Remove nb-parameters from t_forcerec
[gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecCoul_VdwLJ_GeomW4P1_sse2_double.c
blob47ef89c1a9fa66bfc4031b4a8bdfd9c8b1f26d41
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
36 * Note: this file was generated by the GROMACS sse2_double kernel generator.
38 #include "gmxpre.h"
40 #include "config.h"
42 #include <math.h>
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
47 #include "kernelutil_x86_sse2_double.h"
50 * Gromacs nonbonded kernel: nb_kernel_ElecCoul_VdwLJ_GeomW4P1_VF_sse2_double
51 * Electrostatics interaction: Coulomb
52 * VdW interaction: LennardJones
53 * Geometry: Water4-Particle
54 * Calculate force/pot: PotentialAndForce
56 void
57 nb_kernel_ElecCoul_VdwLJ_GeomW4P1_VF_sse2_double
58 (t_nblist * gmx_restrict nlist,
59 rvec * gmx_restrict xx,
60 rvec * gmx_restrict ff,
61 struct t_forcerec * gmx_restrict fr,
62 t_mdatoms * gmx_restrict mdatoms,
63 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64 t_nrnb * gmx_restrict nrnb)
66 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67 * just 0 for non-waters.
68 * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
69 * jnr indices corresponding to data put in the four positions in the SIMD register.
71 int i_shift_offset,i_coord_offset,outeriter,inneriter;
72 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73 int jnrA,jnrB;
74 int j_coord_offsetA,j_coord_offsetB;
75 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
76 real rcutoff_scalar;
77 real *shiftvec,*fshift,*x,*f;
78 __m128d tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79 int vdwioffset0;
80 __m128d ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81 int vdwioffset1;
82 __m128d ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
83 int vdwioffset2;
84 __m128d ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
85 int vdwioffset3;
86 __m128d ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
87 int vdwjidx0A,vdwjidx0B;
88 __m128d jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89 __m128d dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90 __m128d dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
91 __m128d dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
92 __m128d dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
93 __m128d velec,felec,velecsum,facel,crf,krf,krf2;
94 real *charge;
95 int nvdwtype;
96 __m128d rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
97 int *vdwtype;
98 real *vdwparam;
99 __m128d one_sixth = _mm_set1_pd(1.0/6.0);
100 __m128d one_twelfth = _mm_set1_pd(1.0/12.0);
101 __m128d dummy_mask,cutoff_mask;
102 __m128d signbit = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
103 __m128d one = _mm_set1_pd(1.0);
104 __m128d two = _mm_set1_pd(2.0);
105 x = xx[0];
106 f = ff[0];
108 nri = nlist->nri;
109 iinr = nlist->iinr;
110 jindex = nlist->jindex;
111 jjnr = nlist->jjnr;
112 shiftidx = nlist->shift;
113 gid = nlist->gid;
114 shiftvec = fr->shift_vec[0];
115 fshift = fr->fshift[0];
116 facel = _mm_set1_pd(fr->ic->epsfac);
117 charge = mdatoms->chargeA;
118 nvdwtype = fr->ntype;
119 vdwparam = fr->nbfp;
120 vdwtype = mdatoms->typeA;
122 /* Setup water-specific parameters */
123 inr = nlist->iinr[0];
124 iq1 = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
125 iq2 = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
126 iq3 = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
127 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
129 /* Avoid stupid compiler warnings */
130 jnrA = jnrB = 0;
131 j_coord_offsetA = 0;
132 j_coord_offsetB = 0;
134 outeriter = 0;
135 inneriter = 0;
137 /* Start outer loop over neighborlists */
138 for(iidx=0; iidx<nri; iidx++)
140 /* Load shift vector for this list */
141 i_shift_offset = DIM*shiftidx[iidx];
143 /* Load limits for loop over neighbors */
144 j_index_start = jindex[iidx];
145 j_index_end = jindex[iidx+1];
147 /* Get outer coordinate index */
148 inr = iinr[iidx];
149 i_coord_offset = DIM*inr;
151 /* Load i particle coords and add shift vector */
152 gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
153 &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
155 fix0 = _mm_setzero_pd();
156 fiy0 = _mm_setzero_pd();
157 fiz0 = _mm_setzero_pd();
158 fix1 = _mm_setzero_pd();
159 fiy1 = _mm_setzero_pd();
160 fiz1 = _mm_setzero_pd();
161 fix2 = _mm_setzero_pd();
162 fiy2 = _mm_setzero_pd();
163 fiz2 = _mm_setzero_pd();
164 fix3 = _mm_setzero_pd();
165 fiy3 = _mm_setzero_pd();
166 fiz3 = _mm_setzero_pd();
168 /* Reset potential sums */
169 velecsum = _mm_setzero_pd();
170 vvdwsum = _mm_setzero_pd();
172 /* Start inner kernel loop */
173 for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
176 /* Get j neighbor index, and coordinate index */
177 jnrA = jjnr[jidx];
178 jnrB = jjnr[jidx+1];
179 j_coord_offsetA = DIM*jnrA;
180 j_coord_offsetB = DIM*jnrB;
182 /* load j atom coordinates */
183 gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
184 &jx0,&jy0,&jz0);
186 /* Calculate displacement vector */
187 dx00 = _mm_sub_pd(ix0,jx0);
188 dy00 = _mm_sub_pd(iy0,jy0);
189 dz00 = _mm_sub_pd(iz0,jz0);
190 dx10 = _mm_sub_pd(ix1,jx0);
191 dy10 = _mm_sub_pd(iy1,jy0);
192 dz10 = _mm_sub_pd(iz1,jz0);
193 dx20 = _mm_sub_pd(ix2,jx0);
194 dy20 = _mm_sub_pd(iy2,jy0);
195 dz20 = _mm_sub_pd(iz2,jz0);
196 dx30 = _mm_sub_pd(ix3,jx0);
197 dy30 = _mm_sub_pd(iy3,jy0);
198 dz30 = _mm_sub_pd(iz3,jz0);
200 /* Calculate squared distance and things based on it */
201 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
202 rsq10 = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
203 rsq20 = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
204 rsq30 = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
206 rinv10 = sse2_invsqrt_d(rsq10);
207 rinv20 = sse2_invsqrt_d(rsq20);
208 rinv30 = sse2_invsqrt_d(rsq30);
210 rinvsq00 = sse2_inv_d(rsq00);
211 rinvsq10 = _mm_mul_pd(rinv10,rinv10);
212 rinvsq20 = _mm_mul_pd(rinv20,rinv20);
213 rinvsq30 = _mm_mul_pd(rinv30,rinv30);
215 /* Load parameters for j particles */
216 jq0 = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
217 vdwjidx0A = 2*vdwtype[jnrA+0];
218 vdwjidx0B = 2*vdwtype[jnrB+0];
220 fjx0 = _mm_setzero_pd();
221 fjy0 = _mm_setzero_pd();
222 fjz0 = _mm_setzero_pd();
224 /**************************
225 * CALCULATE INTERACTIONS *
226 **************************/
228 /* Compute parameters for interactions between i and j atoms */
229 gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
230 vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
232 /* LENNARD-JONES DISPERSION/REPULSION */
234 rinvsix = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
235 vvdw6 = _mm_mul_pd(c6_00,rinvsix);
236 vvdw12 = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
237 vvdw = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
238 fvdw = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
240 /* Update potential sum for this i atom from the interaction with this j atom. */
241 vvdwsum = _mm_add_pd(vvdwsum,vvdw);
243 fscal = fvdw;
245 /* Calculate temporary vectorial force */
246 tx = _mm_mul_pd(fscal,dx00);
247 ty = _mm_mul_pd(fscal,dy00);
248 tz = _mm_mul_pd(fscal,dz00);
250 /* Update vectorial force */
251 fix0 = _mm_add_pd(fix0,tx);
252 fiy0 = _mm_add_pd(fiy0,ty);
253 fiz0 = _mm_add_pd(fiz0,tz);
255 fjx0 = _mm_add_pd(fjx0,tx);
256 fjy0 = _mm_add_pd(fjy0,ty);
257 fjz0 = _mm_add_pd(fjz0,tz);
259 /**************************
260 * CALCULATE INTERACTIONS *
261 **************************/
263 /* Compute parameters for interactions between i and j atoms */
264 qq10 = _mm_mul_pd(iq1,jq0);
266 /* COULOMB ELECTROSTATICS */
267 velec = _mm_mul_pd(qq10,rinv10);
268 felec = _mm_mul_pd(velec,rinvsq10);
270 /* Update potential sum for this i atom from the interaction with this j atom. */
271 velecsum = _mm_add_pd(velecsum,velec);
273 fscal = felec;
275 /* Calculate temporary vectorial force */
276 tx = _mm_mul_pd(fscal,dx10);
277 ty = _mm_mul_pd(fscal,dy10);
278 tz = _mm_mul_pd(fscal,dz10);
280 /* Update vectorial force */
281 fix1 = _mm_add_pd(fix1,tx);
282 fiy1 = _mm_add_pd(fiy1,ty);
283 fiz1 = _mm_add_pd(fiz1,tz);
285 fjx0 = _mm_add_pd(fjx0,tx);
286 fjy0 = _mm_add_pd(fjy0,ty);
287 fjz0 = _mm_add_pd(fjz0,tz);
289 /**************************
290 * CALCULATE INTERACTIONS *
291 **************************/
293 /* Compute parameters for interactions between i and j atoms */
294 qq20 = _mm_mul_pd(iq2,jq0);
296 /* COULOMB ELECTROSTATICS */
297 velec = _mm_mul_pd(qq20,rinv20);
298 felec = _mm_mul_pd(velec,rinvsq20);
300 /* Update potential sum for this i atom from the interaction with this j atom. */
301 velecsum = _mm_add_pd(velecsum,velec);
303 fscal = felec;
305 /* Calculate temporary vectorial force */
306 tx = _mm_mul_pd(fscal,dx20);
307 ty = _mm_mul_pd(fscal,dy20);
308 tz = _mm_mul_pd(fscal,dz20);
310 /* Update vectorial force */
311 fix2 = _mm_add_pd(fix2,tx);
312 fiy2 = _mm_add_pd(fiy2,ty);
313 fiz2 = _mm_add_pd(fiz2,tz);
315 fjx0 = _mm_add_pd(fjx0,tx);
316 fjy0 = _mm_add_pd(fjy0,ty);
317 fjz0 = _mm_add_pd(fjz0,tz);
319 /**************************
320 * CALCULATE INTERACTIONS *
321 **************************/
323 /* Compute parameters for interactions between i and j atoms */
324 qq30 = _mm_mul_pd(iq3,jq0);
326 /* COULOMB ELECTROSTATICS */
327 velec = _mm_mul_pd(qq30,rinv30);
328 felec = _mm_mul_pd(velec,rinvsq30);
330 /* Update potential sum for this i atom from the interaction with this j atom. */
331 velecsum = _mm_add_pd(velecsum,velec);
333 fscal = felec;
335 /* Calculate temporary vectorial force */
336 tx = _mm_mul_pd(fscal,dx30);
337 ty = _mm_mul_pd(fscal,dy30);
338 tz = _mm_mul_pd(fscal,dz30);
340 /* Update vectorial force */
341 fix3 = _mm_add_pd(fix3,tx);
342 fiy3 = _mm_add_pd(fiy3,ty);
343 fiz3 = _mm_add_pd(fiz3,tz);
345 fjx0 = _mm_add_pd(fjx0,tx);
346 fjy0 = _mm_add_pd(fjy0,ty);
347 fjz0 = _mm_add_pd(fjz0,tz);
349 gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
351 /* Inner loop uses 119 flops */
354 if(jidx<j_index_end)
357 jnrA = jjnr[jidx];
358 j_coord_offsetA = DIM*jnrA;
360 /* load j atom coordinates */
361 gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
362 &jx0,&jy0,&jz0);
364 /* Calculate displacement vector */
365 dx00 = _mm_sub_pd(ix0,jx0);
366 dy00 = _mm_sub_pd(iy0,jy0);
367 dz00 = _mm_sub_pd(iz0,jz0);
368 dx10 = _mm_sub_pd(ix1,jx0);
369 dy10 = _mm_sub_pd(iy1,jy0);
370 dz10 = _mm_sub_pd(iz1,jz0);
371 dx20 = _mm_sub_pd(ix2,jx0);
372 dy20 = _mm_sub_pd(iy2,jy0);
373 dz20 = _mm_sub_pd(iz2,jz0);
374 dx30 = _mm_sub_pd(ix3,jx0);
375 dy30 = _mm_sub_pd(iy3,jy0);
376 dz30 = _mm_sub_pd(iz3,jz0);
378 /* Calculate squared distance and things based on it */
379 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
380 rsq10 = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
381 rsq20 = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
382 rsq30 = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
384 rinv10 = sse2_invsqrt_d(rsq10);
385 rinv20 = sse2_invsqrt_d(rsq20);
386 rinv30 = sse2_invsqrt_d(rsq30);
388 rinvsq00 = sse2_inv_d(rsq00);
389 rinvsq10 = _mm_mul_pd(rinv10,rinv10);
390 rinvsq20 = _mm_mul_pd(rinv20,rinv20);
391 rinvsq30 = _mm_mul_pd(rinv30,rinv30);
393 /* Load parameters for j particles */
394 jq0 = _mm_load_sd(charge+jnrA+0);
395 vdwjidx0A = 2*vdwtype[jnrA+0];
397 fjx0 = _mm_setzero_pd();
398 fjy0 = _mm_setzero_pd();
399 fjz0 = _mm_setzero_pd();
401 /**************************
402 * CALCULATE INTERACTIONS *
403 **************************/
405 /* Compute parameters for interactions between i and j atoms */
406 gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
408 /* LENNARD-JONES DISPERSION/REPULSION */
410 rinvsix = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
411 vvdw6 = _mm_mul_pd(c6_00,rinvsix);
412 vvdw12 = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
413 vvdw = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
414 fvdw = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
416 /* Update potential sum for this i atom from the interaction with this j atom. */
417 vvdw = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
418 vvdwsum = _mm_add_pd(vvdwsum,vvdw);
420 fscal = fvdw;
422 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
424 /* Calculate temporary vectorial force */
425 tx = _mm_mul_pd(fscal,dx00);
426 ty = _mm_mul_pd(fscal,dy00);
427 tz = _mm_mul_pd(fscal,dz00);
429 /* Update vectorial force */
430 fix0 = _mm_add_pd(fix0,tx);
431 fiy0 = _mm_add_pd(fiy0,ty);
432 fiz0 = _mm_add_pd(fiz0,tz);
434 fjx0 = _mm_add_pd(fjx0,tx);
435 fjy0 = _mm_add_pd(fjy0,ty);
436 fjz0 = _mm_add_pd(fjz0,tz);
438 /**************************
439 * CALCULATE INTERACTIONS *
440 **************************/
442 /* Compute parameters for interactions between i and j atoms */
443 qq10 = _mm_mul_pd(iq1,jq0);
445 /* COULOMB ELECTROSTATICS */
446 velec = _mm_mul_pd(qq10,rinv10);
447 felec = _mm_mul_pd(velec,rinvsq10);
449 /* Update potential sum for this i atom from the interaction with this j atom. */
450 velec = _mm_unpacklo_pd(velec,_mm_setzero_pd());
451 velecsum = _mm_add_pd(velecsum,velec);
453 fscal = felec;
455 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
457 /* Calculate temporary vectorial force */
458 tx = _mm_mul_pd(fscal,dx10);
459 ty = _mm_mul_pd(fscal,dy10);
460 tz = _mm_mul_pd(fscal,dz10);
462 /* Update vectorial force */
463 fix1 = _mm_add_pd(fix1,tx);
464 fiy1 = _mm_add_pd(fiy1,ty);
465 fiz1 = _mm_add_pd(fiz1,tz);
467 fjx0 = _mm_add_pd(fjx0,tx);
468 fjy0 = _mm_add_pd(fjy0,ty);
469 fjz0 = _mm_add_pd(fjz0,tz);
471 /**************************
472 * CALCULATE INTERACTIONS *
473 **************************/
475 /* Compute parameters for interactions between i and j atoms */
476 qq20 = _mm_mul_pd(iq2,jq0);
478 /* COULOMB ELECTROSTATICS */
479 velec = _mm_mul_pd(qq20,rinv20);
480 felec = _mm_mul_pd(velec,rinvsq20);
482 /* Update potential sum for this i atom from the interaction with this j atom. */
483 velec = _mm_unpacklo_pd(velec,_mm_setzero_pd());
484 velecsum = _mm_add_pd(velecsum,velec);
486 fscal = felec;
488 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
490 /* Calculate temporary vectorial force */
491 tx = _mm_mul_pd(fscal,dx20);
492 ty = _mm_mul_pd(fscal,dy20);
493 tz = _mm_mul_pd(fscal,dz20);
495 /* Update vectorial force */
496 fix2 = _mm_add_pd(fix2,tx);
497 fiy2 = _mm_add_pd(fiy2,ty);
498 fiz2 = _mm_add_pd(fiz2,tz);
500 fjx0 = _mm_add_pd(fjx0,tx);
501 fjy0 = _mm_add_pd(fjy0,ty);
502 fjz0 = _mm_add_pd(fjz0,tz);
504 /**************************
505 * CALCULATE INTERACTIONS *
506 **************************/
508 /* Compute parameters for interactions between i and j atoms */
509 qq30 = _mm_mul_pd(iq3,jq0);
511 /* COULOMB ELECTROSTATICS */
512 velec = _mm_mul_pd(qq30,rinv30);
513 felec = _mm_mul_pd(velec,rinvsq30);
515 /* Update potential sum for this i atom from the interaction with this j atom. */
516 velec = _mm_unpacklo_pd(velec,_mm_setzero_pd());
517 velecsum = _mm_add_pd(velecsum,velec);
519 fscal = felec;
521 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
523 /* Calculate temporary vectorial force */
524 tx = _mm_mul_pd(fscal,dx30);
525 ty = _mm_mul_pd(fscal,dy30);
526 tz = _mm_mul_pd(fscal,dz30);
528 /* Update vectorial force */
529 fix3 = _mm_add_pd(fix3,tx);
530 fiy3 = _mm_add_pd(fiy3,ty);
531 fiz3 = _mm_add_pd(fiz3,tz);
533 fjx0 = _mm_add_pd(fjx0,tx);
534 fjy0 = _mm_add_pd(fjy0,ty);
535 fjz0 = _mm_add_pd(fjz0,tz);
537 gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
539 /* Inner loop uses 119 flops */
542 /* End of innermost loop */
544 gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
545 f+i_coord_offset,fshift+i_shift_offset);
547 ggid = gid[iidx];
548 /* Update potential energies */
549 gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
550 gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
552 /* Increment number of inner iterations */
553 inneriter += j_index_end - j_index_start;
555 /* Outer loop uses 26 flops */
558 /* Increment number of outer iterations */
559 outeriter += nri;
561 /* Update outer/inner flops */
563 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*119);
566 * Gromacs nonbonded kernel: nb_kernel_ElecCoul_VdwLJ_GeomW4P1_F_sse2_double
567 * Electrostatics interaction: Coulomb
568 * VdW interaction: LennardJones
569 * Geometry: Water4-Particle
570 * Calculate force/pot: Force
572 void
573 nb_kernel_ElecCoul_VdwLJ_GeomW4P1_F_sse2_double
574 (t_nblist * gmx_restrict nlist,
575 rvec * gmx_restrict xx,
576 rvec * gmx_restrict ff,
577 struct t_forcerec * gmx_restrict fr,
578 t_mdatoms * gmx_restrict mdatoms,
579 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
580 t_nrnb * gmx_restrict nrnb)
582 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
583 * just 0 for non-waters.
584 * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
585 * jnr indices corresponding to data put in the four positions in the SIMD register.
587 int i_shift_offset,i_coord_offset,outeriter,inneriter;
588 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
589 int jnrA,jnrB;
590 int j_coord_offsetA,j_coord_offsetB;
591 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
592 real rcutoff_scalar;
593 real *shiftvec,*fshift,*x,*f;
594 __m128d tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
595 int vdwioffset0;
596 __m128d ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
597 int vdwioffset1;
598 __m128d ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
599 int vdwioffset2;
600 __m128d ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
601 int vdwioffset3;
602 __m128d ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
603 int vdwjidx0A,vdwjidx0B;
604 __m128d jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
605 __m128d dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
606 __m128d dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
607 __m128d dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
608 __m128d dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
609 __m128d velec,felec,velecsum,facel,crf,krf,krf2;
610 real *charge;
611 int nvdwtype;
612 __m128d rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
613 int *vdwtype;
614 real *vdwparam;
615 __m128d one_sixth = _mm_set1_pd(1.0/6.0);
616 __m128d one_twelfth = _mm_set1_pd(1.0/12.0);
617 __m128d dummy_mask,cutoff_mask;
618 __m128d signbit = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
619 __m128d one = _mm_set1_pd(1.0);
620 __m128d two = _mm_set1_pd(2.0);
621 x = xx[0];
622 f = ff[0];
624 nri = nlist->nri;
625 iinr = nlist->iinr;
626 jindex = nlist->jindex;
627 jjnr = nlist->jjnr;
628 shiftidx = nlist->shift;
629 gid = nlist->gid;
630 shiftvec = fr->shift_vec[0];
631 fshift = fr->fshift[0];
632 facel = _mm_set1_pd(fr->ic->epsfac);
633 charge = mdatoms->chargeA;
634 nvdwtype = fr->ntype;
635 vdwparam = fr->nbfp;
636 vdwtype = mdatoms->typeA;
638 /* Setup water-specific parameters */
639 inr = nlist->iinr[0];
640 iq1 = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
641 iq2 = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
642 iq3 = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
643 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
645 /* Avoid stupid compiler warnings */
646 jnrA = jnrB = 0;
647 j_coord_offsetA = 0;
648 j_coord_offsetB = 0;
650 outeriter = 0;
651 inneriter = 0;
653 /* Start outer loop over neighborlists */
654 for(iidx=0; iidx<nri; iidx++)
656 /* Load shift vector for this list */
657 i_shift_offset = DIM*shiftidx[iidx];
659 /* Load limits for loop over neighbors */
660 j_index_start = jindex[iidx];
661 j_index_end = jindex[iidx+1];
663 /* Get outer coordinate index */
664 inr = iinr[iidx];
665 i_coord_offset = DIM*inr;
667 /* Load i particle coords and add shift vector */
668 gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
669 &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
671 fix0 = _mm_setzero_pd();
672 fiy0 = _mm_setzero_pd();
673 fiz0 = _mm_setzero_pd();
674 fix1 = _mm_setzero_pd();
675 fiy1 = _mm_setzero_pd();
676 fiz1 = _mm_setzero_pd();
677 fix2 = _mm_setzero_pd();
678 fiy2 = _mm_setzero_pd();
679 fiz2 = _mm_setzero_pd();
680 fix3 = _mm_setzero_pd();
681 fiy3 = _mm_setzero_pd();
682 fiz3 = _mm_setzero_pd();
684 /* Start inner kernel loop */
685 for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
688 /* Get j neighbor index, and coordinate index */
689 jnrA = jjnr[jidx];
690 jnrB = jjnr[jidx+1];
691 j_coord_offsetA = DIM*jnrA;
692 j_coord_offsetB = DIM*jnrB;
694 /* load j atom coordinates */
695 gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
696 &jx0,&jy0,&jz0);
698 /* Calculate displacement vector */
699 dx00 = _mm_sub_pd(ix0,jx0);
700 dy00 = _mm_sub_pd(iy0,jy0);
701 dz00 = _mm_sub_pd(iz0,jz0);
702 dx10 = _mm_sub_pd(ix1,jx0);
703 dy10 = _mm_sub_pd(iy1,jy0);
704 dz10 = _mm_sub_pd(iz1,jz0);
705 dx20 = _mm_sub_pd(ix2,jx0);
706 dy20 = _mm_sub_pd(iy2,jy0);
707 dz20 = _mm_sub_pd(iz2,jz0);
708 dx30 = _mm_sub_pd(ix3,jx0);
709 dy30 = _mm_sub_pd(iy3,jy0);
710 dz30 = _mm_sub_pd(iz3,jz0);
712 /* Calculate squared distance and things based on it */
713 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
714 rsq10 = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
715 rsq20 = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
716 rsq30 = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
718 rinv10 = sse2_invsqrt_d(rsq10);
719 rinv20 = sse2_invsqrt_d(rsq20);
720 rinv30 = sse2_invsqrt_d(rsq30);
722 rinvsq00 = sse2_inv_d(rsq00);
723 rinvsq10 = _mm_mul_pd(rinv10,rinv10);
724 rinvsq20 = _mm_mul_pd(rinv20,rinv20);
725 rinvsq30 = _mm_mul_pd(rinv30,rinv30);
727 /* Load parameters for j particles */
728 jq0 = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
729 vdwjidx0A = 2*vdwtype[jnrA+0];
730 vdwjidx0B = 2*vdwtype[jnrB+0];
732 fjx0 = _mm_setzero_pd();
733 fjy0 = _mm_setzero_pd();
734 fjz0 = _mm_setzero_pd();
736 /**************************
737 * CALCULATE INTERACTIONS *
738 **************************/
740 /* Compute parameters for interactions between i and j atoms */
741 gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
742 vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
744 /* LENNARD-JONES DISPERSION/REPULSION */
746 rinvsix = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
747 fvdw = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
749 fscal = fvdw;
751 /* Calculate temporary vectorial force */
752 tx = _mm_mul_pd(fscal,dx00);
753 ty = _mm_mul_pd(fscal,dy00);
754 tz = _mm_mul_pd(fscal,dz00);
756 /* Update vectorial force */
757 fix0 = _mm_add_pd(fix0,tx);
758 fiy0 = _mm_add_pd(fiy0,ty);
759 fiz0 = _mm_add_pd(fiz0,tz);
761 fjx0 = _mm_add_pd(fjx0,tx);
762 fjy0 = _mm_add_pd(fjy0,ty);
763 fjz0 = _mm_add_pd(fjz0,tz);
765 /**************************
766 * CALCULATE INTERACTIONS *
767 **************************/
769 /* Compute parameters for interactions between i and j atoms */
770 qq10 = _mm_mul_pd(iq1,jq0);
772 /* COULOMB ELECTROSTATICS */
773 velec = _mm_mul_pd(qq10,rinv10);
774 felec = _mm_mul_pd(velec,rinvsq10);
776 fscal = felec;
778 /* Calculate temporary vectorial force */
779 tx = _mm_mul_pd(fscal,dx10);
780 ty = _mm_mul_pd(fscal,dy10);
781 tz = _mm_mul_pd(fscal,dz10);
783 /* Update vectorial force */
784 fix1 = _mm_add_pd(fix1,tx);
785 fiy1 = _mm_add_pd(fiy1,ty);
786 fiz1 = _mm_add_pd(fiz1,tz);
788 fjx0 = _mm_add_pd(fjx0,tx);
789 fjy0 = _mm_add_pd(fjy0,ty);
790 fjz0 = _mm_add_pd(fjz0,tz);
792 /**************************
793 * CALCULATE INTERACTIONS *
794 **************************/
796 /* Compute parameters for interactions between i and j atoms */
797 qq20 = _mm_mul_pd(iq2,jq0);
799 /* COULOMB ELECTROSTATICS */
800 velec = _mm_mul_pd(qq20,rinv20);
801 felec = _mm_mul_pd(velec,rinvsq20);
803 fscal = felec;
805 /* Calculate temporary vectorial force */
806 tx = _mm_mul_pd(fscal,dx20);
807 ty = _mm_mul_pd(fscal,dy20);
808 tz = _mm_mul_pd(fscal,dz20);
810 /* Update vectorial force */
811 fix2 = _mm_add_pd(fix2,tx);
812 fiy2 = _mm_add_pd(fiy2,ty);
813 fiz2 = _mm_add_pd(fiz2,tz);
815 fjx0 = _mm_add_pd(fjx0,tx);
816 fjy0 = _mm_add_pd(fjy0,ty);
817 fjz0 = _mm_add_pd(fjz0,tz);
819 /**************************
820 * CALCULATE INTERACTIONS *
821 **************************/
823 /* Compute parameters for interactions between i and j atoms */
824 qq30 = _mm_mul_pd(iq3,jq0);
826 /* COULOMB ELECTROSTATICS */
827 velec = _mm_mul_pd(qq30,rinv30);
828 felec = _mm_mul_pd(velec,rinvsq30);
830 fscal = felec;
832 /* Calculate temporary vectorial force */
833 tx = _mm_mul_pd(fscal,dx30);
834 ty = _mm_mul_pd(fscal,dy30);
835 tz = _mm_mul_pd(fscal,dz30);
837 /* Update vectorial force */
838 fix3 = _mm_add_pd(fix3,tx);
839 fiy3 = _mm_add_pd(fiy3,ty);
840 fiz3 = _mm_add_pd(fiz3,tz);
842 fjx0 = _mm_add_pd(fjx0,tx);
843 fjy0 = _mm_add_pd(fjy0,ty);
844 fjz0 = _mm_add_pd(fjz0,tz);
846 gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
848 /* Inner loop uses 111 flops */
851 if(jidx<j_index_end)
854 jnrA = jjnr[jidx];
855 j_coord_offsetA = DIM*jnrA;
857 /* load j atom coordinates */
858 gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
859 &jx0,&jy0,&jz0);
861 /* Calculate displacement vector */
862 dx00 = _mm_sub_pd(ix0,jx0);
863 dy00 = _mm_sub_pd(iy0,jy0);
864 dz00 = _mm_sub_pd(iz0,jz0);
865 dx10 = _mm_sub_pd(ix1,jx0);
866 dy10 = _mm_sub_pd(iy1,jy0);
867 dz10 = _mm_sub_pd(iz1,jz0);
868 dx20 = _mm_sub_pd(ix2,jx0);
869 dy20 = _mm_sub_pd(iy2,jy0);
870 dz20 = _mm_sub_pd(iz2,jz0);
871 dx30 = _mm_sub_pd(ix3,jx0);
872 dy30 = _mm_sub_pd(iy3,jy0);
873 dz30 = _mm_sub_pd(iz3,jz0);
875 /* Calculate squared distance and things based on it */
876 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
877 rsq10 = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
878 rsq20 = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
879 rsq30 = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
881 rinv10 = sse2_invsqrt_d(rsq10);
882 rinv20 = sse2_invsqrt_d(rsq20);
883 rinv30 = sse2_invsqrt_d(rsq30);
885 rinvsq00 = sse2_inv_d(rsq00);
886 rinvsq10 = _mm_mul_pd(rinv10,rinv10);
887 rinvsq20 = _mm_mul_pd(rinv20,rinv20);
888 rinvsq30 = _mm_mul_pd(rinv30,rinv30);
890 /* Load parameters for j particles */
891 jq0 = _mm_load_sd(charge+jnrA+0);
892 vdwjidx0A = 2*vdwtype[jnrA+0];
894 fjx0 = _mm_setzero_pd();
895 fjy0 = _mm_setzero_pd();
896 fjz0 = _mm_setzero_pd();
898 /**************************
899 * CALCULATE INTERACTIONS *
900 **************************/
902 /* Compute parameters for interactions between i and j atoms */
903 gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
905 /* LENNARD-JONES DISPERSION/REPULSION */
907 rinvsix = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
908 fvdw = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
910 fscal = fvdw;
912 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
914 /* Calculate temporary vectorial force */
915 tx = _mm_mul_pd(fscal,dx00);
916 ty = _mm_mul_pd(fscal,dy00);
917 tz = _mm_mul_pd(fscal,dz00);
919 /* Update vectorial force */
920 fix0 = _mm_add_pd(fix0,tx);
921 fiy0 = _mm_add_pd(fiy0,ty);
922 fiz0 = _mm_add_pd(fiz0,tz);
924 fjx0 = _mm_add_pd(fjx0,tx);
925 fjy0 = _mm_add_pd(fjy0,ty);
926 fjz0 = _mm_add_pd(fjz0,tz);
928 /**************************
929 * CALCULATE INTERACTIONS *
930 **************************/
932 /* Compute parameters for interactions between i and j atoms */
933 qq10 = _mm_mul_pd(iq1,jq0);
935 /* COULOMB ELECTROSTATICS */
936 velec = _mm_mul_pd(qq10,rinv10);
937 felec = _mm_mul_pd(velec,rinvsq10);
939 fscal = felec;
941 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
943 /* Calculate temporary vectorial force */
944 tx = _mm_mul_pd(fscal,dx10);
945 ty = _mm_mul_pd(fscal,dy10);
946 tz = _mm_mul_pd(fscal,dz10);
948 /* Update vectorial force */
949 fix1 = _mm_add_pd(fix1,tx);
950 fiy1 = _mm_add_pd(fiy1,ty);
951 fiz1 = _mm_add_pd(fiz1,tz);
953 fjx0 = _mm_add_pd(fjx0,tx);
954 fjy0 = _mm_add_pd(fjy0,ty);
955 fjz0 = _mm_add_pd(fjz0,tz);
957 /**************************
958 * CALCULATE INTERACTIONS *
959 **************************/
961 /* Compute parameters for interactions between i and j atoms */
962 qq20 = _mm_mul_pd(iq2,jq0);
964 /* COULOMB ELECTROSTATICS */
965 velec = _mm_mul_pd(qq20,rinv20);
966 felec = _mm_mul_pd(velec,rinvsq20);
968 fscal = felec;
970 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
972 /* Calculate temporary vectorial force */
973 tx = _mm_mul_pd(fscal,dx20);
974 ty = _mm_mul_pd(fscal,dy20);
975 tz = _mm_mul_pd(fscal,dz20);
977 /* Update vectorial force */
978 fix2 = _mm_add_pd(fix2,tx);
979 fiy2 = _mm_add_pd(fiy2,ty);
980 fiz2 = _mm_add_pd(fiz2,tz);
982 fjx0 = _mm_add_pd(fjx0,tx);
983 fjy0 = _mm_add_pd(fjy0,ty);
984 fjz0 = _mm_add_pd(fjz0,tz);
986 /**************************
987 * CALCULATE INTERACTIONS *
988 **************************/
990 /* Compute parameters for interactions between i and j atoms */
991 qq30 = _mm_mul_pd(iq3,jq0);
993 /* COULOMB ELECTROSTATICS */
994 velec = _mm_mul_pd(qq30,rinv30);
995 felec = _mm_mul_pd(velec,rinvsq30);
997 fscal = felec;
999 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1001 /* Calculate temporary vectorial force */
1002 tx = _mm_mul_pd(fscal,dx30);
1003 ty = _mm_mul_pd(fscal,dy30);
1004 tz = _mm_mul_pd(fscal,dz30);
1006 /* Update vectorial force */
1007 fix3 = _mm_add_pd(fix3,tx);
1008 fiy3 = _mm_add_pd(fiy3,ty);
1009 fiz3 = _mm_add_pd(fiz3,tz);
1011 fjx0 = _mm_add_pd(fjx0,tx);
1012 fjy0 = _mm_add_pd(fjy0,ty);
1013 fjz0 = _mm_add_pd(fjz0,tz);
1015 gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1017 /* Inner loop uses 111 flops */
1020 /* End of innermost loop */
1022 gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1023 f+i_coord_offset,fshift+i_shift_offset);
1025 /* Increment number of inner iterations */
1026 inneriter += j_index_end - j_index_start;
1028 /* Outer loop uses 24 flops */
1031 /* Increment number of outer iterations */
1032 outeriter += nri;
1034 /* Update outer/inner flops */
1036 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*111);