(vvdw,cutoff_mask);
908 vvdw = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
909 vvdwsum = _mm_add_pd(vvdwsum,vvdw);
911 fscal = _mm_add_pd(felec,fvdw);
913 fscal = _mm_and_pd(fscal,cutoff_mask);
915 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
917 /* Calculate temporary vectorial force */
918 tx = _mm_mul_pd(fscal,dx00);
919 ty = _mm_mul_pd(fscal,dy00);
920 tz = _mm_mul_pd(fscal,dz00);
922 /* Update vectorial force */
923 fix0 = _mm_add_pd(fix0,tx);
924 fiy0 = _mm_add_pd(fiy0,ty);
925 fiz0 = _mm_add_pd(fiz0,tz);
927 fjx0 = _mm_add_pd(fjx0,tx);
928 fjy0 = _mm_add_pd(fjy0,ty);
929 fjz0 = _mm_add_pd(fjz0,tz);
933 /**************************
934 * CALCULATE INTERACTIONS *
935 **************************/
937 if (gmx_mm_any_lt(rsq01,rcutoff2))
940 r01 = _mm_mul_pd(rsq01,rinv01);
942 /* EWALD ELECTROSTATICS */
944 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
945 ewrt = _mm_mul_pd(r01,ewtabscale);
946 ewitab = _mm_cvttpd_epi32(ewrt);
947 eweps = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
948 ewitab = _mm_slli_epi32(ewitab,2);
949 ewtabF = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
950 ewtabD = _mm_setzero_pd();
951 GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
952 ewtabV = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
953 ewtabFn = _mm_setzero_pd();
954 GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
955 felec = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
956 velec = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
957 velec = _mm_mul_pd(qq01,_mm_sub_pd(_mm_sub_pd(rinv01,sh_ewald),velec));
958 felec = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
960 cutoff_mask = _mm_cmplt_pd(rsq01,rcutoff2);
962 /* Update potential sum for this i atom from the interaction with this j atom. */
963 velec = _mm_and_pd(velec,cutoff_mask);
964 velec = _mm_unpacklo_pd(velec,_mm_setzero_pd());
965 velecsum = _mm_add_pd(velecsum,velec);
967 fscal = felec;
969 fscal = _mm_and_pd(fscal,cutoff_mask);
971 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
973 /* Calculate temporary vectorial force */
974 tx = _mm_mul_pd(fscal,dx01);
975 ty = _mm_mul_pd(fscal,dy01);
976 tz = _mm_mul_pd(fscal,dz01);
978 /* Update vectorial force */
979 fix0 = _mm_add_pd(fix0,tx);
980 fiy0 = _mm_add_pd(fiy0,ty);
981 fiz0 = _mm_add_pd(fiz0,tz);
983 fjx1 = _mm_add_pd(fjx1,tx);
984 fjy1 = _mm_add_pd(fjy1,ty);
985 fjz1 = _mm_add_pd(fjz1,tz);
989 /**************************
990 * CALCULATE INTERACTIONS *
991 **************************/
993 if (gmx_mm_any_lt(rsq02,rcutoff2))
996 r02 = _mm_mul_pd(rsq02,rinv02);
998 /* EWALD ELECTROSTATICS */
1000 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1001 ewrt = _mm_mul_pd(r02,ewtabscale);
1002 ewitab = _mm_cvttpd_epi32(ewrt);
1003 eweps = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1004 ewitab = _mm_slli_epi32(ewitab,2);
1005 ewtabF = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1006 ewtabD = _mm_setzero_pd();
1007 GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1008 ewtabV = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1009 ewtabFn = _mm_setzero_pd();
1010 GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1011 felec = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1012 velec = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1013 velec = _mm_mul_pd(qq02,_mm_sub_pd(_mm_sub_pd(rinv02,sh_ewald),velec));
1014 felec = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
1016 cutoff_mask = _mm_cmplt_pd(rsq02,rcutoff2);
1018 /* Update potential sum for this i atom from the interaction with this j atom. */
1019 velec = _mm_and_pd(velec,cutoff_mask);
1020 velec = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1021 velecsum = _mm_add_pd(velecsum,velec);
1023 fscal = felec;
1025 fscal = _mm_and_pd(fscal,cutoff_mask);
1027 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1029 /* Calculate temporary vectorial force */
1030 tx = _mm_mul_pd(fscal,dx02);
1031 ty = _mm_mul_pd(fscal,dy02);
1032 tz = _mm_mul_pd(fscal,dz02);
1034 /* Update vectorial force */
1035 fix0 = _mm_add_pd(fix0,tx);
1036 fiy0 = _mm_add_pd(fiy0,ty);
1037 fiz0 = _mm_add_pd(fiz0,tz);
1039 fjx2 = _mm_add_pd(fjx2,tx);
1040 fjy2 = _mm_add_pd(fjy2,ty);
1041 fjz2 = _mm_add_pd(fjz2,tz);
1045 /**************************
1046 * CALCULATE INTERACTIONS *
1047 **************************/
1049 if (gmx_mm_any_lt(rsq10,rcutoff2))
1052 r10 = _mm_mul_pd(rsq10,rinv10);
1054 /* EWALD ELECTROSTATICS */
1056 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1057 ewrt = _mm_mul_pd(r10,ewtabscale);
1058 ewitab = _mm_cvttpd_epi32(ewrt);
1059 eweps = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1060 ewitab = _mm_slli_epi32(ewitab,2);
1061 ewtabF = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1062 ewtabD = _mm_setzero_pd();
1063 GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1064 ewtabV = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1065 ewtabFn = _mm_setzero_pd();
1066 GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1067 felec = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1068 velec = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1069 velec = _mm_mul_pd(qq10,_mm_sub_pd(_mm_sub_pd(rinv10,sh_ewald),velec));
1070 felec = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1072 cutoff_mask = _mm_cmplt_pd(rsq10,rcutoff2);
1074 /* Update potential sum for this i atom from the interaction with this j atom. */
1075 velec = _mm_and_pd(velec,cutoff_mask);
1076 velec = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1077 velecsum = _mm_add_pd(velecsum,velec);
1079 fscal = felec;
1081 fscal = _mm_and_pd(fscal,cutoff_mask);
1083 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1085 /* Calculate temporary vectorial force */
1086 tx = _mm_mul_pd(fscal,dx10);
1087 ty = _mm_mul_pd(fscal,dy10);
1088 tz = _mm_mul_pd(fscal,dz10);
1090 /* Update vectorial force */
1091 fix1 = _mm_add_pd(fix1,tx);
1092 fiy1 = _mm_add_pd(fiy1,ty);
1093 fiz1 = _mm_add_pd(fiz1,tz);
1095 fjx0 = _mm_add_pd(fjx0,tx);
1096 fjy0 = _mm_add_pd(fjy0,ty);
1097 fjz0 = _mm_add_pd(fjz0,tz);
1101 /**************************
1102 * CALCULATE INTERACTIONS *
1103 **************************/
1105 if (gmx_mm_any_lt(rsq11,rcutoff2))
1108 r11 = _mm_mul_pd(rsq11,rinv11);
1110 /* EWALD ELECTROSTATICS */
1112 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1113 ewrt = _mm_mul_pd(r11,ewtabscale);
1114 ewitab = _mm_cvttpd_epi32(ewrt);
1115 eweps = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1116 ewitab = _mm_slli_epi32(ewitab,2);
1117 ewtabF = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1118 ewtabD = _mm_setzero_pd();
1119 GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1120 ewtabV = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1121 ewtabFn = _mm_setzero_pd();
1122 GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1123 felec = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1124 velec = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1125 velec = _mm_mul_pd(qq11,_mm_sub_pd(_mm_sub_pd(rinv11,sh_ewald),velec));
1126 felec = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
1128 cutoff_mask = _mm_cmplt_pd(rsq11,rcutoff2);
1130 /* Update potential sum for this i atom from the interaction with this j atom. */
1131 velec = _mm_and_pd(velec,cutoff_mask);
1132 velec = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1133 velecsum = _mm_add_pd(velecsum,velec);
1135 fscal = felec;
1137 fscal = _mm_and_pd(fscal,cutoff_mask);
1139 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1141 /* Calculate temporary vectorial force */
1142 tx = _mm_mul_pd(fscal,dx11);
1143 ty = _mm_mul_pd(fscal,dy11);
1144 tz = _mm_mul_pd(fscal,dz11);
1146 /* Update vectorial force */
1147 fix1 = _mm_add_pd(fix1,tx);
1148 fiy1 = _mm_add_pd(fiy1,ty);
1149 fiz1 = _mm_add_pd(fiz1,tz);
1151 fjx1 = _mm_add_pd(fjx1,tx);
1152 fjy1 = _mm_add_pd(fjy1,ty);
1153 fjz1 = _mm_add_pd(fjz1,tz);
1157 /**************************
1158 * CALCULATE INTERACTIONS *
1159 **************************/
1161 if (gmx_mm_any_lt(rsq12,rcutoff2))
1164 r12 = _mm_mul_pd(rsq12,rinv12);
1166 /* EWALD ELECTROSTATICS */
1168 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1169 ewrt = _mm_mul_pd(r12,ewtabscale);
1170 ewitab = _mm_cvttpd_epi32(ewrt);
1171 eweps = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1172 ewitab = _mm_slli_epi32(ewitab,2);
1173 ewtabF = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1174 ewtabD = _mm_setzero_pd();
1175 GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1176 ewtabV = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1177 ewtabFn = _mm_setzero_pd();
1178 GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1179 felec = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1180 velec = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1181 velec = _mm_mul_pd(qq12,_mm_sub_pd(_mm_sub_pd(rinv12,sh_ewald),velec));
1182 felec = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
1184 cutoff_mask = _mm_cmplt_pd(rsq12,rcutoff2);
1186 /* Update potential sum for this i atom from the interaction with this j atom. */
1187 velec = _mm_and_pd(velec,cutoff_mask);
1188 velec = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1189 velecsum = _mm_add_pd(velecsum,velec);
1191 fscal = felec;
1193 fscal = _mm_and_pd(fscal,cutoff_mask);
1195 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1197 /* Calculate temporary vectorial force */
1198 tx = _mm_mul_pd(fscal,dx12);
1199 ty = _mm_mul_pd(fscal,dy12);
1200 tz = _mm_mul_pd(fscal,dz12);
1202 /* Update vectorial force */
1203 fix1 = _mm_add_pd(fix1,tx);
1204 fiy1 = _mm_add_pd(fiy1,ty);
1205 fiz1 = _mm_add_pd(fiz1,tz);
1207 fjx2 = _mm_add_pd(fjx2,tx);
1208 fjy2 = _mm_add_pd(fjy2,ty);
1209 fjz2 = _mm_add_pd(fjz2,tz);
1213 /**************************
1214 * CALCULATE INTERACTIONS *
1215 **************************/
1217 if (gmx_mm_any_lt(rsq20,rcutoff2))
1220 r20 = _mm_mul_pd(rsq20,rinv20);
1222 /* EWALD ELECTROSTATICS */
1224 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1225 ewrt = _mm_mul_pd(r20,ewtabscale);
1226 ewitab = _mm_cvttpd_epi32(ewrt);
1227 eweps = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1228 ewitab = _mm_slli_epi32(ewitab,2);
1229 ewtabF = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1230 ewtabD = _mm_setzero_pd();
1231 GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1232 ewtabV = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1233 ewtabFn = _mm_setzero_pd();
1234 GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1235 felec = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1236 velec = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1237 velec = _mm_mul_pd(qq20,_mm_sub_pd(_mm_sub_pd(rinv20,sh_ewald),velec));
1238 felec = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1240 cutoff_mask = _mm_cmplt_pd(rsq20,rcutoff2);
1242 /* Update potential sum for this i atom from the interaction with this j atom. */
1243 velec = _mm_and_pd(velec,cutoff_mask);
1244 velec = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1245 velecsum = _mm_add_pd(velecsum,velec);
1247 fscal = felec;
1249 fscal = _mm_and_pd(fscal,cutoff_mask);
1251 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1253 /* Calculate temporary vectorial force */
1254 tx = _mm_mul_pd(fscal,dx20);
1255 ty = _mm_mul_pd(fscal,dy20);
1256 tz = _mm_mul_pd(fscal,dz20);
1258 /* Update vectorial force */
1259 fix2 = _mm_add_pd(fix2,tx);
1260 fiy2 = _mm_add_pd(fiy2,ty);
1261 fiz2 = _mm_add_pd(fiz2,tz);
1263 fjx0 = _mm_add_pd(fjx0,tx);
1264 fjy0 = _mm_add_pd(fjy0,ty);
1265 fjz0 = _mm_add_pd(fjz0,tz);
1269 /**************************
1270 * CALCULATE INTERACTIONS *
1271 **************************/
1273 if (gmx_mm_any_lt(rsq21,rcutoff2))
1276 r21 = _mm_mul_pd(rsq21,rinv21);
1278 /* EWALD ELECTROSTATICS */
1280 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1281 ewrt = _mm_mul_pd(r21,ewtabscale);
1282 ewitab = _mm_cvttpd_epi32(ewrt);
1283 eweps = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1284 ewitab = _mm_slli_epi32(ewitab,2);
1285 ewtabF = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1286 ewtabD = _mm_setzero_pd();
1287 GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1288 ewtabV = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1289 ewtabFn = _mm_setzero_pd();
1290 GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1291 felec = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1292 velec = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1293 velec = _mm_mul_pd(qq21,_mm_sub_pd(_mm_sub_pd(rinv21,sh_ewald),velec));
1294 felec = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
1296 cutoff_mask = _mm_cmplt_pd(rsq21,rcutoff2);
1298 /* Update potential sum for this i atom from the interaction with this j atom. */
1299 velec = _mm_and_pd(velec,cutoff_mask);
1300 velec = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1301 velecsum = _mm_add_pd(velecsum,velec);
1303 fscal = felec;
1305 fscal = _mm_and_pd(fscal,cutoff_mask);
1307 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1309 /* Calculate temporary vectorial force */
1310 tx = _mm_mul_pd(fscal,dx21);
1311 ty = _mm_mul_pd(fscal,dy21);
1312 tz = _mm_mul_pd(fscal,dz21);
1314 /* Update vectorial force */
1315 fix2 = _mm_add_pd(fix2,tx);
1316 fiy2 = _mm_add_pd(fiy2,ty);
1317 fiz2 = _mm_add_pd(fiz2,tz);
1319 fjx1 = _mm_add_pd(fjx1,tx);
1320 fjy1 = _mm_add_pd(fjy1,ty);
1321 fjz1 = _mm_add_pd(fjz1,tz);
1325 /**************************
1326 * CALCULATE INTERACTIONS *
1327 **************************/
1329 if (gmx_mm_any_lt(rsq22,rcutoff2))
1332 r22 = _mm_mul_pd(rsq22,rinv22);
1334 /* EWALD ELECTROSTATICS */
1336 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1337 ewrt = _mm_mul_pd(r22,ewtabscale);
1338 ewitab = _mm_cvttpd_epi32(ewrt);
1339 eweps = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1340 ewitab = _mm_slli_epi32(ewitab,2);
1341 ewtabF = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1342 ewtabD = _mm_setzero_pd();
1343 GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1344 ewtabV = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1345 ewtabFn = _mm_setzero_pd();
1346 GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1347 felec = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1348 velec = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1349 velec = _mm_mul_pd(qq22,_mm_sub_pd(_mm_sub_pd(rinv22,sh_ewald),velec));
1350 felec = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
1352 cutoff_mask = _mm_cmplt_pd(rsq22,rcutoff2);
1354 /* Update potential sum for this i atom from the interaction with this j atom. */
1355 velec = _mm_and_pd(velec,cutoff_mask);
1356 velec = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1357 velecsum = _mm_add_pd(velecsum,velec);
1359 fscal = felec;
1361 fscal = _mm_and_pd(fscal,cutoff_mask);
1363 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1365 /* Calculate temporary vectorial force */
1366 tx = _mm_mul_pd(fscal,dx22);
1367 ty = _mm_mul_pd(fscal,dy22);
1368 tz = _mm_mul_pd(fscal,dz22);
1370 /* Update vectorial force */
1371 fix2 = _mm_add_pd(fix2,tx);
1372 fiy2 = _mm_add_pd(fiy2,ty);
1373 fiz2 = _mm_add_pd(fiz2,tz);
1375 fjx2 = _mm_add_pd(fjx2,tx);
1376 fjy2 = _mm_add_pd(fjy2,ty);
1377 fjz2 = _mm_add_pd(fjz2,tz);
1381 gmx_mm_decrement_3rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
1383 /* Inner loop uses 432 flops */
1386 /* End of innermost loop */
1388 gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1389 f+i_coord_offset,fshift+i_shift_offset);
1391 ggid = gid[iidx];
1392 /* Update potential energies */
1393 gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
1394 gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
1396 /* Increment number of inner iterations */
1397 inneriter += j_index_end - j_index_start;
1399 /* Outer loop uses 20 flops */
1402 /* Increment number of outer iterations */
1403 outeriter += nri;
1405 /* Update outer/inner flops */
1407 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_VF,outeriter*20 + inneriter*432);
1410 * Gromacs nonbonded kernel: nb_kernel_ElecEwSh_VdwLJSh_GeomW3W3_F_sse2_double
1411 * Electrostatics interaction: Ewald
1412 * VdW interaction: LennardJones
1413 * Geometry: Water3-Water3
1414 * Calculate force/pot: Force
1416 void
1417 nb_kernel_ElecEwSh_VdwLJSh_GeomW3W3_F_sse2_double
1418 (t_nblist * gmx_restrict nlist,
1419 rvec * gmx_restrict xx,
1420 rvec * gmx_restrict ff,
1421 struct t_forcerec * gmx_restrict fr,
1422 t_mdatoms * gmx_restrict mdatoms,
1423 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
1424 t_nrnb * gmx_restrict nrnb)
1426 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
1427 * just 0 for non-waters.
1428 * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
1429 * jnr indices corresponding to data put in the four positions in the SIMD register.
1431 int i_shift_offset,i_coord_offset,outeriter,inneriter;
1432 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
1433 int jnrA,jnrB;
1434 int j_coord_offsetA,j_coord_offsetB;
1435 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
1436 real rcutoff_scalar;
1437 real *shiftvec,*fshift,*x,*f;
1438 __m128d tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
1439 int vdwioffset0;
1440 __m128d ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
1441 int vdwioffset1;
1442 __m128d ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
1443 int vdwioffset2;
1444 __m128d ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
1445 int vdwjidx0A,vdwjidx0B;
1446 __m128d jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
1447 int vdwjidx1A,vdwjidx1B;
1448 __m128d jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
1449 int vdwjidx2A,vdwjidx2B;
1450 __m128d jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
1451 __m128d dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
1452 __m128d dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01;
1453 __m128d dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02;
1454 __m128d dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
1455 __m128d dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
1456 __m128d dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
1457 __m128d dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
1458 __m128d dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
1459 __m128d dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
1460 __m128d velec,felec,velecsum,facel,crf,krf,krf2;
1461 real *charge;
1462 int nvdwtype;
1463 __m128d rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
1464 int *vdwtype;
1465 real *vdwparam;
1466 __m128d one_sixth = _mm_set1_pd(1.0/6.0);
1467 __m128d one_twelfth = _mm_set1_pd(1.0/12.0);
1468 __m128i ewitab;
1469 __m128d ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
1470 real *ewtab;
1471 __m128d dummy_mask,cutoff_mask;
1472 __m128d signbit = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
1473 __m128d one = _mm_set1_pd(1.0);
1474 __m128d two = _mm_set1_pd(2.0);
1475 x = xx[0];
1476 f = ff[0];
1478 nri = nlist->nri;
1479 iinr = nlist->iinr;
1480 jindex = nlist->jindex;
1481 jjnr = nlist->jjnr;
1482 shiftidx = nlist->shift;
1483 gid = nlist->gid;
1484 shiftvec = fr->shift_vec[0];
1485 fshift = fr->fshift[0];
1486 facel = _mm_set1_pd(fr->ic->epsfac);
1487 charge = mdatoms->chargeA;
1488 nvdwtype = fr->ntype;
1489 vdwparam = fr->nbfp;
1490 vdwtype = mdatoms->typeA;
1492 sh_ewald = _mm_set1_pd(fr->ic->sh_ewald);
1493 ewtab = fr->ic->tabq_coul_F;
1494 ewtabscale = _mm_set1_pd(fr->ic->tabq_scale);
1495 ewtabhalfspace = _mm_set1_pd(0.5/fr->ic->tabq_scale);
1497 /* Setup water-specific parameters */
1498 inr = nlist->iinr[0];
1499 iq0 = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
1500 iq1 = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
1501 iq2 = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
1502 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
1504 jq0 = _mm_set1_pd(charge[inr+0]);
1505 jq1 = _mm_set1_pd(charge[inr+1]);
1506 jq2 = _mm_set1_pd(charge[inr+2]);
1507 vdwjidx0A = 2*vdwtype[inr+0];
1508 qq00 = _mm_mul_pd(iq0,jq0);
1509 c6_00 = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A]);
1510 c12_00 = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A+1]);
1511 qq01 = _mm_mul_pd(iq0,jq1);
1512 qq02 = _mm_mul_pd(iq0,jq2);
1513 qq10 = _mm_mul_pd(iq1,jq0);
1514 qq11 = _mm_mul_pd(iq1,jq1);
1515 qq12 = _mm_mul_pd(iq1,jq2);
1516 qq20 = _mm_mul_pd(iq2,jq0);
1517 qq21 = _mm_mul_pd(iq2,jq1);
1518 qq22 = _mm_mul_pd(iq2,jq2);
1520 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
1521 rcutoff_scalar = fr->ic->rcoulomb;
1522 rcutoff = _mm_set1_pd(rcutoff_scalar);
1523 rcutoff2 = _mm_mul_pd(rcutoff,rcutoff);
1525 sh_vdw_invrcut6 = _mm_set1_pd(fr->ic->sh_invrc6);
1526 rvdw = _mm_set1_pd(fr->ic->rvdw);
1528 /* Avoid stupid compiler warnings */
1529 jnrA = jnrB = 0;
1530 j_coord_offsetA = 0;
1531 j_coord_offsetB = 0;
1533 outeriter = 0;
1534 inneriter = 0;
1536 /* Start outer loop over neighborlists */
1537 for(iidx=0; iidx<nri; iidx++)
1539 /* Load shift vector for this list */
1540 i_shift_offset = DIM*shiftidx[iidx];
1542 /* Load limits for loop over neighbors */
1543 j_index_start = jindex[iidx];
1544 j_index_end = jindex[iidx+1];
1546 /* Get outer coordinate index */
1547 inr = iinr[iidx];
1548 i_coord_offset = DIM*inr;
1550 /* Load i particle coords and add shift vector */
1551 gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
1552 &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
1554 fix0 = _mm_setzero_pd();
1555 fiy0 = _mm_setzero_pd();
1556 fiz0 = _mm_setzero_pd();
1557 fix1 = _mm_setzero_pd();
1558 fiy1 = _mm_setzero_pd();
1559 fiz1 = _mm_setzero_pd();
1560 fix2 = _mm_setzero_pd();
1561 fiy2 = _mm_setzero_pd();
1562 fiz2 = _mm_setzero_pd();
1564 /* Start inner kernel loop */
1565 for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
1568 /* Get j neighbor index, and coordinate index */
1569 jnrA = jjnr[jidx];
1570 jnrB = jjnr[jidx+1];
1571 j_coord_offsetA = DIM*jnrA;
1572 j_coord_offsetB = DIM*jnrB;
1574 /* load j atom coordinates */
1575 gmx_mm_load_3rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1576 &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
1578 /* Calculate displacement vector */
1579 dx00 = _mm_sub_pd(ix0,jx0);
1580 dy00 = _mm_sub_pd(iy0,jy0);
1581 dz00 = _mm_sub_pd(iz0,jz0);
1582 dx01 = _mm_sub_pd(ix0,jx1);
1583 dy01 = _mm_sub_pd(iy0,jy1);
1584 dz01 = _mm_sub_pd(iz0,jz1);
1585 dx02 = _mm_sub_pd(ix0,jx2);
1586 dy02 = _mm_sub_pd(iy0,jy2);
1587 dz02 = _mm_sub_pd(iz0,jz2);
1588 dx10 = _mm_sub_pd(ix1,jx0);
1589 dy10 = _mm_sub_pd(iy1,jy0);
1590 dz10 = _mm_sub_pd(iz1,jz0);
1591 dx11 = _mm_sub_pd(ix1,jx1);
1592 dy11 = _mm_sub_pd(iy1,jy1);
1593 dz11 = _mm_sub_pd(iz1,jz1);
1594 dx12 = _mm_sub_pd(ix1,jx2);
1595 dy12 = _mm_sub_pd(iy1,jy2);
1596 dz12 = _mm_sub_pd(iz1,jz2);
1597 dx20 = _mm_sub_pd(ix2,jx0);
1598 dy20 = _mm_sub_pd(iy2,jy0);
1599 dz20 = _mm_sub_pd(iz2,jz0);
1600 dx21 = _mm_sub_pd(ix2,jx1);
1601 dy21 = _mm_sub_pd(iy2,jy1);
1602 dz21 = _mm_sub_pd(iz2,jz1);
1603 dx22 = _mm_sub_pd(ix2,jx2);
1604 dy22 = _mm_sub_pd(iy2,jy2);
1605 dz22 = _mm_sub_pd(iz2,jz2);
1607 /* Calculate squared distance and things based on it */
1608 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1609 rsq01 = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
1610 rsq02 = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
1611 rsq10 = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1612 rsq11 = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
1613 rsq12 = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
1614 rsq20 = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1615 rsq21 = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
1616 rsq22 = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
1618 rinv00 = sse2_invsqrt_d(rsq00);
1619 rinv01 = sse2_invsqrt_d(rsq01);
1620 rinv02 = sse2_invsqrt_d(rsq02);
1621 rinv10 = sse2_invsqrt_d(rsq10);
1622 rinv11 = sse2_invsqrt_d(rsq11);
1623 rinv12 = sse2_invsqrt_d(rsq12);
1624 rinv20 = sse2_invsqrt_d(rsq20);
1625 rinv21 = sse2_invsqrt_d(rsq21);
1626 rinv22 = sse2_invsqrt_d(rsq22);
1628 rinvsq00 = _mm_mul_pd(rinv00,rinv00);
1629 rinvsq01 = _mm_mul_pd(rinv01,rinv01);
1630 rinvsq02 = _mm_mul_pd(rinv02,rinv02);
1631 rinvsq10 = _mm_mul_pd(rinv10,rinv10);
1632 rinvsq11 = _mm_mul_pd(rinv11,rinv11);
1633 rinvsq12 = _mm_mul_pd(rinv12,rinv12);
1634 rinvsq20 = _mm_mul_pd(rinv20,rinv20);
1635 rinvsq21 = _mm_mul_pd(rinv21,rinv21);
1636 rinvsq22 = _mm_mul_pd(rinv22,rinv22);
1638 fjx0 = _mm_setzero_pd();
1639 fjy0 = _mm_setzero_pd();
1640 fjz0 = _mm_setzero_pd();
1641 fjx1 = _mm_setzero_pd();
1642 fjy1 = _mm_setzero_pd();
1643 fjz1 = _mm_setzero_pd();
1644 fjx2 = _mm_setzero_pd();
1645 fjy2 = _mm_setzero_pd();
1646 fjz2 = _mm_setzero_pd();
1648 /**************************
1649 * CALCULATE INTERACTIONS *
1650 **************************/
1652 if (gmx_mm_any_lt(rsq00,rcutoff2))
1655 r00 = _mm_mul_pd(rsq00,rinv00);
1657 /* EWALD ELECTROSTATICS */
1659 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1660 ewrt = _mm_mul_pd(r00,ewtabscale);
1661 ewitab = _mm_cvttpd_epi32(ewrt);
1662 eweps = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1663 gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1664 &ewtabF,&ewtabFn);
1665 felec = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1666 felec = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
1668 /* LENNARD-JONES DISPERSION/REPULSION */
1670 rinvsix = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1671 fvdw = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
1673 cutoff_mask = _mm_cmplt_pd(rsq00,rcutoff2);
1675 fscal = _mm_add_pd(felec,fvdw);
1677 fscal = _mm_and_pd(fscal,cutoff_mask);
1679 /* Calculate temporary vectorial force */
1680 tx = _mm_mul_pd(fscal,dx00);
1681 ty = _mm_mul_pd(fscal,dy00);
1682 tz = _mm_mul_pd(fscal,dz00);
1684 /* Update vectorial force */
1685 fix0 = _mm_add_pd(fix0,tx);
1686 fiy0 = _mm_add_pd(fiy0,ty);
1687 fiz0 = _mm_add_pd(fiz0,tz);
1689 fjx0 = _mm_add_pd(fjx0,tx);
1690 fjy0 = _mm_add_pd(fjy0,ty);
1691 fjz0 = _mm_add_pd(fjz0,tz);
1695 /**************************
1696 * CALCULATE INTERACTIONS *
1697 **************************/
1699 if (gmx_mm_any_lt(rsq01,rcutoff2))
1702 r01 = _mm_mul_pd(rsq01,rinv01);
1704 /* EWALD ELECTROSTATICS */
1706 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1707 ewrt = _mm_mul_pd(r01,ewtabscale);
1708 ewitab = _mm_cvttpd_epi32(ewrt);
1709 eweps = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1710 gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1711 &ewtabF,&ewtabFn);
1712 felec = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1713 felec = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
1715 cutoff_mask = _mm_cmplt_pd(rsq01,rcutoff2);
1717 fscal = felec;
1719 fscal = _mm_and_pd(fscal,cutoff_mask);
1721 /* Calculate temporary vectorial force */
1722 tx = _mm_mul_pd(fscal,dx01);
1723 ty = _mm_mul_pd(fscal,dy01);
1724 tz = _mm_mul_pd(fscal,dz01);
1726 /* Update vectorial force */
1727 fix0 = _mm_add_pd(fix0,tx);
1728 fiy0 = _mm_add_pd(fiy0,ty);
1729 fiz0 = _mm_add_pd(fiz0,tz);
1731 fjx1 = _mm_add_pd(fjx1,tx);
1732 fjy1 = _mm_add_pd(fjy1,ty);
1733 fjz1 = _mm_add_pd(fjz1,tz);
1737 /**************************
1738 * CALCULATE INTERACTIONS *
1739 **************************/
1741 if (gmx_mm_any_lt(rsq02,rcutoff2))
1744 r02 = _mm_mul_pd(rsq02,rinv02);
1746 /* EWALD ELECTROSTATICS */
1748 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1749 ewrt = _mm_mul_pd(r02,ewtabscale);
1750 ewitab = _mm_cvttpd_epi32(ewrt);
1751 eweps = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1752 gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1753 &ewtabF,&ewtabFn);
1754 felec = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1755 felec = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
1757 cutoff_mask = _mm_cmplt_pd(rsq02,rcutoff2);
1759 fscal = felec;
1761 fscal = _mm_and_pd(fscal,cutoff_mask);
1763 /* Calculate temporary vectorial force */
1764 tx = _mm_mul_pd(fscal,dx02);
1765 ty = _mm_mul_pd(fscal,dy02);
1766 tz = _mm_mul_pd(fscal,dz02);
1768 /* Update vectorial force */
1769 fix0 = _mm_add_pd(fix0,tx);
1770 fiy0 = _mm_add_pd(fiy0,ty);
1771 fiz0 = _mm_add_pd(fiz0,tz);
1773 fjx2 = _mm_add_pd(fjx2,tx);
1774 fjy2 = _mm_add_pd(fjy2,ty);
1775 fjz2 = _mm_add_pd(fjz2,tz);
1779 /**************************
1780 * CALCULATE INTERACTIONS *
1781 **************************/
1783 if (gmx_mm_any_lt(rsq10,rcutoff2))
1786 r10 = _mm_mul_pd(rsq10,rinv10);
1788 /* EWALD ELECTROSTATICS */
1790 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1791 ewrt = _mm_mul_pd(r10,ewtabscale);
1792 ewitab = _mm_cvttpd_epi32(ewrt);
1793 eweps = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1794 gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1795 &ewtabF,&ewtabFn);
1796 felec = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1797 felec = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1799 cutoff_mask = _mm_cmplt_pd(rsq10,rcutoff2);
1801 fscal = felec;
1803 fscal = _mm_and_pd(fscal,cutoff_mask);
1805 /* Calculate temporary vectorial force */
1806 tx = _mm_mul_pd(fscal,dx10);
1807 ty = _mm_mul_pd(fscal,dy10);
1808 tz = _mm_mul_pd(fscal,dz10);
1810 /* Update vectorial force */
1811 fix1 = _mm_add_pd(fix1,tx);
1812 fiy1 = _mm_add_pd(fiy1,ty);
1813 fiz1 = _mm_add_pd(fiz1,tz);
1815 fjx0 = _mm_add_pd(fjx0,tx);
1816 fjy0 = _mm_add_pd(fjy0,ty);
1817 fjz0 = _mm_add_pd(fjz0,tz);
1821 /**************************
1822 * CALCULATE INTERACTIONS *
1823 **************************/
1825 if (gmx_mm_any_lt(rsq11,rcutoff2))
1828 r11 = _mm_mul_pd(rsq11,rinv11);
1830 /* EWALD ELECTROSTATICS */
1832 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1833 ewrt = _mm_mul_pd(r11,ewtabscale);
1834 ewitab = _mm_cvttpd_epi32(ewrt);
1835 eweps = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1836 gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1837 &ewtabF,&ewtabFn);
1838 felec = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1839 felec = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
1841 cutoff_mask = _mm_cmplt_pd(rsq11,rcutoff2);
1843 fscal = felec;
1845 fscal = _mm_and_pd(fscal,cutoff_mask);
1847 /* Calculate temporary vectorial force */
1848 tx = _mm_mul_pd(fscal,dx11);
1849 ty = _mm_mul_pd(fscal,dy11);
1850 tz = _mm_mul_pd(fscal,dz11);
1852 /* Update vectorial force */
1853 fix1 = _mm_add_pd(fix1,tx);
1854 fiy1 = _mm_add_pd(fiy1,ty);
1855 fiz1 = _mm_add_pd(fiz1,tz);
1857 fjx1 = _mm_add_pd(fjx1,tx);
1858 fjy1 = _mm_add_pd(fjy1,ty);
1859 fjz1 = _mm_add_pd(fjz1,tz);
1863 /**************************
1864 * CALCULATE INTERACTIONS *
1865 **************************/
1867 if (gmx_mm_any_lt(rsq12,rcutoff2))
1870 r12 = _mm_mul_pd(rsq12,rinv12);
1872 /* EWALD ELECTROSTATICS */
1874 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1875 ewrt = _mm_mul_pd(r12,ewtabscale);
1876 ewitab = _mm_cvttpd_epi32(ewrt);
1877 eweps = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1878 gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1879 &ewtabF,&ewtabFn);
1880 felec = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1881 felec = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
1883 cutoff_mask = _mm_cmplt_pd(rsq12,rcutoff2);
1885 fscal = felec;
1887 fscal = _mm_and_pd(fscal,cutoff_mask);
1889 /* Calculate temporary vectorial force */
1890 tx = _mm_mul_pd(fscal,dx12);
1891 ty = _mm_mul_pd(fscal,dy12);
1892 tz = _mm_mul_pd(fscal,dz12);
1894 /* Update vectorial force */
1895 fix1 = _mm_add_pd(fix1,tx);
1896 fiy1 = _mm_add_pd(fiy1,ty);
1897 fiz1 = _mm_add_pd(fiz1,tz);
1899 fjx2 = _mm_add_pd(fjx2,tx);
1900 fjy2 = _mm_add_pd(fjy2,ty);
1901 fjz2 = _mm_add_pd(fjz2,tz);
1905 /**************************
1906 * CALCULATE INTERACTIONS *
1907 **************************/
1909 if (gmx_mm_any_lt(rsq20,rcutoff2))
1912 r20 = _mm_mul_pd(rsq20,rinv20);
1914 /* EWALD ELECTROSTATICS */
1916 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1917 ewrt = _mm_mul_pd(r20,ewtabscale);
1918 ewitab = _mm_cvttpd_epi32(ewrt);
1919 eweps = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1920 gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1921 &ewtabF,&ewtabFn);
1922 felec = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1923 felec = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1925 cutoff_mask = _mm_cmplt_pd(rsq20,rcutoff2);
1927 fscal = felec;
1929 fscal = _mm_and_pd(fscal,cutoff_mask);
1931 /* Calculate temporary vectorial force */
1932 tx = _mm_mul_pd(fscal,dx20);
1933 ty = _mm_mul_pd(fscal,dy20);
1934 tz = _mm_mul_pd(fscal,dz20);
1936 /* Update vectorial force */
1937 fix2 = _mm_add_pd(fix2,tx);
1938 fiy2 = _mm_add_pd(fiy2,ty);
1939 fiz2 = _mm_add_pd(fiz2,tz);
1941 fjx0 = _mm_add_pd(fjx0,tx);
1942 fjy0 = _mm_add_pd(fjy0,ty);
1943 fjz0 = _mm_add_pd(fjz0,tz);
1947 /**************************
1948 * CALCULATE INTERACTIONS *
1949 **************************/
1951 if (gmx_mm_any_lt(rsq21,rcutoff2))
1954 r21 = _mm_mul_pd(rsq21,rinv21);
1956 /* EWALD ELECTROSTATICS */
1958 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1959 ewrt = _mm_mul_pd(r21,ewtabscale);
1960 ewitab = _mm_cvttpd_epi32(ewrt);
1961 eweps = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1962 gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1963 &ewtabF,&ewtabFn);
1964 felec = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1965 felec = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
1967 cutoff_mask = _mm_cmplt_pd(rsq21,rcutoff2);
1969 fscal = felec;
1971 fscal = _mm_and_pd(fscal,cutoff_mask);
1973 /* Calculate temporary vectorial force */
1974 tx = _mm_mul_pd(fscal,dx21);
1975 ty = _mm_mul_pd(fscal,dy21);
1976 tz = _mm_mul_pd(fscal,dz21);
1978 /* Update vectorial force */
1979 fix2 = _mm_add_pd(fix2,tx);
1980 fiy2 = _mm_add_pd(fiy2,ty);
1981 fiz2 = _mm_add_pd(fiz2,tz);
1983 fjx1 = _mm_add_pd(fjx1,tx);
1984 fjy1 = _mm_add_pd(fjy1,ty);
1985 fjz1 = _mm_add_pd(fjz1,tz);
1989 /**************************
1990 * CALCULATE INTERACTIONS *
1991 **************************/
1993 if (gmx_mm_any_lt(rsq22,rcutoff2))
1996 r22 = _mm_mul_pd(rsq22,rinv22);
1998 /* EWALD ELECTROSTATICS */
2000 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2001 ewrt = _mm_mul_pd(r22,ewtabscale);
2002 ewitab = _mm_cvttpd_epi32(ewrt);
2003 eweps = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
2004 gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
2005 &ewtabF,&ewtabFn);
2006 felec = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2007 felec = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
2009 cutoff_mask = _mm_cmplt_pd(rsq22,rcutoff2);
2011 fscal = felec;
2013 fscal = _mm_and_pd(fscal,cutoff_mask);
2015 /* Calculate temporary vectorial force */
2016 tx = _mm_mul_pd(fscal,dx22);
2017 ty = _mm_mul_pd(fscal,dy22);
2018 tz = _mm_mul_pd(fscal,dz22);
2020 /* Update vectorial force */
2021 fix2 = _mm_add_pd(fix2,tx);
2022 fiy2 = _mm_add_pd(fiy2,ty);
2023 fiz2 = _mm_add_pd(fiz2,tz);
2025 fjx2 = _mm_add_pd(fjx2,tx);
2026 fjy2 = _mm_add_pd(fjy2,ty);
2027 fjz2 = _mm_add_pd(fjz2,tz);
2031 gmx_mm_decrement_3rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
2033 /* Inner loop uses 358 flops */
2036 if(jidx<j_index_end)
2039 jnrA = jjnr[jidx];
2040 j_coord_offsetA = DIM*jnrA;
2042 /* load j atom coordinates */
2043 gmx_mm_load_3rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
2044 &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
2046 /* Calculate displacement vector */
2047 dx00 = _mm_sub_pd(ix0,jx0);
2048 dy00 = _mm_sub_pd(iy0,jy0);
2049 dz00 = _mm_sub_pd(iz0,jz0);
2050 dx01 = _mm_sub_pd(ix0,jx1);
2051 dy01 = _mm_sub_pd(iy0,jy1);
2052 dz01 = _mm_sub_pd(iz0,jz1);
2053 dx02 = _mm_sub_pd(ix0,jx2);
2054 dy02 = _mm_sub_pd(iy0,jy2);
2055 dz02 = _mm_sub_pd(iz0,jz2);
2056 dx10 = _mm_sub_pd(ix1,jx0);
2057 dy10 = _mm_sub_pd(iy1,jy0);
2058 dz10 = _mm_sub_pd(iz1,jz0);
2059 dx11 = _mm_sub_pd(ix1,jx1);
2060 dy11 = _mm_sub_pd(iy1,jy1);
2061 dz11 = _mm_sub_pd(iz1,jz1);
2062 dx12 = _mm_sub_pd(ix1,jx2);
2063 dy12 = _mm_sub_pd(iy1,jy2);
2064 dz12 = _mm_sub_pd(iz1,jz2);
2065 dx20 = _mm_sub_pd(ix2,jx0);
2066 dy20 = _mm_sub_pd(iy2,jy0);
2067 dz20 = _mm_sub_pd(iz2,jz0);
2068 dx21 = _mm_sub_pd(ix2,jx1);
2069 dy21 = _mm_sub_pd(iy2,jy1);
2070 dz21 = _mm_sub_pd(iz2,jz1);
2071 dx22 = _mm_sub_pd(ix2,jx2);
2072 dy22 = _mm_sub_pd(iy2,jy2);
2073 dz22 = _mm_sub_pd(iz2,jz2);
2075 /* Calculate squared distance and things based on it */
2076 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
2077 rsq01 = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
2078 rsq02 = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
2079 rsq10 = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
2080 rsq11 = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
2081 rsq12 = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
2082 rsq20 = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
2083 rsq21 = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
2084 rsq22 = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
2086 rinv00 = sse2_invsqrt_d(rsq00);
2087 rinv01 = sse2_invsqrt_d(rsq01);
2088 rinv02 = sse2_invsqrt_d(rsq02);
2089 rinv10 = sse2_invsqrt_d(rsq10);
2090 rinv11 = sse2_invsqrt_d(rsq11);
2091 rinv12 = sse2_invsqrt_d(rsq12);
2092 rinv20 = sse2_invsqrt_d(rsq20);
2093 rinv21 = sse2_invsqrt_d(rsq21);
2094 rinv22 = sse2_invsqrt_d(rsq22);
2096 rinvsq00 = _mm_mul_pd(rinv00,rinv00);
2097 rinvsq01 = _mm_mul_pd(rinv01,rinv01);
2098 rinvsq02 = _mm_mul_pd(rinv02,rinv02);
2099 rinvsq10 = _mm_mul_pd(rinv10,rinv10);
2100 rinvsq11 = _mm_mul_pd(rinv11,rinv11);
2101 rinvsq12 = _mm_mul_pd(rinv12,rinv12);
2102 rinvsq20 = _mm_mul_pd(rinv20,rinv20);
2103 rinvsq21 = _mm_mul_pd(rinv21,rinv21);
2104 rinvsq22 = _mm_mul_pd(rinv22,rinv22);
2106 fjx0 = _mm_setzero_pd();
2107 fjy0 = _mm_setzero_pd();
2108 fjz0 = _mm_setzero_pd();
2109 fjx1 = _mm_setzero_pd();
2110 fjy1 = _mm_setzero_pd();
2111 fjz1 = _mm_setzero_pd();
2112 fjx2 = _mm_setzero_pd();
2113 fjy2 = _mm_setzero_pd();
2114 fjz2 = _mm_setzero_pd();
2116 /**************************
2117 * CALCULATE INTERACTIONS *
2118 **************************/
2120 if (gmx_mm_any_lt(rsq00,rcutoff2))
2123 r00 = _mm_mul_pd(rsq00,rinv00);
2125 /* EWALD ELECTROSTATICS */
2127 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2128 ewrt = _mm_mul_pd(r00,ewtabscale);
2129 ewitab = _mm_cvttpd_epi32(ewrt);
2130 eweps = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
2131 gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2132 felec = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2133 felec = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
2135 /* LENNARD-JONES DISPERSION/REPULSION */
2137 rinvsix = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
2138 fvdw = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
2140 cutoff_mask = _mm_cmplt_pd(rsq00,rcutoff2);
2142 fscal = _mm_add_pd(felec,fvdw);
2144 fscal = _mm_and_pd(fscal,cutoff_mask);
2146 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2148 /* Calculate temporary vectorial force */
2149 tx = _mm_mul_pd(fscal,dx00);
2150 ty = _mm_mul_pd(fscal,dy00);
2151 tz = _mm_mul_pd(fscal,dz00);
2153 /* Update vectorial force */
2154 fix0 = _mm_add_pd(fix0,tx);
2155 fiy0 = _mm_add_pd(fiy0,ty);
2156 fiz0 = _mm_add_pd(fiz0,tz);
2158 fjx0 = _mm_add_pd(fjx0,tx);
2159 fjy0 = _mm_add_pd(fjy0,ty);
2160 fjz0 = _mm_add_pd(fjz0,tz);
2164 /**************************
2165 * CALCULATE INTERACTIONS *
2166 **************************/
2168 if (gmx_mm_any_lt(rsq01,rcutoff2))
2171 r01 = _mm_mul_pd(rsq01,rinv01);
2173 /* EWALD ELECTROSTATICS */
2175 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2176 ewrt = _mm_mul_pd(r01,ewtabscale);
2177 ewitab = _mm_cvttpd_epi32(ewrt);
2178 eweps = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
2179 gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2180 felec = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2181 felec = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
2183 cutoff_mask = _mm_cmplt_pd(rsq01,rcutoff2);
2185 fscal = felec;
2187 fscal = _mm_and_pd(fscal,cutoff_mask);
2189 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2191 /* Calculate temporary vectorial force */
2192 tx = _mm_mul_pd(fscal,dx01);
2193 ty = _mm_mul_pd(fscal,dy01);
2194 tz = _mm_mul_pd(fscal,dz01);
2196 /* Update vectorial force */
2197 fix0 = _mm_add_pd(fix0,tx);
2198 fiy0 = _mm_add_pd(fiy0,ty);
2199 fiz0 = _mm_add_pd(fiz0,tz);
2201 fjx1 = _mm_add_pd(fjx1,tx);
2202 fjy1 = _mm_add_pd(fjy1,ty);
2203 fjz1 = _mm_add_pd(fjz1,tz);
2207 /**************************
2208 * CALCULATE INTERACTIONS *
2209 **************************/
2211 if (gmx_mm_any_lt(rsq02,rcutoff2))
2214 r02 = _mm_mul_pd(rsq02,rinv02);
2216 /* EWALD ELECTROSTATICS */
2218 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2219 ewrt = _mm_mul_pd(r02,ewtabscale);
2220 ewitab = _mm_cvttpd_epi32(ewrt);
2221 eweps = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
2222 gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2223 felec = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2224 felec = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
2226 cutoff_mask = _mm_cmplt_pd(rsq02,rcutoff2);
2228 fscal = felec;
2230 fscal = _mm_and_pd(fscal,cutoff_mask);
2232 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2234 /* Calculate temporary vectorial force */
2235 tx = _mm_mul_pd(fscal,dx02);
2236 ty = _mm_mul_pd(fscal,dy02);
2237 tz = _mm_mul_pd(fscal,dz02);
2239 /* Update vectorial force */
2240 fix0 = _mm_add_pd(fix0,tx);
2241 fiy0 = _mm_add_pd(fiy0,ty);
2242 fiz0 = _mm_add_pd(fiz0,tz);
2244 fjx2 = _mm_add_pd(fjx2,tx);
2245 fjy2 = _mm_add_pd(fjy2,ty);
2246 fjz2 = _mm_add_pd(fjz2,tz);
2250 /**************************
2251 * CALCULATE INTERACTIONS *
2252 **************************/
2254 if (gmx_mm_any_lt(rsq10,rcutoff2))
2257 r10 = _mm_mul_pd(rsq10,rinv10);
2259 /* EWALD ELECTROSTATICS */
2261 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2262 ewrt = _mm_mul_pd(r10,ewtabscale);
2263 ewitab = _mm_cvttpd_epi32(ewrt);
2264 eweps = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
2265 gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2266 felec = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2267 felec = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
2269 cutoff_mask = _mm_cmplt_pd(rsq10,rcutoff2);
2271 fscal = felec;
2273 fscal = _mm_and_pd(fscal,cutoff_mask);
2275 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2277 /* Calculate temporary vectorial force */
2278 tx = _mm_mul_pd(fscal,dx10);
2279 ty = _mm_mul_pd(fscal,dy10);
2280 tz = _mm_mul_pd(fscal,dz10);
2282 /* Update vectorial force */
2283 fix1 = _mm_add_pd(fix1,tx);
2284 fiy1 = _mm_add_pd(fiy1,ty);
2285 fiz1 = _mm_add_pd(fiz1,tz);
2287 fjx0 = _mm_add_pd(fjx0,tx);
2288 fjy0 = _mm_add_pd(fjy0,ty);
2289 fjz0 = _mm_add_pd(fjz0,tz);
2293 /**************************
2294 * CALCULATE INTERACTIONS *
2295 **************************/
2297 if (gmx_mm_any_lt(rsq11,rcutoff2))
2300 r11 = _mm_mul_pd(rsq11,rinv11);
2302 /* EWALD ELECTROSTATICS */
2304 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2305 ewrt = _mm_mul_pd(r11,ewtabscale);
2306 ewitab = _mm_cvttpd_epi32(ewrt);
2307 eweps = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
2308 gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2309 felec = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2310 felec = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
2312 cutoff_mask = _mm_cmplt_pd(rsq11,rcutoff2);
2314 fscal = felec;
2316 fscal = _mm_and_pd(fscal,cutoff_mask);
2318 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2320 /* Calculate temporary vectorial force */
2321 tx = _mm_mul_pd(fscal,dx11);
2322 ty = _mm_mul_pd(fscal,dy11);
2323 tz = _mm_mul_pd(fscal,dz11);
2325 /* Update vectorial force */
2326 fix1 = _mm_add_pd(fix1,tx);
2327 fiy1 = _mm_add_pd(fiy1,ty);
2328 fiz1 = _mm_add_pd(fiz1,tz);
2330 fjx1 = _mm_add_pd(fjx1,tx);
2331 fjy1 = _mm_add_pd(fjy1,ty);
2332 fjz1 = _mm_add_pd(fjz1,tz);
2336 /**************************
2337 * CALCULATE INTERACTIONS *
2338 **************************/
2340 if (gmx_mm_any_lt(rsq12,rcutoff2))
2343 r12 = _mm_mul_pd(rsq12,rinv12);
2345 /* EWALD ELECTROSTATICS */
2347 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2348 ewrt = _mm_mul_pd(r12,ewtabscale);
2349 ewitab = _mm_cvttpd_epi32(ewrt);
2350 eweps = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
2351 gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2352 felec = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2353 felec = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
2355 cutoff_mask = _mm_cmplt_pd(rsq12,rcutoff2);
2357 fscal = felec;
2359 fscal = _mm_and_pd(fscal,cutoff_mask);
2361 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2363 /* Calculate temporary vectorial force */
2364 tx = _mm_mul_pd(fscal,dx12);
2365 ty = _mm_mul_pd(fscal,dy12);
2366 tz = _mm_mul_pd(fscal,dz12);
2368 /* Update vectorial force */
2369 fix1 = _mm_add_pd(fix1,tx);
2370 fiy1 = _mm_add_pd(fiy1,ty);
2371 fiz1 = _mm_add_pd(fiz1,tz);
2373 fjx2 = _mm_add_pd(fjx2,tx);
2374 fjy2 = _mm_add_pd(fjy2,ty);
2375 fjz2 = _mm_add_pd(fjz2,tz);
2379 /**************************
2380 * CALCULATE INTERACTIONS *
2381 **************************/
2383 if (gmx_mm_any_lt(rsq20,rcutoff2))
2386 r20 = _mm_mul_pd(rsq20,rinv20);
2388 /* EWALD ELECTROSTATICS */
2390 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2391 ewrt = _mm_mul_pd(r20,ewtabscale);
2392 ewitab = _mm_cvttpd_epi32(ewrt);
2393 eweps = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
2394 gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2395 felec = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2396 felec = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
2398 cutoff_mask = _mm_cmplt_pd(rsq20,rcutoff2);
2400 fscal = felec;
2402 fscal = _mm_and_pd(fscal,cutoff_mask);
2404 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2406 /* Calculate temporary vectorial force */
2407 tx = _mm_mul_pd(fscal,dx20);
2408 ty = _mm_mul_pd(fscal,dy20);
2409 tz = _mm_mul_pd(fscal,dz20);
2411 /* Update vectorial force */
2412 fix2 = _mm_add_pd(fix2,tx);
2413 fiy2 = _mm_add_pd(fiy2,ty);
2414 fiz2 = _mm_add_pd(fiz2,tz);
2416 fjx0 = _mm_add_pd(fjx0,tx);
2417 fjy0 = _mm_add_pd(fjy0,ty);
2418 fjz0 = _mm_add_pd(fjz0,tz);
2422 /**************************
2423 * CALCULATE INTERACTIONS *
2424 **************************/
2426 if (gmx_mm_any_lt(rsq21,rcutoff2))
2429 r21 = _mm_mul_pd(rsq21,rinv21);
2431 /* EWALD ELECTROSTATICS */
2433 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2434 ewrt = _mm_mul_pd(r21,ewtabscale);
2435 ewitab = _mm_cvttpd_epi32(ewrt);
2436 eweps = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
2437 gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2438 felec = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2439 felec = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
2441 cutoff_mask = _mm_cmplt_pd(rsq21,rcutoff2);
2443 fscal = felec;
2445 fscal = _mm_and_pd(fscal,cutoff_mask);
2447 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2449 /* Calculate temporary vectorial force */
2450 tx = _mm_mul_pd(fscal,dx21);
2451 ty = _mm_mul_pd(fscal,dy21);
2452 tz = _mm_mul_pd(fscal,dz21);
2454 /* Update vectorial force */
2455 fix2 = _mm_add_pd(fix2,tx);
2456 fiy2 = _mm_add_pd(fiy2,ty);
2457 fiz2 = _mm_add_pd(fiz2,tz);
2459 fjx1 = _mm_add_pd(fjx1,tx);
2460 fjy1 = _mm_add_pd(fjy1,ty);
2461 fjz1 = _mm_add_pd(fjz1,tz);
2465 /**************************
2466 * CALCULATE INTERACTIONS *
2467 **************************/
2469 if (gmx_mm_any_lt(rsq22,rcutoff2))
2472 r22 = _mm_mul_pd(rsq22,rinv22);
2474 /* EWALD ELECTROSTATICS */
2476 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2477 ewrt = _mm_mul_pd(r22,ewtabscale);
2478 ewitab = _mm_cvttpd_epi32(ewrt);
2479 eweps = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
2480 gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2481 felec = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2482 felec = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
2484 cutoff_mask = _mm_cmplt_pd(rsq22,rcutoff2);
2486 fscal = felec;
2488 fscal = _mm_and_pd(fscal,cutoff_mask);
2490 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2492 /* Calculate temporary vectorial force */
2493 tx = _mm_mul_pd(fscal,dx22);
2494 ty = _mm_mul_pd(fscal,dy22);
2495 tz = _mm_mul_pd(fscal,dz22);
2497 /* Update vectorial force */
2498 fix2 = _mm_add_pd(fix2,tx);
2499 fiy2 = _mm_add_pd(fiy2,ty);
2500 fiz2 = _mm_add_pd(fiz2,tz);
2502 fjx2 = _mm_add_pd(fjx2,tx);
2503 fjy2 = _mm_add_pd(fjy2,ty);
2504 fjz2 = _mm_add_pd(fjz2,tz);
2508 gmx_mm_decrement_3rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
2510 /* Inner loop uses 358 flops */
2513 /* End of innermost loop */
2515 gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
2516 f+i_coord_offset,fshift+i_shift_offset);
2518 /* Increment number of inner iterations */
2519 inneriter += j_index_end - j_index_start;
2521 /* Outer loop uses 18 flops */
2524 /* Increment number of outer iterations */
2525 outeriter += nri;
2527 /* Update outer/inner flops */
2529 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_F,outeriter*18 + inneriter*358);