Remove nb-parameters from t_forcerec
[gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecEwSh_VdwLJSh_GeomW4W4_c.c
blob5cefc91ac9f8c62dd9f5e465398b00ff61303e07
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 2012,2013,2014.2015,2017, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
36 * Note: this file was generated by the GROMACS c kernel generator.
38 #include "gmxpre.h"
40 #include "config.h"
42 #include <math.h>
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
48 * Gromacs nonbonded kernel: nb_kernel_ElecEwSh_VdwLJSh_GeomW4W4_VF_c
49 * Electrostatics interaction: Ewald
50 * VdW interaction: LennardJones
51 * Geometry: Water4-Water4
52 * Calculate force/pot: PotentialAndForce
54 void
55 nb_kernel_ElecEwSh_VdwLJSh_GeomW4W4_VF_c
56 (t_nblist * gmx_restrict nlist,
57 rvec * gmx_restrict xx,
58 rvec * gmx_restrict ff,
59 struct t_forcerec * gmx_restrict fr,
60 t_mdatoms * gmx_restrict mdatoms,
61 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
62 t_nrnb * gmx_restrict nrnb)
64 int i_shift_offset,i_coord_offset,j_coord_offset;
65 int j_index_start,j_index_end;
66 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
67 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
68 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
69 real *shiftvec,*fshift,*x,*f;
70 int vdwioffset0;
71 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
72 int vdwioffset1;
73 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
74 int vdwioffset2;
75 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
76 int vdwioffset3;
77 real ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
78 int vdwjidx0;
79 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80 int vdwjidx1;
81 real jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
82 int vdwjidx2;
83 real jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
84 int vdwjidx3;
85 real jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
86 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
87 real dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
88 real dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
89 real dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13,cexp1_13,cexp2_13;
90 real dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
91 real dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
92 real dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23,cexp1_23,cexp2_23;
93 real dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31,cexp1_31,cexp2_31;
94 real dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32,cexp1_32,cexp2_32;
95 real dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33,cexp1_33,cexp2_33;
96 real velec,felec,velecsum,facel,crf,krf,krf2;
97 real *charge;
98 int nvdwtype;
99 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
100 int *vdwtype;
101 real *vdwparam;
102 int ewitab;
103 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
104 real *ewtab;
106 x = xx[0];
107 f = ff[0];
109 nri = nlist->nri;
110 iinr = nlist->iinr;
111 jindex = nlist->jindex;
112 jjnr = nlist->jjnr;
113 shiftidx = nlist->shift;
114 gid = nlist->gid;
115 shiftvec = fr->shift_vec[0];
116 fshift = fr->fshift[0];
117 facel = fr->ic->epsfac;
118 charge = mdatoms->chargeA;
119 nvdwtype = fr->ntype;
120 vdwparam = fr->nbfp;
121 vdwtype = mdatoms->typeA;
123 sh_ewald = fr->ic->sh_ewald;
124 ewtab = fr->ic->tabq_coul_FDV0;
125 ewtabscale = fr->ic->tabq_scale;
126 ewtabhalfspace = 0.5/ewtabscale;
128 /* Setup water-specific parameters */
129 inr = nlist->iinr[0];
130 iq1 = facel*charge[inr+1];
131 iq2 = facel*charge[inr+2];
132 iq3 = facel*charge[inr+3];
133 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
135 jq1 = charge[inr+1];
136 jq2 = charge[inr+2];
137 jq3 = charge[inr+3];
138 vdwjidx0 = 2*vdwtype[inr+0];
139 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
140 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
141 qq11 = iq1*jq1;
142 qq12 = iq1*jq2;
143 qq13 = iq1*jq3;
144 qq21 = iq2*jq1;
145 qq22 = iq2*jq2;
146 qq23 = iq2*jq3;
147 qq31 = iq3*jq1;
148 qq32 = iq3*jq2;
149 qq33 = iq3*jq3;
151 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
152 rcutoff = fr->ic->rcoulomb;
153 rcutoff2 = rcutoff*rcutoff;
155 sh_vdw_invrcut6 = fr->ic->sh_invrc6;
156 rvdw = fr->ic->rvdw;
158 outeriter = 0;
159 inneriter = 0;
161 /* Start outer loop over neighborlists */
162 for(iidx=0; iidx<nri; iidx++)
164 /* Load shift vector for this list */
165 i_shift_offset = DIM*shiftidx[iidx];
166 shX = shiftvec[i_shift_offset+XX];
167 shY = shiftvec[i_shift_offset+YY];
168 shZ = shiftvec[i_shift_offset+ZZ];
170 /* Load limits for loop over neighbors */
171 j_index_start = jindex[iidx];
172 j_index_end = jindex[iidx+1];
174 /* Get outer coordinate index */
175 inr = iinr[iidx];
176 i_coord_offset = DIM*inr;
178 /* Load i particle coords and add shift vector */
179 ix0 = shX + x[i_coord_offset+DIM*0+XX];
180 iy0 = shY + x[i_coord_offset+DIM*0+YY];
181 iz0 = shZ + x[i_coord_offset+DIM*0+ZZ];
182 ix1 = shX + x[i_coord_offset+DIM*1+XX];
183 iy1 = shY + x[i_coord_offset+DIM*1+YY];
184 iz1 = shZ + x[i_coord_offset+DIM*1+ZZ];
185 ix2 = shX + x[i_coord_offset+DIM*2+XX];
186 iy2 = shY + x[i_coord_offset+DIM*2+YY];
187 iz2 = shZ + x[i_coord_offset+DIM*2+ZZ];
188 ix3 = shX + x[i_coord_offset+DIM*3+XX];
189 iy3 = shY + x[i_coord_offset+DIM*3+YY];
190 iz3 = shZ + x[i_coord_offset+DIM*3+ZZ];
192 fix0 = 0.0;
193 fiy0 = 0.0;
194 fiz0 = 0.0;
195 fix1 = 0.0;
196 fiy1 = 0.0;
197 fiz1 = 0.0;
198 fix2 = 0.0;
199 fiy2 = 0.0;
200 fiz2 = 0.0;
201 fix3 = 0.0;
202 fiy3 = 0.0;
203 fiz3 = 0.0;
205 /* Reset potential sums */
206 velecsum = 0.0;
207 vvdwsum = 0.0;
209 /* Start inner kernel loop */
210 for(jidx=j_index_start; jidx<j_index_end; jidx++)
212 /* Get j neighbor index, and coordinate index */
213 jnr = jjnr[jidx];
214 j_coord_offset = DIM*jnr;
216 /* load j atom coordinates */
217 jx0 = x[j_coord_offset+DIM*0+XX];
218 jy0 = x[j_coord_offset+DIM*0+YY];
219 jz0 = x[j_coord_offset+DIM*0+ZZ];
220 jx1 = x[j_coord_offset+DIM*1+XX];
221 jy1 = x[j_coord_offset+DIM*1+YY];
222 jz1 = x[j_coord_offset+DIM*1+ZZ];
223 jx2 = x[j_coord_offset+DIM*2+XX];
224 jy2 = x[j_coord_offset+DIM*2+YY];
225 jz2 = x[j_coord_offset+DIM*2+ZZ];
226 jx3 = x[j_coord_offset+DIM*3+XX];
227 jy3 = x[j_coord_offset+DIM*3+YY];
228 jz3 = x[j_coord_offset+DIM*3+ZZ];
230 /* Calculate displacement vector */
231 dx00 = ix0 - jx0;
232 dy00 = iy0 - jy0;
233 dz00 = iz0 - jz0;
234 dx11 = ix1 - jx1;
235 dy11 = iy1 - jy1;
236 dz11 = iz1 - jz1;
237 dx12 = ix1 - jx2;
238 dy12 = iy1 - jy2;
239 dz12 = iz1 - jz2;
240 dx13 = ix1 - jx3;
241 dy13 = iy1 - jy3;
242 dz13 = iz1 - jz3;
243 dx21 = ix2 - jx1;
244 dy21 = iy2 - jy1;
245 dz21 = iz2 - jz1;
246 dx22 = ix2 - jx2;
247 dy22 = iy2 - jy2;
248 dz22 = iz2 - jz2;
249 dx23 = ix2 - jx3;
250 dy23 = iy2 - jy3;
251 dz23 = iz2 - jz3;
252 dx31 = ix3 - jx1;
253 dy31 = iy3 - jy1;
254 dz31 = iz3 - jz1;
255 dx32 = ix3 - jx2;
256 dy32 = iy3 - jy2;
257 dz32 = iz3 - jz2;
258 dx33 = ix3 - jx3;
259 dy33 = iy3 - jy3;
260 dz33 = iz3 - jz3;
262 /* Calculate squared distance and things based on it */
263 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
264 rsq11 = dx11*dx11+dy11*dy11+dz11*dz11;
265 rsq12 = dx12*dx12+dy12*dy12+dz12*dz12;
266 rsq13 = dx13*dx13+dy13*dy13+dz13*dz13;
267 rsq21 = dx21*dx21+dy21*dy21+dz21*dz21;
268 rsq22 = dx22*dx22+dy22*dy22+dz22*dz22;
269 rsq23 = dx23*dx23+dy23*dy23+dz23*dz23;
270 rsq31 = dx31*dx31+dy31*dy31+dz31*dz31;
271 rsq32 = dx32*dx32+dy32*dy32+dz32*dz32;
272 rsq33 = dx33*dx33+dy33*dy33+dz33*dz33;
274 rinv11 = 1.0/sqrt(rsq11);
275 rinv12 = 1.0/sqrt(rsq12);
276 rinv13 = 1.0/sqrt(rsq13);
277 rinv21 = 1.0/sqrt(rsq21);
278 rinv22 = 1.0/sqrt(rsq22);
279 rinv23 = 1.0/sqrt(rsq23);
280 rinv31 = 1.0/sqrt(rsq31);
281 rinv32 = 1.0/sqrt(rsq32);
282 rinv33 = 1.0/sqrt(rsq33);
284 rinvsq00 = 1.0/rsq00;
285 rinvsq11 = rinv11*rinv11;
286 rinvsq12 = rinv12*rinv12;
287 rinvsq13 = rinv13*rinv13;
288 rinvsq21 = rinv21*rinv21;
289 rinvsq22 = rinv22*rinv22;
290 rinvsq23 = rinv23*rinv23;
291 rinvsq31 = rinv31*rinv31;
292 rinvsq32 = rinv32*rinv32;
293 rinvsq33 = rinv33*rinv33;
295 /**************************
296 * CALCULATE INTERACTIONS *
297 **************************/
299 if (rsq00<rcutoff2)
302 /* LENNARD-JONES DISPERSION/REPULSION */
304 rinvsix = rinvsq00*rinvsq00*rinvsq00;
305 vvdw6 = c6_00*rinvsix;
306 vvdw12 = c12_00*rinvsix*rinvsix;
307 vvdw = (vvdw12 - c12_00*sh_vdw_invrcut6*sh_vdw_invrcut6)*(1.0/12.0) - (vvdw6 - c6_00*sh_vdw_invrcut6)*(1.0/6.0);
308 fvdw = (vvdw12-vvdw6)*rinvsq00;
310 /* Update potential sums from outer loop */
311 vvdwsum += vvdw;
313 fscal = fvdw;
315 /* Calculate temporary vectorial force */
316 tx = fscal*dx00;
317 ty = fscal*dy00;
318 tz = fscal*dz00;
320 /* Update vectorial force */
321 fix0 += tx;
322 fiy0 += ty;
323 fiz0 += tz;
324 f[j_coord_offset+DIM*0+XX] -= tx;
325 f[j_coord_offset+DIM*0+YY] -= ty;
326 f[j_coord_offset+DIM*0+ZZ] -= tz;
330 /**************************
331 * CALCULATE INTERACTIONS *
332 **************************/
334 if (rsq11<rcutoff2)
337 r11 = rsq11*rinv11;
339 /* EWALD ELECTROSTATICS */
341 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
342 ewrt = r11*ewtabscale;
343 ewitab = ewrt;
344 eweps = ewrt-ewitab;
345 ewitab = 4*ewitab;
346 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
347 velec = qq11*((rinv11-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
348 felec = qq11*rinv11*(rinvsq11-felec);
350 /* Update potential sums from outer loop */
351 velecsum += velec;
353 fscal = felec;
355 /* Calculate temporary vectorial force */
356 tx = fscal*dx11;
357 ty = fscal*dy11;
358 tz = fscal*dz11;
360 /* Update vectorial force */
361 fix1 += tx;
362 fiy1 += ty;
363 fiz1 += tz;
364 f[j_coord_offset+DIM*1+XX] -= tx;
365 f[j_coord_offset+DIM*1+YY] -= ty;
366 f[j_coord_offset+DIM*1+ZZ] -= tz;
370 /**************************
371 * CALCULATE INTERACTIONS *
372 **************************/
374 if (rsq12<rcutoff2)
377 r12 = rsq12*rinv12;
379 /* EWALD ELECTROSTATICS */
381 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
382 ewrt = r12*ewtabscale;
383 ewitab = ewrt;
384 eweps = ewrt-ewitab;
385 ewitab = 4*ewitab;
386 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
387 velec = qq12*((rinv12-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
388 felec = qq12*rinv12*(rinvsq12-felec);
390 /* Update potential sums from outer loop */
391 velecsum += velec;
393 fscal = felec;
395 /* Calculate temporary vectorial force */
396 tx = fscal*dx12;
397 ty = fscal*dy12;
398 tz = fscal*dz12;
400 /* Update vectorial force */
401 fix1 += tx;
402 fiy1 += ty;
403 fiz1 += tz;
404 f[j_coord_offset+DIM*2+XX] -= tx;
405 f[j_coord_offset+DIM*2+YY] -= ty;
406 f[j_coord_offset+DIM*2+ZZ] -= tz;
410 /**************************
411 * CALCULATE INTERACTIONS *
412 **************************/
414 if (rsq13<rcutoff2)
417 r13 = rsq13*rinv13;
419 /* EWALD ELECTROSTATICS */
421 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
422 ewrt = r13*ewtabscale;
423 ewitab = ewrt;
424 eweps = ewrt-ewitab;
425 ewitab = 4*ewitab;
426 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
427 velec = qq13*((rinv13-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
428 felec = qq13*rinv13*(rinvsq13-felec);
430 /* Update potential sums from outer loop */
431 velecsum += velec;
433 fscal = felec;
435 /* Calculate temporary vectorial force */
436 tx = fscal*dx13;
437 ty = fscal*dy13;
438 tz = fscal*dz13;
440 /* Update vectorial force */
441 fix1 += tx;
442 fiy1 += ty;
443 fiz1 += tz;
444 f[j_coord_offset+DIM*3+XX] -= tx;
445 f[j_coord_offset+DIM*3+YY] -= ty;
446 f[j_coord_offset+DIM*3+ZZ] -= tz;
450 /**************************
451 * CALCULATE INTERACTIONS *
452 **************************/
454 if (rsq21<rcutoff2)
457 r21 = rsq21*rinv21;
459 /* EWALD ELECTROSTATICS */
461 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
462 ewrt = r21*ewtabscale;
463 ewitab = ewrt;
464 eweps = ewrt-ewitab;
465 ewitab = 4*ewitab;
466 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
467 velec = qq21*((rinv21-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
468 felec = qq21*rinv21*(rinvsq21-felec);
470 /* Update potential sums from outer loop */
471 velecsum += velec;
473 fscal = felec;
475 /* Calculate temporary vectorial force */
476 tx = fscal*dx21;
477 ty = fscal*dy21;
478 tz = fscal*dz21;
480 /* Update vectorial force */
481 fix2 += tx;
482 fiy2 += ty;
483 fiz2 += tz;
484 f[j_coord_offset+DIM*1+XX] -= tx;
485 f[j_coord_offset+DIM*1+YY] -= ty;
486 f[j_coord_offset+DIM*1+ZZ] -= tz;
490 /**************************
491 * CALCULATE INTERACTIONS *
492 **************************/
494 if (rsq22<rcutoff2)
497 r22 = rsq22*rinv22;
499 /* EWALD ELECTROSTATICS */
501 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
502 ewrt = r22*ewtabscale;
503 ewitab = ewrt;
504 eweps = ewrt-ewitab;
505 ewitab = 4*ewitab;
506 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
507 velec = qq22*((rinv22-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
508 felec = qq22*rinv22*(rinvsq22-felec);
510 /* Update potential sums from outer loop */
511 velecsum += velec;
513 fscal = felec;
515 /* Calculate temporary vectorial force */
516 tx = fscal*dx22;
517 ty = fscal*dy22;
518 tz = fscal*dz22;
520 /* Update vectorial force */
521 fix2 += tx;
522 fiy2 += ty;
523 fiz2 += tz;
524 f[j_coord_offset+DIM*2+XX] -= tx;
525 f[j_coord_offset+DIM*2+YY] -= ty;
526 f[j_coord_offset+DIM*2+ZZ] -= tz;
530 /**************************
531 * CALCULATE INTERACTIONS *
532 **************************/
534 if (rsq23<rcutoff2)
537 r23 = rsq23*rinv23;
539 /* EWALD ELECTROSTATICS */
541 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
542 ewrt = r23*ewtabscale;
543 ewitab = ewrt;
544 eweps = ewrt-ewitab;
545 ewitab = 4*ewitab;
546 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
547 velec = qq23*((rinv23-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
548 felec = qq23*rinv23*(rinvsq23-felec);
550 /* Update potential sums from outer loop */
551 velecsum += velec;
553 fscal = felec;
555 /* Calculate temporary vectorial force */
556 tx = fscal*dx23;
557 ty = fscal*dy23;
558 tz = fscal*dz23;
560 /* Update vectorial force */
561 fix2 += tx;
562 fiy2 += ty;
563 fiz2 += tz;
564 f[j_coord_offset+DIM*3+XX] -= tx;
565 f[j_coord_offset+DIM*3+YY] -= ty;
566 f[j_coord_offset+DIM*3+ZZ] -= tz;
570 /**************************
571 * CALCULATE INTERACTIONS *
572 **************************/
574 if (rsq31<rcutoff2)
577 r31 = rsq31*rinv31;
579 /* EWALD ELECTROSTATICS */
581 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
582 ewrt = r31*ewtabscale;
583 ewitab = ewrt;
584 eweps = ewrt-ewitab;
585 ewitab = 4*ewitab;
586 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
587 velec = qq31*((rinv31-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
588 felec = qq31*rinv31*(rinvsq31-felec);
590 /* Update potential sums from outer loop */
591 velecsum += velec;
593 fscal = felec;
595 /* Calculate temporary vectorial force */
596 tx = fscal*dx31;
597 ty = fscal*dy31;
598 tz = fscal*dz31;
600 /* Update vectorial force */
601 fix3 += tx;
602 fiy3 += ty;
603 fiz3 += tz;
604 f[j_coord_offset+DIM*1+XX] -= tx;
605 f[j_coord_offset+DIM*1+YY] -= ty;
606 f[j_coord_offset+DIM*1+ZZ] -= tz;
610 /**************************
611 * CALCULATE INTERACTIONS *
612 **************************/
614 if (rsq32<rcutoff2)
617 r32 = rsq32*rinv32;
619 /* EWALD ELECTROSTATICS */
621 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
622 ewrt = r32*ewtabscale;
623 ewitab = ewrt;
624 eweps = ewrt-ewitab;
625 ewitab = 4*ewitab;
626 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
627 velec = qq32*((rinv32-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
628 felec = qq32*rinv32*(rinvsq32-felec);
630 /* Update potential sums from outer loop */
631 velecsum += velec;
633 fscal = felec;
635 /* Calculate temporary vectorial force */
636 tx = fscal*dx32;
637 ty = fscal*dy32;
638 tz = fscal*dz32;
640 /* Update vectorial force */
641 fix3 += tx;
642 fiy3 += ty;
643 fiz3 += tz;
644 f[j_coord_offset+DIM*2+XX] -= tx;
645 f[j_coord_offset+DIM*2+YY] -= ty;
646 f[j_coord_offset+DIM*2+ZZ] -= tz;
650 /**************************
651 * CALCULATE INTERACTIONS *
652 **************************/
654 if (rsq33<rcutoff2)
657 r33 = rsq33*rinv33;
659 /* EWALD ELECTROSTATICS */
661 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
662 ewrt = r33*ewtabscale;
663 ewitab = ewrt;
664 eweps = ewrt-ewitab;
665 ewitab = 4*ewitab;
666 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
667 velec = qq33*((rinv33-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
668 felec = qq33*rinv33*(rinvsq33-felec);
670 /* Update potential sums from outer loop */
671 velecsum += velec;
673 fscal = felec;
675 /* Calculate temporary vectorial force */
676 tx = fscal*dx33;
677 ty = fscal*dy33;
678 tz = fscal*dz33;
680 /* Update vectorial force */
681 fix3 += tx;
682 fiy3 += ty;
683 fiz3 += tz;
684 f[j_coord_offset+DIM*3+XX] -= tx;
685 f[j_coord_offset+DIM*3+YY] -= ty;
686 f[j_coord_offset+DIM*3+ZZ] -= tz;
690 /* Inner loop uses 406 flops */
692 /* End of innermost loop */
694 tx = ty = tz = 0;
695 f[i_coord_offset+DIM*0+XX] += fix0;
696 f[i_coord_offset+DIM*0+YY] += fiy0;
697 f[i_coord_offset+DIM*0+ZZ] += fiz0;
698 tx += fix0;
699 ty += fiy0;
700 tz += fiz0;
701 f[i_coord_offset+DIM*1+XX] += fix1;
702 f[i_coord_offset+DIM*1+YY] += fiy1;
703 f[i_coord_offset+DIM*1+ZZ] += fiz1;
704 tx += fix1;
705 ty += fiy1;
706 tz += fiz1;
707 f[i_coord_offset+DIM*2+XX] += fix2;
708 f[i_coord_offset+DIM*2+YY] += fiy2;
709 f[i_coord_offset+DIM*2+ZZ] += fiz2;
710 tx += fix2;
711 ty += fiy2;
712 tz += fiz2;
713 f[i_coord_offset+DIM*3+XX] += fix3;
714 f[i_coord_offset+DIM*3+YY] += fiy3;
715 f[i_coord_offset+DIM*3+ZZ] += fiz3;
716 tx += fix3;
717 ty += fiy3;
718 tz += fiz3;
719 fshift[i_shift_offset+XX] += tx;
720 fshift[i_shift_offset+YY] += ty;
721 fshift[i_shift_offset+ZZ] += tz;
723 ggid = gid[iidx];
724 /* Update potential energies */
725 kernel_data->energygrp_elec[ggid] += velecsum;
726 kernel_data->energygrp_vdw[ggid] += vvdwsum;
728 /* Increment number of inner iterations */
729 inneriter += j_index_end - j_index_start;
731 /* Outer loop uses 41 flops */
734 /* Increment number of outer iterations */
735 outeriter += nri;
737 /* Update outer/inner flops */
739 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4W4_VF,outeriter*41 + inneriter*406);
742 * Gromacs nonbonded kernel: nb_kernel_ElecEwSh_VdwLJSh_GeomW4W4_F_c
743 * Electrostatics interaction: Ewald
744 * VdW interaction: LennardJones
745 * Geometry: Water4-Water4
746 * Calculate force/pot: Force
748 void
749 nb_kernel_ElecEwSh_VdwLJSh_GeomW4W4_F_c
750 (t_nblist * gmx_restrict nlist,
751 rvec * gmx_restrict xx,
752 rvec * gmx_restrict ff,
753 struct t_forcerec * gmx_restrict fr,
754 t_mdatoms * gmx_restrict mdatoms,
755 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
756 t_nrnb * gmx_restrict nrnb)
758 int i_shift_offset,i_coord_offset,j_coord_offset;
759 int j_index_start,j_index_end;
760 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
761 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
762 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
763 real *shiftvec,*fshift,*x,*f;
764 int vdwioffset0;
765 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
766 int vdwioffset1;
767 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
768 int vdwioffset2;
769 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
770 int vdwioffset3;
771 real ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
772 int vdwjidx0;
773 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
774 int vdwjidx1;
775 real jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
776 int vdwjidx2;
777 real jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
778 int vdwjidx3;
779 real jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
780 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
781 real dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
782 real dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
783 real dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13,cexp1_13,cexp2_13;
784 real dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
785 real dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
786 real dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23,cexp1_23,cexp2_23;
787 real dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31,cexp1_31,cexp2_31;
788 real dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32,cexp1_32,cexp2_32;
789 real dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33,cexp1_33,cexp2_33;
790 real velec,felec,velecsum,facel,crf,krf,krf2;
791 real *charge;
792 int nvdwtype;
793 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
794 int *vdwtype;
795 real *vdwparam;
796 int ewitab;
797 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
798 real *ewtab;
800 x = xx[0];
801 f = ff[0];
803 nri = nlist->nri;
804 iinr = nlist->iinr;
805 jindex = nlist->jindex;
806 jjnr = nlist->jjnr;
807 shiftidx = nlist->shift;
808 gid = nlist->gid;
809 shiftvec = fr->shift_vec[0];
810 fshift = fr->fshift[0];
811 facel = fr->ic->epsfac;
812 charge = mdatoms->chargeA;
813 nvdwtype = fr->ntype;
814 vdwparam = fr->nbfp;
815 vdwtype = mdatoms->typeA;
817 sh_ewald = fr->ic->sh_ewald;
818 ewtab = fr->ic->tabq_coul_F;
819 ewtabscale = fr->ic->tabq_scale;
820 ewtabhalfspace = 0.5/ewtabscale;
822 /* Setup water-specific parameters */
823 inr = nlist->iinr[0];
824 iq1 = facel*charge[inr+1];
825 iq2 = facel*charge[inr+2];
826 iq3 = facel*charge[inr+3];
827 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
829 jq1 = charge[inr+1];
830 jq2 = charge[inr+2];
831 jq3 = charge[inr+3];
832 vdwjidx0 = 2*vdwtype[inr+0];
833 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
834 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
835 qq11 = iq1*jq1;
836 qq12 = iq1*jq2;
837 qq13 = iq1*jq3;
838 qq21 = iq2*jq1;
839 qq22 = iq2*jq2;
840 qq23 = iq2*jq3;
841 qq31 = iq3*jq1;
842 qq32 = iq3*jq2;
843 qq33 = iq3*jq3;
845 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
846 rcutoff = fr->ic->rcoulomb;
847 rcutoff2 = rcutoff*rcutoff;
849 sh_vdw_invrcut6 = fr->ic->sh_invrc6;
850 rvdw = fr->ic->rvdw;
852 outeriter = 0;
853 inneriter = 0;
855 /* Start outer loop over neighborlists */
856 for(iidx=0; iidx<nri; iidx++)
858 /* Load shift vector for this list */
859 i_shift_offset = DIM*shiftidx[iidx];
860 shX = shiftvec[i_shift_offset+XX];
861 shY = shiftvec[i_shift_offset+YY];
862 shZ = shiftvec[i_shift_offset+ZZ];
864 /* Load limits for loop over neighbors */
865 j_index_start = jindex[iidx];
866 j_index_end = jindex[iidx+1];
868 /* Get outer coordinate index */
869 inr = iinr[iidx];
870 i_coord_offset = DIM*inr;
872 /* Load i particle coords and add shift vector */
873 ix0 = shX + x[i_coord_offset+DIM*0+XX];
874 iy0 = shY + x[i_coord_offset+DIM*0+YY];
875 iz0 = shZ + x[i_coord_offset+DIM*0+ZZ];
876 ix1 = shX + x[i_coord_offset+DIM*1+XX];
877 iy1 = shY + x[i_coord_offset+DIM*1+YY];
878 iz1 = shZ + x[i_coord_offset+DIM*1+ZZ];
879 ix2 = shX + x[i_coord_offset+DIM*2+XX];
880 iy2 = shY + x[i_coord_offset+DIM*2+YY];
881 iz2 = shZ + x[i_coord_offset+DIM*2+ZZ];
882 ix3 = shX + x[i_coord_offset+DIM*3+XX];
883 iy3 = shY + x[i_coord_offset+DIM*3+YY];
884 iz3 = shZ + x[i_coord_offset+DIM*3+ZZ];
886 fix0 = 0.0;
887 fiy0 = 0.0;
888 fiz0 = 0.0;
889 fix1 = 0.0;
890 fiy1 = 0.0;
891 fiz1 = 0.0;
892 fix2 = 0.0;
893 fiy2 = 0.0;
894 fiz2 = 0.0;
895 fix3 = 0.0;
896 fiy3 = 0.0;
897 fiz3 = 0.0;
899 /* Start inner kernel loop */
900 for(jidx=j_index_start; jidx<j_index_end; jidx++)
902 /* Get j neighbor index, and coordinate index */
903 jnr = jjnr[jidx];
904 j_coord_offset = DIM*jnr;
906 /* load j atom coordinates */
907 jx0 = x[j_coord_offset+DIM*0+XX];
908 jy0 = x[j_coord_offset+DIM*0+YY];
909 jz0 = x[j_coord_offset+DIM*0+ZZ];
910 jx1 = x[j_coord_offset+DIM*1+XX];
911 jy1 = x[j_coord_offset+DIM*1+YY];
912 jz1 = x[j_coord_offset+DIM*1+ZZ];
913 jx2 = x[j_coord_offset+DIM*2+XX];
914 jy2 = x[j_coord_offset+DIM*2+YY];
915 jz2 = x[j_coord_offset+DIM*2+ZZ];
916 jx3 = x[j_coord_offset+DIM*3+XX];
917 jy3 = x[j_coord_offset+DIM*3+YY];
918 jz3 = x[j_coord_offset+DIM*3+ZZ];
920 /* Calculate displacement vector */
921 dx00 = ix0 - jx0;
922 dy00 = iy0 - jy0;
923 dz00 = iz0 - jz0;
924 dx11 = ix1 - jx1;
925 dy11 = iy1 - jy1;
926 dz11 = iz1 - jz1;
927 dx12 = ix1 - jx2;
928 dy12 = iy1 - jy2;
929 dz12 = iz1 - jz2;
930 dx13 = ix1 - jx3;
931 dy13 = iy1 - jy3;
932 dz13 = iz1 - jz3;
933 dx21 = ix2 - jx1;
934 dy21 = iy2 - jy1;
935 dz21 = iz2 - jz1;
936 dx22 = ix2 - jx2;
937 dy22 = iy2 - jy2;
938 dz22 = iz2 - jz2;
939 dx23 = ix2 - jx3;
940 dy23 = iy2 - jy3;
941 dz23 = iz2 - jz3;
942 dx31 = ix3 - jx1;
943 dy31 = iy3 - jy1;
944 dz31 = iz3 - jz1;
945 dx32 = ix3 - jx2;
946 dy32 = iy3 - jy2;
947 dz32 = iz3 - jz2;
948 dx33 = ix3 - jx3;
949 dy33 = iy3 - jy3;
950 dz33 = iz3 - jz3;
952 /* Calculate squared distance and things based on it */
953 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
954 rsq11 = dx11*dx11+dy11*dy11+dz11*dz11;
955 rsq12 = dx12*dx12+dy12*dy12+dz12*dz12;
956 rsq13 = dx13*dx13+dy13*dy13+dz13*dz13;
957 rsq21 = dx21*dx21+dy21*dy21+dz21*dz21;
958 rsq22 = dx22*dx22+dy22*dy22+dz22*dz22;
959 rsq23 = dx23*dx23+dy23*dy23+dz23*dz23;
960 rsq31 = dx31*dx31+dy31*dy31+dz31*dz31;
961 rsq32 = dx32*dx32+dy32*dy32+dz32*dz32;
962 rsq33 = dx33*dx33+dy33*dy33+dz33*dz33;
964 rinv11 = 1.0/sqrt(rsq11);
965 rinv12 = 1.0/sqrt(rsq12);
966 rinv13 = 1.0/sqrt(rsq13);
967 rinv21 = 1.0/sqrt(rsq21);
968 rinv22 = 1.0/sqrt(rsq22);
969 rinv23 = 1.0/sqrt(rsq23);
970 rinv31 = 1.0/sqrt(rsq31);
971 rinv32 = 1.0/sqrt(rsq32);
972 rinv33 = 1.0/sqrt(rsq33);
974 rinvsq00 = 1.0/rsq00;
975 rinvsq11 = rinv11*rinv11;
976 rinvsq12 = rinv12*rinv12;
977 rinvsq13 = rinv13*rinv13;
978 rinvsq21 = rinv21*rinv21;
979 rinvsq22 = rinv22*rinv22;
980 rinvsq23 = rinv23*rinv23;
981 rinvsq31 = rinv31*rinv31;
982 rinvsq32 = rinv32*rinv32;
983 rinvsq33 = rinv33*rinv33;
985 /**************************
986 * CALCULATE INTERACTIONS *
987 **************************/
989 if (rsq00<rcutoff2)
992 /* LENNARD-JONES DISPERSION/REPULSION */
994 rinvsix = rinvsq00*rinvsq00*rinvsq00;
995 fvdw = (c12_00*rinvsix-c6_00)*rinvsix*rinvsq00;
997 fscal = fvdw;
999 /* Calculate temporary vectorial force */
1000 tx = fscal*dx00;
1001 ty = fscal*dy00;
1002 tz = fscal*dz00;
1004 /* Update vectorial force */
1005 fix0 += tx;
1006 fiy0 += ty;
1007 fiz0 += tz;
1008 f[j_coord_offset+DIM*0+XX] -= tx;
1009 f[j_coord_offset+DIM*0+YY] -= ty;
1010 f[j_coord_offset+DIM*0+ZZ] -= tz;
1014 /**************************
1015 * CALCULATE INTERACTIONS *
1016 **************************/
1018 if (rsq11<rcutoff2)
1021 r11 = rsq11*rinv11;
1023 /* EWALD ELECTROSTATICS */
1025 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1026 ewrt = r11*ewtabscale;
1027 ewitab = ewrt;
1028 eweps = ewrt-ewitab;
1029 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1030 felec = qq11*rinv11*(rinvsq11-felec);
1032 fscal = felec;
1034 /* Calculate temporary vectorial force */
1035 tx = fscal*dx11;
1036 ty = fscal*dy11;
1037 tz = fscal*dz11;
1039 /* Update vectorial force */
1040 fix1 += tx;
1041 fiy1 += ty;
1042 fiz1 += tz;
1043 f[j_coord_offset+DIM*1+XX] -= tx;
1044 f[j_coord_offset+DIM*1+YY] -= ty;
1045 f[j_coord_offset+DIM*1+ZZ] -= tz;
1049 /**************************
1050 * CALCULATE INTERACTIONS *
1051 **************************/
1053 if (rsq12<rcutoff2)
1056 r12 = rsq12*rinv12;
1058 /* EWALD ELECTROSTATICS */
1060 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1061 ewrt = r12*ewtabscale;
1062 ewitab = ewrt;
1063 eweps = ewrt-ewitab;
1064 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1065 felec = qq12*rinv12*(rinvsq12-felec);
1067 fscal = felec;
1069 /* Calculate temporary vectorial force */
1070 tx = fscal*dx12;
1071 ty = fscal*dy12;
1072 tz = fscal*dz12;
1074 /* Update vectorial force */
1075 fix1 += tx;
1076 fiy1 += ty;
1077 fiz1 += tz;
1078 f[j_coord_offset+DIM*2+XX] -= tx;
1079 f[j_coord_offset+DIM*2+YY] -= ty;
1080 f[j_coord_offset+DIM*2+ZZ] -= tz;
1084 /**************************
1085 * CALCULATE INTERACTIONS *
1086 **************************/
1088 if (rsq13<rcutoff2)
1091 r13 = rsq13*rinv13;
1093 /* EWALD ELECTROSTATICS */
1095 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1096 ewrt = r13*ewtabscale;
1097 ewitab = ewrt;
1098 eweps = ewrt-ewitab;
1099 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1100 felec = qq13*rinv13*(rinvsq13-felec);
1102 fscal = felec;
1104 /* Calculate temporary vectorial force */
1105 tx = fscal*dx13;
1106 ty = fscal*dy13;
1107 tz = fscal*dz13;
1109 /* Update vectorial force */
1110 fix1 += tx;
1111 fiy1 += ty;
1112 fiz1 += tz;
1113 f[j_coord_offset+DIM*3+XX] -= tx;
1114 f[j_coord_offset+DIM*3+YY] -= ty;
1115 f[j_coord_offset+DIM*3+ZZ] -= tz;
1119 /**************************
1120 * CALCULATE INTERACTIONS *
1121 **************************/
1123 if (rsq21<rcutoff2)
1126 r21 = rsq21*rinv21;
1128 /* EWALD ELECTROSTATICS */
1130 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1131 ewrt = r21*ewtabscale;
1132 ewitab = ewrt;
1133 eweps = ewrt-ewitab;
1134 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1135 felec = qq21*rinv21*(rinvsq21-felec);
1137 fscal = felec;
1139 /* Calculate temporary vectorial force */
1140 tx = fscal*dx21;
1141 ty = fscal*dy21;
1142 tz = fscal*dz21;
1144 /* Update vectorial force */
1145 fix2 += tx;
1146 fiy2 += ty;
1147 fiz2 += tz;
1148 f[j_coord_offset+DIM*1+XX] -= tx;
1149 f[j_coord_offset+DIM*1+YY] -= ty;
1150 f[j_coord_offset+DIM*1+ZZ] -= tz;
1154 /**************************
1155 * CALCULATE INTERACTIONS *
1156 **************************/
1158 if (rsq22<rcutoff2)
1161 r22 = rsq22*rinv22;
1163 /* EWALD ELECTROSTATICS */
1165 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1166 ewrt = r22*ewtabscale;
1167 ewitab = ewrt;
1168 eweps = ewrt-ewitab;
1169 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1170 felec = qq22*rinv22*(rinvsq22-felec);
1172 fscal = felec;
1174 /* Calculate temporary vectorial force */
1175 tx = fscal*dx22;
1176 ty = fscal*dy22;
1177 tz = fscal*dz22;
1179 /* Update vectorial force */
1180 fix2 += tx;
1181 fiy2 += ty;
1182 fiz2 += tz;
1183 f[j_coord_offset+DIM*2+XX] -= tx;
1184 f[j_coord_offset+DIM*2+YY] -= ty;
1185 f[j_coord_offset+DIM*2+ZZ] -= tz;
1189 /**************************
1190 * CALCULATE INTERACTIONS *
1191 **************************/
1193 if (rsq23<rcutoff2)
1196 r23 = rsq23*rinv23;
1198 /* EWALD ELECTROSTATICS */
1200 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1201 ewrt = r23*ewtabscale;
1202 ewitab = ewrt;
1203 eweps = ewrt-ewitab;
1204 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1205 felec = qq23*rinv23*(rinvsq23-felec);
1207 fscal = felec;
1209 /* Calculate temporary vectorial force */
1210 tx = fscal*dx23;
1211 ty = fscal*dy23;
1212 tz = fscal*dz23;
1214 /* Update vectorial force */
1215 fix2 += tx;
1216 fiy2 += ty;
1217 fiz2 += tz;
1218 f[j_coord_offset+DIM*3+XX] -= tx;
1219 f[j_coord_offset+DIM*3+YY] -= ty;
1220 f[j_coord_offset+DIM*3+ZZ] -= tz;
1224 /**************************
1225 * CALCULATE INTERACTIONS *
1226 **************************/
1228 if (rsq31<rcutoff2)
1231 r31 = rsq31*rinv31;
1233 /* EWALD ELECTROSTATICS */
1235 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1236 ewrt = r31*ewtabscale;
1237 ewitab = ewrt;
1238 eweps = ewrt-ewitab;
1239 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1240 felec = qq31*rinv31*(rinvsq31-felec);
1242 fscal = felec;
1244 /* Calculate temporary vectorial force */
1245 tx = fscal*dx31;
1246 ty = fscal*dy31;
1247 tz = fscal*dz31;
1249 /* Update vectorial force */
1250 fix3 += tx;
1251 fiy3 += ty;
1252 fiz3 += tz;
1253 f[j_coord_offset+DIM*1+XX] -= tx;
1254 f[j_coord_offset+DIM*1+YY] -= ty;
1255 f[j_coord_offset+DIM*1+ZZ] -= tz;
1259 /**************************
1260 * CALCULATE INTERACTIONS *
1261 **************************/
1263 if (rsq32<rcutoff2)
1266 r32 = rsq32*rinv32;
1268 /* EWALD ELECTROSTATICS */
1270 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1271 ewrt = r32*ewtabscale;
1272 ewitab = ewrt;
1273 eweps = ewrt-ewitab;
1274 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1275 felec = qq32*rinv32*(rinvsq32-felec);
1277 fscal = felec;
1279 /* Calculate temporary vectorial force */
1280 tx = fscal*dx32;
1281 ty = fscal*dy32;
1282 tz = fscal*dz32;
1284 /* Update vectorial force */
1285 fix3 += tx;
1286 fiy3 += ty;
1287 fiz3 += tz;
1288 f[j_coord_offset+DIM*2+XX] -= tx;
1289 f[j_coord_offset+DIM*2+YY] -= ty;
1290 f[j_coord_offset+DIM*2+ZZ] -= tz;
1294 /**************************
1295 * CALCULATE INTERACTIONS *
1296 **************************/
1298 if (rsq33<rcutoff2)
1301 r33 = rsq33*rinv33;
1303 /* EWALD ELECTROSTATICS */
1305 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1306 ewrt = r33*ewtabscale;
1307 ewitab = ewrt;
1308 eweps = ewrt-ewitab;
1309 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1310 felec = qq33*rinv33*(rinvsq33-felec);
1312 fscal = felec;
1314 /* Calculate temporary vectorial force */
1315 tx = fscal*dx33;
1316 ty = fscal*dy33;
1317 tz = fscal*dz33;
1319 /* Update vectorial force */
1320 fix3 += tx;
1321 fiy3 += ty;
1322 fiz3 += tz;
1323 f[j_coord_offset+DIM*3+XX] -= tx;
1324 f[j_coord_offset+DIM*3+YY] -= ty;
1325 f[j_coord_offset+DIM*3+ZZ] -= tz;
1329 /* Inner loop uses 324 flops */
1331 /* End of innermost loop */
1333 tx = ty = tz = 0;
1334 f[i_coord_offset+DIM*0+XX] += fix0;
1335 f[i_coord_offset+DIM*0+YY] += fiy0;
1336 f[i_coord_offset+DIM*0+ZZ] += fiz0;
1337 tx += fix0;
1338 ty += fiy0;
1339 tz += fiz0;
1340 f[i_coord_offset+DIM*1+XX] += fix1;
1341 f[i_coord_offset+DIM*1+YY] += fiy1;
1342 f[i_coord_offset+DIM*1+ZZ] += fiz1;
1343 tx += fix1;
1344 ty += fiy1;
1345 tz += fiz1;
1346 f[i_coord_offset+DIM*2+XX] += fix2;
1347 f[i_coord_offset+DIM*2+YY] += fiy2;
1348 f[i_coord_offset+DIM*2+ZZ] += fiz2;
1349 tx += fix2;
1350 ty += fiy2;
1351 tz += fiz2;
1352 f[i_coord_offset+DIM*3+XX] += fix3;
1353 f[i_coord_offset+DIM*3+YY] += fiy3;
1354 f[i_coord_offset+DIM*3+ZZ] += fiz3;
1355 tx += fix3;
1356 ty += fiy3;
1357 tz += fiz3;
1358 fshift[i_shift_offset+XX] += tx;
1359 fshift[i_shift_offset+YY] += ty;
1360 fshift[i_shift_offset+ZZ] += tz;
1362 /* Increment number of inner iterations */
1363 inneriter += j_index_end - j_index_start;
1365 /* Outer loop uses 39 flops */
1368 /* Increment number of outer iterations */
1369 outeriter += nri;
1371 /* Update outer/inner flops */
1373 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4W4_F,outeriter*39 + inneriter*324);