Remove nb-parameters from t_forcerec
[gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_sse2_double.c
blobee12ca533669d9641b8014f5cf04f1dcfcb75e1e
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
36 * Note: this file was generated by the GROMACS sse2_double kernel generator.
38 #include "gmxpre.h"
40 #include "config.h"
42 #include <math.h>
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
47 #include "kernelutil_x86_sse2_double.h"
50 * Gromacs nonbonded kernel: nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_VF_sse2_double
51 * Electrostatics interaction: Ewald
52 * VdW interaction: LJEwald
53 * Geometry: Water4-Particle
54 * Calculate force/pot: PotentialAndForce
56 void
57 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_VF_sse2_double
58 (t_nblist * gmx_restrict nlist,
59 rvec * gmx_restrict xx,
60 rvec * gmx_restrict ff,
61 struct t_forcerec * gmx_restrict fr,
62 t_mdatoms * gmx_restrict mdatoms,
63 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64 t_nrnb * gmx_restrict nrnb)
66 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67 * just 0 for non-waters.
68 * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
69 * jnr indices corresponding to data put in the four positions in the SIMD register.
71 int i_shift_offset,i_coord_offset,outeriter,inneriter;
72 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73 int jnrA,jnrB;
74 int j_coord_offsetA,j_coord_offsetB;
75 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
76 real rcutoff_scalar;
77 real *shiftvec,*fshift,*x,*f;
78 __m128d tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79 int vdwioffset0;
80 __m128d ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81 int vdwioffset1;
82 __m128d ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
83 int vdwioffset2;
84 __m128d ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
85 int vdwioffset3;
86 __m128d ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
87 int vdwjidx0A,vdwjidx0B;
88 __m128d jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89 __m128d dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90 __m128d dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
91 __m128d dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
92 __m128d dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
93 __m128d velec,felec,velecsum,facel,crf,krf,krf2;
94 real *charge;
95 int nvdwtype;
96 __m128d rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
97 int *vdwtype;
98 real *vdwparam;
99 __m128d one_sixth = _mm_set1_pd(1.0/6.0);
100 __m128d one_twelfth = _mm_set1_pd(1.0/12.0);
101 __m128d c6grid_00;
102 __m128d c6grid_10;
103 __m128d c6grid_20;
104 __m128d c6grid_30;
105 __m128d ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
106 real *vdwgridparam;
107 __m128d one_half = _mm_set1_pd(0.5);
108 __m128d minus_one = _mm_set1_pd(-1.0);
109 __m128i ewitab;
110 __m128d ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
111 real *ewtab;
112 __m128d dummy_mask,cutoff_mask;
113 __m128d signbit = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
114 __m128d one = _mm_set1_pd(1.0);
115 __m128d two = _mm_set1_pd(2.0);
116 x = xx[0];
117 f = ff[0];
119 nri = nlist->nri;
120 iinr = nlist->iinr;
121 jindex = nlist->jindex;
122 jjnr = nlist->jjnr;
123 shiftidx = nlist->shift;
124 gid = nlist->gid;
125 shiftvec = fr->shift_vec[0];
126 fshift = fr->fshift[0];
127 facel = _mm_set1_pd(fr->ic->epsfac);
128 charge = mdatoms->chargeA;
129 nvdwtype = fr->ntype;
130 vdwparam = fr->nbfp;
131 vdwtype = mdatoms->typeA;
132 vdwgridparam = fr->ljpme_c6grid;
133 sh_lj_ewald = _mm_set1_pd(fr->ic->sh_lj_ewald);
134 ewclj = _mm_set1_pd(fr->ic->ewaldcoeff_lj);
135 ewclj2 = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
137 sh_ewald = _mm_set1_pd(fr->ic->sh_ewald);
138 ewtab = fr->ic->tabq_coul_FDV0;
139 ewtabscale = _mm_set1_pd(fr->ic->tabq_scale);
140 ewtabhalfspace = _mm_set1_pd(0.5/fr->ic->tabq_scale);
142 /* Setup water-specific parameters */
143 inr = nlist->iinr[0];
144 iq1 = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
145 iq2 = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
146 iq3 = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
147 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
149 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
150 rcutoff_scalar = fr->ic->rcoulomb;
151 rcutoff = _mm_set1_pd(rcutoff_scalar);
152 rcutoff2 = _mm_mul_pd(rcutoff,rcutoff);
154 sh_vdw_invrcut6 = _mm_set1_pd(fr->ic->sh_invrc6);
155 rvdw = _mm_set1_pd(fr->ic->rvdw);
157 /* Avoid stupid compiler warnings */
158 jnrA = jnrB = 0;
159 j_coord_offsetA = 0;
160 j_coord_offsetB = 0;
162 outeriter = 0;
163 inneriter = 0;
165 /* Start outer loop over neighborlists */
166 for(iidx=0; iidx<nri; iidx++)
168 /* Load shift vector for this list */
169 i_shift_offset = DIM*shiftidx[iidx];
171 /* Load limits for loop over neighbors */
172 j_index_start = jindex[iidx];
173 j_index_end = jindex[iidx+1];
175 /* Get outer coordinate index */
176 inr = iinr[iidx];
177 i_coord_offset = DIM*inr;
179 /* Load i particle coords and add shift vector */
180 gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
181 &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
183 fix0 = _mm_setzero_pd();
184 fiy0 = _mm_setzero_pd();
185 fiz0 = _mm_setzero_pd();
186 fix1 = _mm_setzero_pd();
187 fiy1 = _mm_setzero_pd();
188 fiz1 = _mm_setzero_pd();
189 fix2 = _mm_setzero_pd();
190 fiy2 = _mm_setzero_pd();
191 fiz2 = _mm_setzero_pd();
192 fix3 = _mm_setzero_pd();
193 fiy3 = _mm_setzero_pd();
194 fiz3 = _mm_setzero_pd();
196 /* Reset potential sums */
197 velecsum = _mm_setzero_pd();
198 vvdwsum = _mm_setzero_pd();
200 /* Start inner kernel loop */
201 for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
204 /* Get j neighbor index, and coordinate index */
205 jnrA = jjnr[jidx];
206 jnrB = jjnr[jidx+1];
207 j_coord_offsetA = DIM*jnrA;
208 j_coord_offsetB = DIM*jnrB;
210 /* load j atom coordinates */
211 gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
212 &jx0,&jy0,&jz0);
214 /* Calculate displacement vector */
215 dx00 = _mm_sub_pd(ix0,jx0);
216 dy00 = _mm_sub_pd(iy0,jy0);
217 dz00 = _mm_sub_pd(iz0,jz0);
218 dx10 = _mm_sub_pd(ix1,jx0);
219 dy10 = _mm_sub_pd(iy1,jy0);
220 dz10 = _mm_sub_pd(iz1,jz0);
221 dx20 = _mm_sub_pd(ix2,jx0);
222 dy20 = _mm_sub_pd(iy2,jy0);
223 dz20 = _mm_sub_pd(iz2,jz0);
224 dx30 = _mm_sub_pd(ix3,jx0);
225 dy30 = _mm_sub_pd(iy3,jy0);
226 dz30 = _mm_sub_pd(iz3,jz0);
228 /* Calculate squared distance and things based on it */
229 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
230 rsq10 = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
231 rsq20 = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
232 rsq30 = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
234 rinv00 = sse2_invsqrt_d(rsq00);
235 rinv10 = sse2_invsqrt_d(rsq10);
236 rinv20 = sse2_invsqrt_d(rsq20);
237 rinv30 = sse2_invsqrt_d(rsq30);
239 rinvsq00 = _mm_mul_pd(rinv00,rinv00);
240 rinvsq10 = _mm_mul_pd(rinv10,rinv10);
241 rinvsq20 = _mm_mul_pd(rinv20,rinv20);
242 rinvsq30 = _mm_mul_pd(rinv30,rinv30);
244 /* Load parameters for j particles */
245 jq0 = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
246 vdwjidx0A = 2*vdwtype[jnrA+0];
247 vdwjidx0B = 2*vdwtype[jnrB+0];
249 fjx0 = _mm_setzero_pd();
250 fjy0 = _mm_setzero_pd();
251 fjz0 = _mm_setzero_pd();
253 /**************************
254 * CALCULATE INTERACTIONS *
255 **************************/
257 if (gmx_mm_any_lt(rsq00,rcutoff2))
260 r00 = _mm_mul_pd(rsq00,rinv00);
262 /* Compute parameters for interactions between i and j atoms */
263 gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
264 vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
266 c6grid_00 = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
267 vdwgridparam+vdwioffset0+vdwjidx0B);
269 /* Analytical LJ-PME */
270 rinvsix = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
271 ewcljrsq = _mm_mul_pd(ewclj2,rsq00);
272 ewclj6 = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
273 exponent = sse2_exp_d(ewcljrsq);
274 /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
275 poly = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
276 /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
277 vvdw6 = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
278 vvdw12 = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
279 vvdw = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))),one_twelfth),
280 _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_add_pd(_mm_mul_pd(c6_00,sh_vdw_invrcut6),_mm_mul_pd(c6grid_00,sh_lj_ewald))),one_sixth));
281 /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
282 fvdw = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
284 cutoff_mask = _mm_cmplt_pd(rsq00,rcutoff2);
286 /* Update potential sum for this i atom from the interaction with this j atom. */
287 vvdw = _mm_and_pd(vvdw,cutoff_mask);
288 vvdwsum = _mm_add_pd(vvdwsum,vvdw);
290 fscal = fvdw;
292 fscal = _mm_and_pd(fscal,cutoff_mask);
294 /* Calculate temporary vectorial force */
295 tx = _mm_mul_pd(fscal,dx00);
296 ty = _mm_mul_pd(fscal,dy00);
297 tz = _mm_mul_pd(fscal,dz00);
299 /* Update vectorial force */
300 fix0 = _mm_add_pd(fix0,tx);
301 fiy0 = _mm_add_pd(fiy0,ty);
302 fiz0 = _mm_add_pd(fiz0,tz);
304 fjx0 = _mm_add_pd(fjx0,tx);
305 fjy0 = _mm_add_pd(fjy0,ty);
306 fjz0 = _mm_add_pd(fjz0,tz);
310 /**************************
311 * CALCULATE INTERACTIONS *
312 **************************/
314 if (gmx_mm_any_lt(rsq10,rcutoff2))
317 r10 = _mm_mul_pd(rsq10,rinv10);
319 /* Compute parameters for interactions between i and j atoms */
320 qq10 = _mm_mul_pd(iq1,jq0);
322 /* EWALD ELECTROSTATICS */
324 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
325 ewrt = _mm_mul_pd(r10,ewtabscale);
326 ewitab = _mm_cvttpd_epi32(ewrt);
327 eweps = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
328 ewitab = _mm_slli_epi32(ewitab,2);
329 ewtabF = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
330 ewtabD = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
331 GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
332 ewtabV = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
333 ewtabFn = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
334 GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
335 felec = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
336 velec = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
337 velec = _mm_mul_pd(qq10,_mm_sub_pd(_mm_sub_pd(rinv10,sh_ewald),velec));
338 felec = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
340 cutoff_mask = _mm_cmplt_pd(rsq10,rcutoff2);
342 /* Update potential sum for this i atom from the interaction with this j atom. */
343 velec = _mm_and_pd(velec,cutoff_mask);
344 velecsum = _mm_add_pd(velecsum,velec);
346 fscal = felec;
348 fscal = _mm_and_pd(fscal,cutoff_mask);
350 /* Calculate temporary vectorial force */
351 tx = _mm_mul_pd(fscal,dx10);
352 ty = _mm_mul_pd(fscal,dy10);
353 tz = _mm_mul_pd(fscal,dz10);
355 /* Update vectorial force */
356 fix1 = _mm_add_pd(fix1,tx);
357 fiy1 = _mm_add_pd(fiy1,ty);
358 fiz1 = _mm_add_pd(fiz1,tz);
360 fjx0 = _mm_add_pd(fjx0,tx);
361 fjy0 = _mm_add_pd(fjy0,ty);
362 fjz0 = _mm_add_pd(fjz0,tz);
366 /**************************
367 * CALCULATE INTERACTIONS *
368 **************************/
370 if (gmx_mm_any_lt(rsq20,rcutoff2))
373 r20 = _mm_mul_pd(rsq20,rinv20);
375 /* Compute parameters for interactions between i and j atoms */
376 qq20 = _mm_mul_pd(iq2,jq0);
378 /* EWALD ELECTROSTATICS */
380 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
381 ewrt = _mm_mul_pd(r20,ewtabscale);
382 ewitab = _mm_cvttpd_epi32(ewrt);
383 eweps = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
384 ewitab = _mm_slli_epi32(ewitab,2);
385 ewtabF = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
386 ewtabD = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
387 GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
388 ewtabV = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
389 ewtabFn = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
390 GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
391 felec = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
392 velec = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
393 velec = _mm_mul_pd(qq20,_mm_sub_pd(_mm_sub_pd(rinv20,sh_ewald),velec));
394 felec = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
396 cutoff_mask = _mm_cmplt_pd(rsq20,rcutoff2);
398 /* Update potential sum for this i atom from the interaction with this j atom. */
399 velec = _mm_and_pd(velec,cutoff_mask);
400 velecsum = _mm_add_pd(velecsum,velec);
402 fscal = felec;
404 fscal = _mm_and_pd(fscal,cutoff_mask);
406 /* Calculate temporary vectorial force */
407 tx = _mm_mul_pd(fscal,dx20);
408 ty = _mm_mul_pd(fscal,dy20);
409 tz = _mm_mul_pd(fscal,dz20);
411 /* Update vectorial force */
412 fix2 = _mm_add_pd(fix2,tx);
413 fiy2 = _mm_add_pd(fiy2,ty);
414 fiz2 = _mm_add_pd(fiz2,tz);
416 fjx0 = _mm_add_pd(fjx0,tx);
417 fjy0 = _mm_add_pd(fjy0,ty);
418 fjz0 = _mm_add_pd(fjz0,tz);
422 /**************************
423 * CALCULATE INTERACTIONS *
424 **************************/
426 if (gmx_mm_any_lt(rsq30,rcutoff2))
429 r30 = _mm_mul_pd(rsq30,rinv30);
431 /* Compute parameters for interactions between i and j atoms */
432 qq30 = _mm_mul_pd(iq3,jq0);
434 /* EWALD ELECTROSTATICS */
436 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
437 ewrt = _mm_mul_pd(r30,ewtabscale);
438 ewitab = _mm_cvttpd_epi32(ewrt);
439 eweps = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
440 ewitab = _mm_slli_epi32(ewitab,2);
441 ewtabF = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
442 ewtabD = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
443 GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
444 ewtabV = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
445 ewtabFn = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
446 GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
447 felec = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
448 velec = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
449 velec = _mm_mul_pd(qq30,_mm_sub_pd(_mm_sub_pd(rinv30,sh_ewald),velec));
450 felec = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
452 cutoff_mask = _mm_cmplt_pd(rsq30,rcutoff2);
454 /* Update potential sum for this i atom from the interaction with this j atom. */
455 velec = _mm_and_pd(velec,cutoff_mask);
456 velecsum = _mm_add_pd(velecsum,velec);
458 fscal = felec;
460 fscal = _mm_and_pd(fscal,cutoff_mask);
462 /* Calculate temporary vectorial force */
463 tx = _mm_mul_pd(fscal,dx30);
464 ty = _mm_mul_pd(fscal,dy30);
465 tz = _mm_mul_pd(fscal,dz30);
467 /* Update vectorial force */
468 fix3 = _mm_add_pd(fix3,tx);
469 fiy3 = _mm_add_pd(fiy3,ty);
470 fiz3 = _mm_add_pd(fiz3,tz);
472 fjx0 = _mm_add_pd(fjx0,tx);
473 fjy0 = _mm_add_pd(fjy0,ty);
474 fjz0 = _mm_add_pd(fjz0,tz);
478 gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
480 /* Inner loop uses 203 flops */
483 if(jidx<j_index_end)
486 jnrA = jjnr[jidx];
487 j_coord_offsetA = DIM*jnrA;
489 /* load j atom coordinates */
490 gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
491 &jx0,&jy0,&jz0);
493 /* Calculate displacement vector */
494 dx00 = _mm_sub_pd(ix0,jx0);
495 dy00 = _mm_sub_pd(iy0,jy0);
496 dz00 = _mm_sub_pd(iz0,jz0);
497 dx10 = _mm_sub_pd(ix1,jx0);
498 dy10 = _mm_sub_pd(iy1,jy0);
499 dz10 = _mm_sub_pd(iz1,jz0);
500 dx20 = _mm_sub_pd(ix2,jx0);
501 dy20 = _mm_sub_pd(iy2,jy0);
502 dz20 = _mm_sub_pd(iz2,jz0);
503 dx30 = _mm_sub_pd(ix3,jx0);
504 dy30 = _mm_sub_pd(iy3,jy0);
505 dz30 = _mm_sub_pd(iz3,jz0);
507 /* Calculate squared distance and things based on it */
508 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
509 rsq10 = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
510 rsq20 = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
511 rsq30 = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
513 rinv00 = sse2_invsqrt_d(rsq00);
514 rinv10 = sse2_invsqrt_d(rsq10);
515 rinv20 = sse2_invsqrt_d(rsq20);
516 rinv30 = sse2_invsqrt_d(rsq30);
518 rinvsq00 = _mm_mul_pd(rinv00,rinv00);
519 rinvsq10 = _mm_mul_pd(rinv10,rinv10);
520 rinvsq20 = _mm_mul_pd(rinv20,rinv20);
521 rinvsq30 = _mm_mul_pd(rinv30,rinv30);
523 /* Load parameters for j particles */
524 jq0 = _mm_load_sd(charge+jnrA+0);
525 vdwjidx0A = 2*vdwtype[jnrA+0];
527 fjx0 = _mm_setzero_pd();
528 fjy0 = _mm_setzero_pd();
529 fjz0 = _mm_setzero_pd();
531 /**************************
532 * CALCULATE INTERACTIONS *
533 **************************/
535 if (gmx_mm_any_lt(rsq00,rcutoff2))
538 r00 = _mm_mul_pd(rsq00,rinv00);
540 /* Compute parameters for interactions between i and j atoms */
541 gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
543 c6grid_00 = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
545 /* Analytical LJ-PME */
546 rinvsix = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
547 ewcljrsq = _mm_mul_pd(ewclj2,rsq00);
548 ewclj6 = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
549 exponent = sse2_exp_d(ewcljrsq);
550 /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
551 poly = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
552 /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
553 vvdw6 = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
554 vvdw12 = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
555 vvdw = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))),one_twelfth),
556 _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_add_pd(_mm_mul_pd(c6_00,sh_vdw_invrcut6),_mm_mul_pd(c6grid_00,sh_lj_ewald))),one_sixth));
557 /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
558 fvdw = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
560 cutoff_mask = _mm_cmplt_pd(rsq00,rcutoff2);
562 /* Update potential sum for this i atom from the interaction with this j atom. */
563 vvdw = _mm_and_pd(vvdw,cutoff_mask);
564 vvdw = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
565 vvdwsum = _mm_add_pd(vvdwsum,vvdw);
567 fscal = fvdw;
569 fscal = _mm_and_pd(fscal,cutoff_mask);
571 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
573 /* Calculate temporary vectorial force */
574 tx = _mm_mul_pd(fscal,dx00);
575 ty = _mm_mul_pd(fscal,dy00);
576 tz = _mm_mul_pd(fscal,dz00);
578 /* Update vectorial force */
579 fix0 = _mm_add_pd(fix0,tx);
580 fiy0 = _mm_add_pd(fiy0,ty);
581 fiz0 = _mm_add_pd(fiz0,tz);
583 fjx0 = _mm_add_pd(fjx0,tx);
584 fjy0 = _mm_add_pd(fjy0,ty);
585 fjz0 = _mm_add_pd(fjz0,tz);
589 /**************************
590 * CALCULATE INTERACTIONS *
591 **************************/
593 if (gmx_mm_any_lt(rsq10,rcutoff2))
596 r10 = _mm_mul_pd(rsq10,rinv10);
598 /* Compute parameters for interactions between i and j atoms */
599 qq10 = _mm_mul_pd(iq1,jq0);
601 /* EWALD ELECTROSTATICS */
603 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
604 ewrt = _mm_mul_pd(r10,ewtabscale);
605 ewitab = _mm_cvttpd_epi32(ewrt);
606 eweps = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
607 ewitab = _mm_slli_epi32(ewitab,2);
608 ewtabF = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
609 ewtabD = _mm_setzero_pd();
610 GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
611 ewtabV = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
612 ewtabFn = _mm_setzero_pd();
613 GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
614 felec = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
615 velec = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
616 velec = _mm_mul_pd(qq10,_mm_sub_pd(_mm_sub_pd(rinv10,sh_ewald),velec));
617 felec = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
619 cutoff_mask = _mm_cmplt_pd(rsq10,rcutoff2);
621 /* Update potential sum for this i atom from the interaction with this j atom. */
622 velec = _mm_and_pd(velec,cutoff_mask);
623 velec = _mm_unpacklo_pd(velec,_mm_setzero_pd());
624 velecsum = _mm_add_pd(velecsum,velec);
626 fscal = felec;
628 fscal = _mm_and_pd(fscal,cutoff_mask);
630 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
632 /* Calculate temporary vectorial force */
633 tx = _mm_mul_pd(fscal,dx10);
634 ty = _mm_mul_pd(fscal,dy10);
635 tz = _mm_mul_pd(fscal,dz10);
637 /* Update vectorial force */
638 fix1 = _mm_add_pd(fix1,tx);
639 fiy1 = _mm_add_pd(fiy1,ty);
640 fiz1 = _mm_add_pd(fiz1,tz);
642 fjx0 = _mm_add_pd(fjx0,tx);
643 fjy0 = _mm_add_pd(fjy0,ty);
644 fjz0 = _mm_add_pd(fjz0,tz);
648 /**************************
649 * CALCULATE INTERACTIONS *
650 **************************/
652 if (gmx_mm_any_lt(rsq20,rcutoff2))
655 r20 = _mm_mul_pd(rsq20,rinv20);
657 /* Compute parameters for interactions between i and j atoms */
658 qq20 = _mm_mul_pd(iq2,jq0);
660 /* EWALD ELECTROSTATICS */
662 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
663 ewrt = _mm_mul_pd(r20,ewtabscale);
664 ewitab = _mm_cvttpd_epi32(ewrt);
665 eweps = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
666 ewitab = _mm_slli_epi32(ewitab,2);
667 ewtabF = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
668 ewtabD = _mm_setzero_pd();
669 GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
670 ewtabV = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
671 ewtabFn = _mm_setzero_pd();
672 GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
673 felec = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
674 velec = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
675 velec = _mm_mul_pd(qq20,_mm_sub_pd(_mm_sub_pd(rinv20,sh_ewald),velec));
676 felec = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
678 cutoff_mask = _mm_cmplt_pd(rsq20,rcutoff2);
680 /* Update potential sum for this i atom from the interaction with this j atom. */
681 velec = _mm_and_pd(velec,cutoff_mask);
682 velec = _mm_unpacklo_pd(velec,_mm_setzero_pd());
683 velecsum = _mm_add_pd(velecsum,velec);
685 fscal = felec;
687 fscal = _mm_and_pd(fscal,cutoff_mask);
689 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
691 /* Calculate temporary vectorial force */
692 tx = _mm_mul_pd(fscal,dx20);
693 ty = _mm_mul_pd(fscal,dy20);
694 tz = _mm_mul_pd(fscal,dz20);
696 /* Update vectorial force */
697 fix2 = _mm_add_pd(fix2,tx);
698 fiy2 = _mm_add_pd(fiy2,ty);
699 fiz2 = _mm_add_pd(fiz2,tz);
701 fjx0 = _mm_add_pd(fjx0,tx);
702 fjy0 = _mm_add_pd(fjy0,ty);
703 fjz0 = _mm_add_pd(fjz0,tz);
707 /**************************
708 * CALCULATE INTERACTIONS *
709 **************************/
711 if (gmx_mm_any_lt(rsq30,rcutoff2))
714 r30 = _mm_mul_pd(rsq30,rinv30);
716 /* Compute parameters for interactions between i and j atoms */
717 qq30 = _mm_mul_pd(iq3,jq0);
719 /* EWALD ELECTROSTATICS */
721 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
722 ewrt = _mm_mul_pd(r30,ewtabscale);
723 ewitab = _mm_cvttpd_epi32(ewrt);
724 eweps = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
725 ewitab = _mm_slli_epi32(ewitab,2);
726 ewtabF = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
727 ewtabD = _mm_setzero_pd();
728 GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
729 ewtabV = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
730 ewtabFn = _mm_setzero_pd();
731 GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
732 felec = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
733 velec = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
734 velec = _mm_mul_pd(qq30,_mm_sub_pd(_mm_sub_pd(rinv30,sh_ewald),velec));
735 felec = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
737 cutoff_mask = _mm_cmplt_pd(rsq30,rcutoff2);
739 /* Update potential sum for this i atom from the interaction with this j atom. */
740 velec = _mm_and_pd(velec,cutoff_mask);
741 velec = _mm_unpacklo_pd(velec,_mm_setzero_pd());
742 velecsum = _mm_add_pd(velecsum,velec);
744 fscal = felec;
746 fscal = _mm_and_pd(fscal,cutoff_mask);
748 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
750 /* Calculate temporary vectorial force */
751 tx = _mm_mul_pd(fscal,dx30);
752 ty = _mm_mul_pd(fscal,dy30);
753 tz = _mm_mul_pd(fscal,dz30);
755 /* Update vectorial force */
756 fix3 = _mm_add_pd(fix3,tx);
757 fiy3 = _mm_add_pd(fiy3,ty);
758 fiz3 = _mm_add_pd(fiz3,tz);
760 fjx0 = _mm_add_pd(fjx0,tx);
761 fjy0 = _mm_add_pd(fjy0,ty);
762 fjz0 = _mm_add_pd(fjz0,tz);
766 gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
768 /* Inner loop uses 203 flops */
771 /* End of innermost loop */
773 gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
774 f+i_coord_offset,fshift+i_shift_offset);
776 ggid = gid[iidx];
777 /* Update potential energies */
778 gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
779 gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
781 /* Increment number of inner iterations */
782 inneriter += j_index_end - j_index_start;
784 /* Outer loop uses 26 flops */
787 /* Increment number of outer iterations */
788 outeriter += nri;
790 /* Update outer/inner flops */
792 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*203);
795 * Gromacs nonbonded kernel: nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_F_sse2_double
796 * Electrostatics interaction: Ewald
797 * VdW interaction: LJEwald
798 * Geometry: Water4-Particle
799 * Calculate force/pot: Force
801 void
802 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_F_sse2_double
803 (t_nblist * gmx_restrict nlist,
804 rvec * gmx_restrict xx,
805 rvec * gmx_restrict ff,
806 struct t_forcerec * gmx_restrict fr,
807 t_mdatoms * gmx_restrict mdatoms,
808 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
809 t_nrnb * gmx_restrict nrnb)
811 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
812 * just 0 for non-waters.
813 * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
814 * jnr indices corresponding to data put in the four positions in the SIMD register.
816 int i_shift_offset,i_coord_offset,outeriter,inneriter;
817 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
818 int jnrA,jnrB;
819 int j_coord_offsetA,j_coord_offsetB;
820 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
821 real rcutoff_scalar;
822 real *shiftvec,*fshift,*x,*f;
823 __m128d tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
824 int vdwioffset0;
825 __m128d ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
826 int vdwioffset1;
827 __m128d ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
828 int vdwioffset2;
829 __m128d ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
830 int vdwioffset3;
831 __m128d ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
832 int vdwjidx0A,vdwjidx0B;
833 __m128d jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
834 __m128d dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
835 __m128d dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
836 __m128d dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
837 __m128d dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
838 __m128d velec,felec,velecsum,facel,crf,krf,krf2;
839 real *charge;
840 int nvdwtype;
841 __m128d rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
842 int *vdwtype;
843 real *vdwparam;
844 __m128d one_sixth = _mm_set1_pd(1.0/6.0);
845 __m128d one_twelfth = _mm_set1_pd(1.0/12.0);
846 __m128d c6grid_00;
847 __m128d c6grid_10;
848 __m128d c6grid_20;
849 __m128d c6grid_30;
850 __m128d ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
851 real *vdwgridparam;
852 __m128d one_half = _mm_set1_pd(0.5);
853 __m128d minus_one = _mm_set1_pd(-1.0);
854 __m128i ewitab;
855 __m128d ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
856 real *ewtab;
857 __m128d dummy_mask,cutoff_mask;
858 __m128d signbit = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
859 __m128d one = _mm_set1_pd(1.0);
860 __m128d two = _mm_set1_pd(2.0);
861 x = xx[0];
862 f = ff[0];
864 nri = nlist->nri;
865 iinr = nlist->iinr;
866 jindex = nlist->jindex;
867 jjnr = nlist->jjnr;
868 shiftidx = nlist->shift;
869 gid = nlist->gid;
870 shiftvec = fr->shift_vec[0];
871 fshift = fr->fshift[0];
872 facel = _mm_set1_pd(fr->ic->epsfac);
873 charge = mdatoms->chargeA;
874 nvdwtype = fr->ntype;
875 vdwparam = fr->nbfp;
876 vdwtype = mdatoms->typeA;
877 vdwgridparam = fr->ljpme_c6grid;
878 sh_lj_ewald = _mm_set1_pd(fr->ic->sh_lj_ewald);
879 ewclj = _mm_set1_pd(fr->ic->ewaldcoeff_lj);
880 ewclj2 = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
882 sh_ewald = _mm_set1_pd(fr->ic->sh_ewald);
883 ewtab = fr->ic->tabq_coul_F;
884 ewtabscale = _mm_set1_pd(fr->ic->tabq_scale);
885 ewtabhalfspace = _mm_set1_pd(0.5/fr->ic->tabq_scale);
887 /* Setup water-specific parameters */
888 inr = nlist->iinr[0];
889 iq1 = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
890 iq2 = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
891 iq3 = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
892 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
894 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
895 rcutoff_scalar = fr->ic->rcoulomb;
896 rcutoff = _mm_set1_pd(rcutoff_scalar);
897 rcutoff2 = _mm_mul_pd(rcutoff,rcutoff);
899 sh_vdw_invrcut6 = _mm_set1_pd(fr->ic->sh_invrc6);
900 rvdw = _mm_set1_pd(fr->ic->rvdw);
902 /* Avoid stupid compiler warnings */
903 jnrA = jnrB = 0;
904 j_coord_offsetA = 0;
905 j_coord_offsetB = 0;
907 outeriter = 0;
908 inneriter = 0;
910 /* Start outer loop over neighborlists */
911 for(iidx=0; iidx<nri; iidx++)
913 /* Load shift vector for this list */
914 i_shift_offset = DIM*shiftidx[iidx];
916 /* Load limits for loop over neighbors */
917 j_index_start = jindex[iidx];
918 j_index_end = jindex[iidx+1];
920 /* Get outer coordinate index */
921 inr = iinr[iidx];
922 i_coord_offset = DIM*inr;
924 /* Load i particle coords and add shift vector */
925 gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
926 &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
928 fix0 = _mm_setzero_pd();
929 fiy0 = _mm_setzero_pd();
930 fiz0 = _mm_setzero_pd();
931 fix1 = _mm_setzero_pd();
932 fiy1 = _mm_setzero_pd();
933 fiz1 = _mm_setzero_pd();
934 fix2 = _mm_setzero_pd();
935 fiy2 = _mm_setzero_pd();
936 fiz2 = _mm_setzero_pd();
937 fix3 = _mm_setzero_pd();
938 fiy3 = _mm_setzero_pd();
939 fiz3 = _mm_setzero_pd();
941 /* Start inner kernel loop */
942 for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
945 /* Get j neighbor index, and coordinate index */
946 jnrA = jjnr[jidx];
947 jnrB = jjnr[jidx+1];
948 j_coord_offsetA = DIM*jnrA;
949 j_coord_offsetB = DIM*jnrB;
951 /* load j atom coordinates */
952 gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
953 &jx0,&jy0,&jz0);
955 /* Calculate displacement vector */
956 dx00 = _mm_sub_pd(ix0,jx0);
957 dy00 = _mm_sub_pd(iy0,jy0);
958 dz00 = _mm_sub_pd(iz0,jz0);
959 dx10 = _mm_sub_pd(ix1,jx0);
960 dy10 = _mm_sub_pd(iy1,jy0);
961 dz10 = _mm_sub_pd(iz1,jz0);
962 dx20 = _mm_sub_pd(ix2,jx0);
963 dy20 = _mm_sub_pd(iy2,jy0);
964 dz20 = _mm_sub_pd(iz2,jz0);
965 dx30 = _mm_sub_pd(ix3,jx0);
966 dy30 = _mm_sub_pd(iy3,jy0);
967 dz30 = _mm_sub_pd(iz3,jz0);
969 /* Calculate squared distance and things based on it */
970 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
971 rsq10 = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
972 rsq20 = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
973 rsq30 = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
975 rinv00 = sse2_invsqrt_d(rsq00);
976 rinv10 = sse2_invsqrt_d(rsq10);
977 rinv20 = sse2_invsqrt_d(rsq20);
978 rinv30 = sse2_invsqrt_d(rsq30);
980 rinvsq00 = _mm_mul_pd(rinv00,rinv00);
981 rinvsq10 = _mm_mul_pd(rinv10,rinv10);
982 rinvsq20 = _mm_mul_pd(rinv20,rinv20);
983 rinvsq30 = _mm_mul_pd(rinv30,rinv30);
985 /* Load parameters for j particles */
986 jq0 = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
987 vdwjidx0A = 2*vdwtype[jnrA+0];
988 vdwjidx0B = 2*vdwtype[jnrB+0];
990 fjx0 = _mm_setzero_pd();
991 fjy0 = _mm_setzero_pd();
992 fjz0 = _mm_setzero_pd();
994 /**************************
995 * CALCULATE INTERACTIONS *
996 **************************/
998 if (gmx_mm_any_lt(rsq00,rcutoff2))
1001 r00 = _mm_mul_pd(rsq00,rinv00);
1003 /* Compute parameters for interactions between i and j atoms */
1004 gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
1005 vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
1007 c6grid_00 = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
1008 vdwgridparam+vdwioffset0+vdwjidx0B);
1010 /* Analytical LJ-PME */
1011 rinvsix = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1012 ewcljrsq = _mm_mul_pd(ewclj2,rsq00);
1013 ewclj6 = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
1014 exponent = sse2_exp_d(ewcljrsq);
1015 /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1016 poly = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
1017 /* f6A = 6 * C6grid * (1 - poly) */
1018 f6A = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
1019 /* f6B = C6grid * exponent * beta^6 */
1020 f6B = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
1021 /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1022 fvdw = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1024 cutoff_mask = _mm_cmplt_pd(rsq00,rcutoff2);
1026 fscal = fvdw;
1028 fscal = _mm_and_pd(fscal,cutoff_mask);
1030 /* Calculate temporary vectorial force */
1031 tx = _mm_mul_pd(fscal,dx00);
1032 ty = _mm_mul_pd(fscal,dy00);
1033 tz = _mm_mul_pd(fscal,dz00);
1035 /* Update vectorial force */
1036 fix0 = _mm_add_pd(fix0,tx);
1037 fiy0 = _mm_add_pd(fiy0,ty);
1038 fiz0 = _mm_add_pd(fiz0,tz);
1040 fjx0 = _mm_add_pd(fjx0,tx);
1041 fjy0 = _mm_add_pd(fjy0,ty);
1042 fjz0 = _mm_add_pd(fjz0,tz);
1046 /**************************
1047 * CALCULATE INTERACTIONS *
1048 **************************/
1050 if (gmx_mm_any_lt(rsq10,rcutoff2))
1053 r10 = _mm_mul_pd(rsq10,rinv10);
1055 /* Compute parameters for interactions between i and j atoms */
1056 qq10 = _mm_mul_pd(iq1,jq0);
1058 /* EWALD ELECTROSTATICS */
1060 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1061 ewrt = _mm_mul_pd(r10,ewtabscale);
1062 ewitab = _mm_cvttpd_epi32(ewrt);
1063 eweps = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1064 gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1065 &ewtabF,&ewtabFn);
1066 felec = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1067 felec = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1069 cutoff_mask = _mm_cmplt_pd(rsq10,rcutoff2);
1071 fscal = felec;
1073 fscal = _mm_and_pd(fscal,cutoff_mask);
1075 /* Calculate temporary vectorial force */
1076 tx = _mm_mul_pd(fscal,dx10);
1077 ty = _mm_mul_pd(fscal,dy10);
1078 tz = _mm_mul_pd(fscal,dz10);
1080 /* Update vectorial force */
1081 fix1 = _mm_add_pd(fix1,tx);
1082 fiy1 = _mm_add_pd(fiy1,ty);
1083 fiz1 = _mm_add_pd(fiz1,tz);
1085 fjx0 = _mm_add_pd(fjx0,tx);
1086 fjy0 = _mm_add_pd(fjy0,ty);
1087 fjz0 = _mm_add_pd(fjz0,tz);
1091 /**************************
1092 * CALCULATE INTERACTIONS *
1093 **************************/
1095 if (gmx_mm_any_lt(rsq20,rcutoff2))
1098 r20 = _mm_mul_pd(rsq20,rinv20);
1100 /* Compute parameters for interactions between i and j atoms */
1101 qq20 = _mm_mul_pd(iq2,jq0);
1103 /* EWALD ELECTROSTATICS */
1105 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1106 ewrt = _mm_mul_pd(r20,ewtabscale);
1107 ewitab = _mm_cvttpd_epi32(ewrt);
1108 eweps = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1109 gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1110 &ewtabF,&ewtabFn);
1111 felec = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1112 felec = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1114 cutoff_mask = _mm_cmplt_pd(rsq20,rcutoff2);
1116 fscal = felec;
1118 fscal = _mm_and_pd(fscal,cutoff_mask);
1120 /* Calculate temporary vectorial force */
1121 tx = _mm_mul_pd(fscal,dx20);
1122 ty = _mm_mul_pd(fscal,dy20);
1123 tz = _mm_mul_pd(fscal,dz20);
1125 /* Update vectorial force */
1126 fix2 = _mm_add_pd(fix2,tx);
1127 fiy2 = _mm_add_pd(fiy2,ty);
1128 fiz2 = _mm_add_pd(fiz2,tz);
1130 fjx0 = _mm_add_pd(fjx0,tx);
1131 fjy0 = _mm_add_pd(fjy0,ty);
1132 fjz0 = _mm_add_pd(fjz0,tz);
1136 /**************************
1137 * CALCULATE INTERACTIONS *
1138 **************************/
1140 if (gmx_mm_any_lt(rsq30,rcutoff2))
1143 r30 = _mm_mul_pd(rsq30,rinv30);
1145 /* Compute parameters for interactions between i and j atoms */
1146 qq30 = _mm_mul_pd(iq3,jq0);
1148 /* EWALD ELECTROSTATICS */
1150 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1151 ewrt = _mm_mul_pd(r30,ewtabscale);
1152 ewitab = _mm_cvttpd_epi32(ewrt);
1153 eweps = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1154 gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1155 &ewtabF,&ewtabFn);
1156 felec = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1157 felec = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1159 cutoff_mask = _mm_cmplt_pd(rsq30,rcutoff2);
1161 fscal = felec;
1163 fscal = _mm_and_pd(fscal,cutoff_mask);
1165 /* Calculate temporary vectorial force */
1166 tx = _mm_mul_pd(fscal,dx30);
1167 ty = _mm_mul_pd(fscal,dy30);
1168 tz = _mm_mul_pd(fscal,dz30);
1170 /* Update vectorial force */
1171 fix3 = _mm_add_pd(fix3,tx);
1172 fiy3 = _mm_add_pd(fiy3,ty);
1173 fiz3 = _mm_add_pd(fiz3,tz);
1175 fjx0 = _mm_add_pd(fjx0,tx);
1176 fjy0 = _mm_add_pd(fjy0,ty);
1177 fjz0 = _mm_add_pd(fjz0,tz);
1181 gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1183 /* Inner loop uses 169 flops */
1186 if(jidx<j_index_end)
1189 jnrA = jjnr[jidx];
1190 j_coord_offsetA = DIM*jnrA;
1192 /* load j atom coordinates */
1193 gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1194 &jx0,&jy0,&jz0);
1196 /* Calculate displacement vector */
1197 dx00 = _mm_sub_pd(ix0,jx0);
1198 dy00 = _mm_sub_pd(iy0,jy0);
1199 dz00 = _mm_sub_pd(iz0,jz0);
1200 dx10 = _mm_sub_pd(ix1,jx0);
1201 dy10 = _mm_sub_pd(iy1,jy0);
1202 dz10 = _mm_sub_pd(iz1,jz0);
1203 dx20 = _mm_sub_pd(ix2,jx0);
1204 dy20 = _mm_sub_pd(iy2,jy0);
1205 dz20 = _mm_sub_pd(iz2,jz0);
1206 dx30 = _mm_sub_pd(ix3,jx0);
1207 dy30 = _mm_sub_pd(iy3,jy0);
1208 dz30 = _mm_sub_pd(iz3,jz0);
1210 /* Calculate squared distance and things based on it */
1211 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1212 rsq10 = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1213 rsq20 = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1214 rsq30 = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
1216 rinv00 = sse2_invsqrt_d(rsq00);
1217 rinv10 = sse2_invsqrt_d(rsq10);
1218 rinv20 = sse2_invsqrt_d(rsq20);
1219 rinv30 = sse2_invsqrt_d(rsq30);
1221 rinvsq00 = _mm_mul_pd(rinv00,rinv00);
1222 rinvsq10 = _mm_mul_pd(rinv10,rinv10);
1223 rinvsq20 = _mm_mul_pd(rinv20,rinv20);
1224 rinvsq30 = _mm_mul_pd(rinv30,rinv30);
1226 /* Load parameters for j particles */
1227 jq0 = _mm_load_sd(charge+jnrA+0);
1228 vdwjidx0A = 2*vdwtype[jnrA+0];
1230 fjx0 = _mm_setzero_pd();
1231 fjy0 = _mm_setzero_pd();
1232 fjz0 = _mm_setzero_pd();
1234 /**************************
1235 * CALCULATE INTERACTIONS *
1236 **************************/
1238 if (gmx_mm_any_lt(rsq00,rcutoff2))
1241 r00 = _mm_mul_pd(rsq00,rinv00);
1243 /* Compute parameters for interactions between i and j atoms */
1244 gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1246 c6grid_00 = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
1248 /* Analytical LJ-PME */
1249 rinvsix = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1250 ewcljrsq = _mm_mul_pd(ewclj2,rsq00);
1251 ewclj6 = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
1252 exponent = sse2_exp_d(ewcljrsq);
1253 /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1254 poly = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
1255 /* f6A = 6 * C6grid * (1 - poly) */
1256 f6A = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
1257 /* f6B = C6grid * exponent * beta^6 */
1258 f6B = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
1259 /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1260 fvdw = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1262 cutoff_mask = _mm_cmplt_pd(rsq00,rcutoff2);
1264 fscal = fvdw;
1266 fscal = _mm_and_pd(fscal,cutoff_mask);
1268 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1270 /* Calculate temporary vectorial force */
1271 tx = _mm_mul_pd(fscal,dx00);
1272 ty = _mm_mul_pd(fscal,dy00);
1273 tz = _mm_mul_pd(fscal,dz00);
1275 /* Update vectorial force */
1276 fix0 = _mm_add_pd(fix0,tx);
1277 fiy0 = _mm_add_pd(fiy0,ty);
1278 fiz0 = _mm_add_pd(fiz0,tz);
1280 fjx0 = _mm_add_pd(fjx0,tx);
1281 fjy0 = _mm_add_pd(fjy0,ty);
1282 fjz0 = _mm_add_pd(fjz0,tz);
1286 /**************************
1287 * CALCULATE INTERACTIONS *
1288 **************************/
1290 if (gmx_mm_any_lt(rsq10,rcutoff2))
1293 r10 = _mm_mul_pd(rsq10,rinv10);
1295 /* Compute parameters for interactions between i and j atoms */
1296 qq10 = _mm_mul_pd(iq1,jq0);
1298 /* EWALD ELECTROSTATICS */
1300 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1301 ewrt = _mm_mul_pd(r10,ewtabscale);
1302 ewitab = _mm_cvttpd_epi32(ewrt);
1303 eweps = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1304 gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1305 felec = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1306 felec = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1308 cutoff_mask = _mm_cmplt_pd(rsq10,rcutoff2);
1310 fscal = felec;
1312 fscal = _mm_and_pd(fscal,cutoff_mask);
1314 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1316 /* Calculate temporary vectorial force */
1317 tx = _mm_mul_pd(fscal,dx10);
1318 ty = _mm_mul_pd(fscal,dy10);
1319 tz = _mm_mul_pd(fscal,dz10);
1321 /* Update vectorial force */
1322 fix1 = _mm_add_pd(fix1,tx);
1323 fiy1 = _mm_add_pd(fiy1,ty);
1324 fiz1 = _mm_add_pd(fiz1,tz);
1326 fjx0 = _mm_add_pd(fjx0,tx);
1327 fjy0 = _mm_add_pd(fjy0,ty);
1328 fjz0 = _mm_add_pd(fjz0,tz);
1332 /**************************
1333 * CALCULATE INTERACTIONS *
1334 **************************/
1336 if (gmx_mm_any_lt(rsq20,rcutoff2))
1339 r20 = _mm_mul_pd(rsq20,rinv20);
1341 /* Compute parameters for interactions between i and j atoms */
1342 qq20 = _mm_mul_pd(iq2,jq0);
1344 /* EWALD ELECTROSTATICS */
1346 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1347 ewrt = _mm_mul_pd(r20,ewtabscale);
1348 ewitab = _mm_cvttpd_epi32(ewrt);
1349 eweps = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1350 gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1351 felec = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1352 felec = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1354 cutoff_mask = _mm_cmplt_pd(rsq20,rcutoff2);
1356 fscal = felec;
1358 fscal = _mm_and_pd(fscal,cutoff_mask);
1360 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1362 /* Calculate temporary vectorial force */
1363 tx = _mm_mul_pd(fscal,dx20);
1364 ty = _mm_mul_pd(fscal,dy20);
1365 tz = _mm_mul_pd(fscal,dz20);
1367 /* Update vectorial force */
1368 fix2 = _mm_add_pd(fix2,tx);
1369 fiy2 = _mm_add_pd(fiy2,ty);
1370 fiz2 = _mm_add_pd(fiz2,tz);
1372 fjx0 = _mm_add_pd(fjx0,tx);
1373 fjy0 = _mm_add_pd(fjy0,ty);
1374 fjz0 = _mm_add_pd(fjz0,tz);
1378 /**************************
1379 * CALCULATE INTERACTIONS *
1380 **************************/
1382 if (gmx_mm_any_lt(rsq30,rcutoff2))
1385 r30 = _mm_mul_pd(rsq30,rinv30);
1387 /* Compute parameters for interactions between i and j atoms */
1388 qq30 = _mm_mul_pd(iq3,jq0);
1390 /* EWALD ELECTROSTATICS */
1392 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1393 ewrt = _mm_mul_pd(r30,ewtabscale);
1394 ewitab = _mm_cvttpd_epi32(ewrt);
1395 eweps = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1396 gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1397 felec = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1398 felec = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1400 cutoff_mask = _mm_cmplt_pd(rsq30,rcutoff2);
1402 fscal = felec;
1404 fscal = _mm_and_pd(fscal,cutoff_mask);
1406 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1408 /* Calculate temporary vectorial force */
1409 tx = _mm_mul_pd(fscal,dx30);
1410 ty = _mm_mul_pd(fscal,dy30);
1411 tz = _mm_mul_pd(fscal,dz30);
1413 /* Update vectorial force */
1414 fix3 = _mm_add_pd(fix3,tx);
1415 fiy3 = _mm_add_pd(fiy3,ty);
1416 fiz3 = _mm_add_pd(fiz3,tz);
1418 fjx0 = _mm_add_pd(fjx0,tx);
1419 fjy0 = _mm_add_pd(fjy0,ty);
1420 fjz0 = _mm_add_pd(fjz0,tz);
1424 gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1426 /* Inner loop uses 169 flops */
1429 /* End of innermost loop */
1431 gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1432 f+i_coord_offset,fshift+i_shift_offset);
1434 /* Increment number of inner iterations */
1435 inneriter += j_index_end - j_index_start;
1437 /* Outer loop uses 24 flops */
1440 /* Increment number of outer iterations */
1441 outeriter += nri;
1443 /* Update outer/inner flops */
1445 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*169);