Remove nb-parameters from t_forcerec
[gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecEwSh_VdwBhamSh_GeomP1P1_c.c
bloba7db09fc40e02d57fb8eb5ee9b09b99acb4562c9
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 2012,2013,2014.2015,2017, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
36 * Note: this file was generated by the GROMACS c kernel generator.
38 #include "gmxpre.h"
40 #include "config.h"
42 #include <math.h>
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
48 * Gromacs nonbonded kernel: nb_kernel_ElecEwSh_VdwBhamSh_GeomP1P1_VF_c
49 * Electrostatics interaction: Ewald
50 * VdW interaction: Buckingham
51 * Geometry: Particle-Particle
52 * Calculate force/pot: PotentialAndForce
54 void
55 nb_kernel_ElecEwSh_VdwBhamSh_GeomP1P1_VF_c
56 (t_nblist * gmx_restrict nlist,
57 rvec * gmx_restrict xx,
58 rvec * gmx_restrict ff,
59 struct t_forcerec * gmx_restrict fr,
60 t_mdatoms * gmx_restrict mdatoms,
61 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
62 t_nrnb * gmx_restrict nrnb)
64 int i_shift_offset,i_coord_offset,j_coord_offset;
65 int j_index_start,j_index_end;
66 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
67 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
68 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
69 real *shiftvec,*fshift,*x,*f;
70 int vdwioffset0;
71 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
72 int vdwjidx0;
73 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
74 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
75 real velec,felec,velecsum,facel,crf,krf,krf2;
76 real *charge;
77 int nvdwtype;
78 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
79 int *vdwtype;
80 real *vdwparam;
81 int ewitab;
82 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
83 real *ewtab;
85 x = xx[0];
86 f = ff[0];
88 nri = nlist->nri;
89 iinr = nlist->iinr;
90 jindex = nlist->jindex;
91 jjnr = nlist->jjnr;
92 shiftidx = nlist->shift;
93 gid = nlist->gid;
94 shiftvec = fr->shift_vec[0];
95 fshift = fr->fshift[0];
96 facel = fr->ic->epsfac;
97 charge = mdatoms->chargeA;
98 nvdwtype = fr->ntype;
99 vdwparam = fr->nbfp;
100 vdwtype = mdatoms->typeA;
102 sh_ewald = fr->ic->sh_ewald;
103 ewtab = fr->ic->tabq_coul_FDV0;
104 ewtabscale = fr->ic->tabq_scale;
105 ewtabhalfspace = 0.5/ewtabscale;
107 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
108 rcutoff = fr->ic->rcoulomb;
109 rcutoff2 = rcutoff*rcutoff;
111 sh_vdw_invrcut6 = fr->ic->sh_invrc6;
112 rvdw = fr->ic->rvdw;
114 outeriter = 0;
115 inneriter = 0;
117 /* Start outer loop over neighborlists */
118 for(iidx=0; iidx<nri; iidx++)
120 /* Load shift vector for this list */
121 i_shift_offset = DIM*shiftidx[iidx];
122 shX = shiftvec[i_shift_offset+XX];
123 shY = shiftvec[i_shift_offset+YY];
124 shZ = shiftvec[i_shift_offset+ZZ];
126 /* Load limits for loop over neighbors */
127 j_index_start = jindex[iidx];
128 j_index_end = jindex[iidx+1];
130 /* Get outer coordinate index */
131 inr = iinr[iidx];
132 i_coord_offset = DIM*inr;
134 /* Load i particle coords and add shift vector */
135 ix0 = shX + x[i_coord_offset+DIM*0+XX];
136 iy0 = shY + x[i_coord_offset+DIM*0+YY];
137 iz0 = shZ + x[i_coord_offset+DIM*0+ZZ];
139 fix0 = 0.0;
140 fiy0 = 0.0;
141 fiz0 = 0.0;
143 /* Load parameters for i particles */
144 iq0 = facel*charge[inr+0];
145 vdwioffset0 = 3*nvdwtype*vdwtype[inr+0];
147 /* Reset potential sums */
148 velecsum = 0.0;
149 vvdwsum = 0.0;
151 /* Start inner kernel loop */
152 for(jidx=j_index_start; jidx<j_index_end; jidx++)
154 /* Get j neighbor index, and coordinate index */
155 jnr = jjnr[jidx];
156 j_coord_offset = DIM*jnr;
158 /* load j atom coordinates */
159 jx0 = x[j_coord_offset+DIM*0+XX];
160 jy0 = x[j_coord_offset+DIM*0+YY];
161 jz0 = x[j_coord_offset+DIM*0+ZZ];
163 /* Calculate displacement vector */
164 dx00 = ix0 - jx0;
165 dy00 = iy0 - jy0;
166 dz00 = iz0 - jz0;
168 /* Calculate squared distance and things based on it */
169 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
171 rinv00 = 1.0/sqrt(rsq00);
173 rinvsq00 = rinv00*rinv00;
175 /* Load parameters for j particles */
176 jq0 = charge[jnr+0];
177 vdwjidx0 = 3*vdwtype[jnr+0];
179 /**************************
180 * CALCULATE INTERACTIONS *
181 **************************/
183 if (rsq00<rcutoff2)
186 r00 = rsq00*rinv00;
188 qq00 = iq0*jq0;
189 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
190 cexp1_00 = vdwparam[vdwioffset0+vdwjidx0+1];
191 cexp2_00 = vdwparam[vdwioffset0+vdwjidx0+2];
193 /* EWALD ELECTROSTATICS */
195 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
196 ewrt = r00*ewtabscale;
197 ewitab = ewrt;
198 eweps = ewrt-ewitab;
199 ewitab = 4*ewitab;
200 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
201 velec = qq00*((rinv00-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
202 felec = qq00*rinv00*(rinvsq00-felec);
204 /* BUCKINGHAM DISPERSION/REPULSION */
205 rinvsix = rinvsq00*rinvsq00*rinvsq00;
206 vvdw6 = c6_00*rinvsix;
207 br = cexp2_00*r00;
208 vvdwexp = cexp1_00*exp(-br);
209 vvdw = (vvdwexp-cexp1_00*exp(-cexp2_00*rvdw)) - (vvdw6 - c6_00*sh_vdw_invrcut6)*(1.0/6.0);
210 fvdw = (br*vvdwexp-vvdw6)*rinvsq00;
212 /* Update potential sums from outer loop */
213 velecsum += velec;
214 vvdwsum += vvdw;
216 fscal = felec+fvdw;
218 /* Calculate temporary vectorial force */
219 tx = fscal*dx00;
220 ty = fscal*dy00;
221 tz = fscal*dz00;
223 /* Update vectorial force */
224 fix0 += tx;
225 fiy0 += ty;
226 fiz0 += tz;
227 f[j_coord_offset+DIM*0+XX] -= tx;
228 f[j_coord_offset+DIM*0+YY] -= ty;
229 f[j_coord_offset+DIM*0+ZZ] -= tz;
233 /* Inner loop uses 111 flops */
235 /* End of innermost loop */
237 tx = ty = tz = 0;
238 f[i_coord_offset+DIM*0+XX] += fix0;
239 f[i_coord_offset+DIM*0+YY] += fiy0;
240 f[i_coord_offset+DIM*0+ZZ] += fiz0;
241 tx += fix0;
242 ty += fiy0;
243 tz += fiz0;
244 fshift[i_shift_offset+XX] += tx;
245 fshift[i_shift_offset+YY] += ty;
246 fshift[i_shift_offset+ZZ] += tz;
248 ggid = gid[iidx];
249 /* Update potential energies */
250 kernel_data->energygrp_elec[ggid] += velecsum;
251 kernel_data->energygrp_vdw[ggid] += vvdwsum;
253 /* Increment number of inner iterations */
254 inneriter += j_index_end - j_index_start;
256 /* Outer loop uses 15 flops */
259 /* Increment number of outer iterations */
260 outeriter += nri;
262 /* Update outer/inner flops */
264 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*15 + inneriter*111);
267 * Gromacs nonbonded kernel: nb_kernel_ElecEwSh_VdwBhamSh_GeomP1P1_F_c
268 * Electrostatics interaction: Ewald
269 * VdW interaction: Buckingham
270 * Geometry: Particle-Particle
271 * Calculate force/pot: Force
273 void
274 nb_kernel_ElecEwSh_VdwBhamSh_GeomP1P1_F_c
275 (t_nblist * gmx_restrict nlist,
276 rvec * gmx_restrict xx,
277 rvec * gmx_restrict ff,
278 struct t_forcerec * gmx_restrict fr,
279 t_mdatoms * gmx_restrict mdatoms,
280 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
281 t_nrnb * gmx_restrict nrnb)
283 int i_shift_offset,i_coord_offset,j_coord_offset;
284 int j_index_start,j_index_end;
285 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
286 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
287 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
288 real *shiftvec,*fshift,*x,*f;
289 int vdwioffset0;
290 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
291 int vdwjidx0;
292 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
293 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
294 real velec,felec,velecsum,facel,crf,krf,krf2;
295 real *charge;
296 int nvdwtype;
297 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
298 int *vdwtype;
299 real *vdwparam;
300 int ewitab;
301 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
302 real *ewtab;
304 x = xx[0];
305 f = ff[0];
307 nri = nlist->nri;
308 iinr = nlist->iinr;
309 jindex = nlist->jindex;
310 jjnr = nlist->jjnr;
311 shiftidx = nlist->shift;
312 gid = nlist->gid;
313 shiftvec = fr->shift_vec[0];
314 fshift = fr->fshift[0];
315 facel = fr->ic->epsfac;
316 charge = mdatoms->chargeA;
317 nvdwtype = fr->ntype;
318 vdwparam = fr->nbfp;
319 vdwtype = mdatoms->typeA;
321 sh_ewald = fr->ic->sh_ewald;
322 ewtab = fr->ic->tabq_coul_F;
323 ewtabscale = fr->ic->tabq_scale;
324 ewtabhalfspace = 0.5/ewtabscale;
326 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
327 rcutoff = fr->ic->rcoulomb;
328 rcutoff2 = rcutoff*rcutoff;
330 sh_vdw_invrcut6 = fr->ic->sh_invrc6;
331 rvdw = fr->ic->rvdw;
333 outeriter = 0;
334 inneriter = 0;
336 /* Start outer loop over neighborlists */
337 for(iidx=0; iidx<nri; iidx++)
339 /* Load shift vector for this list */
340 i_shift_offset = DIM*shiftidx[iidx];
341 shX = shiftvec[i_shift_offset+XX];
342 shY = shiftvec[i_shift_offset+YY];
343 shZ = shiftvec[i_shift_offset+ZZ];
345 /* Load limits for loop over neighbors */
346 j_index_start = jindex[iidx];
347 j_index_end = jindex[iidx+1];
349 /* Get outer coordinate index */
350 inr = iinr[iidx];
351 i_coord_offset = DIM*inr;
353 /* Load i particle coords and add shift vector */
354 ix0 = shX + x[i_coord_offset+DIM*0+XX];
355 iy0 = shY + x[i_coord_offset+DIM*0+YY];
356 iz0 = shZ + x[i_coord_offset+DIM*0+ZZ];
358 fix0 = 0.0;
359 fiy0 = 0.0;
360 fiz0 = 0.0;
362 /* Load parameters for i particles */
363 iq0 = facel*charge[inr+0];
364 vdwioffset0 = 3*nvdwtype*vdwtype[inr+0];
366 /* Start inner kernel loop */
367 for(jidx=j_index_start; jidx<j_index_end; jidx++)
369 /* Get j neighbor index, and coordinate index */
370 jnr = jjnr[jidx];
371 j_coord_offset = DIM*jnr;
373 /* load j atom coordinates */
374 jx0 = x[j_coord_offset+DIM*0+XX];
375 jy0 = x[j_coord_offset+DIM*0+YY];
376 jz0 = x[j_coord_offset+DIM*0+ZZ];
378 /* Calculate displacement vector */
379 dx00 = ix0 - jx0;
380 dy00 = iy0 - jy0;
381 dz00 = iz0 - jz0;
383 /* Calculate squared distance and things based on it */
384 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
386 rinv00 = 1.0/sqrt(rsq00);
388 rinvsq00 = rinv00*rinv00;
390 /* Load parameters for j particles */
391 jq0 = charge[jnr+0];
392 vdwjidx0 = 3*vdwtype[jnr+0];
394 /**************************
395 * CALCULATE INTERACTIONS *
396 **************************/
398 if (rsq00<rcutoff2)
401 r00 = rsq00*rinv00;
403 qq00 = iq0*jq0;
404 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
405 cexp1_00 = vdwparam[vdwioffset0+vdwjidx0+1];
406 cexp2_00 = vdwparam[vdwioffset0+vdwjidx0+2];
408 /* EWALD ELECTROSTATICS */
410 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
411 ewrt = r00*ewtabscale;
412 ewitab = ewrt;
413 eweps = ewrt-ewitab;
414 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
415 felec = qq00*rinv00*(rinvsq00-felec);
417 /* BUCKINGHAM DISPERSION/REPULSION */
418 rinvsix = rinvsq00*rinvsq00*rinvsq00;
419 vvdw6 = c6_00*rinvsix;
420 br = cexp2_00*r00;
421 vvdwexp = cexp1_00*exp(-br);
422 fvdw = (br*vvdwexp-vvdw6)*rinvsq00;
424 fscal = felec+fvdw;
426 /* Calculate temporary vectorial force */
427 tx = fscal*dx00;
428 ty = fscal*dy00;
429 tz = fscal*dz00;
431 /* Update vectorial force */
432 fix0 += tx;
433 fiy0 += ty;
434 fiz0 += tz;
435 f[j_coord_offset+DIM*0+XX] -= tx;
436 f[j_coord_offset+DIM*0+YY] -= ty;
437 f[j_coord_offset+DIM*0+ZZ] -= tz;
441 /* Inner loop uses 69 flops */
443 /* End of innermost loop */
445 tx = ty = tz = 0;
446 f[i_coord_offset+DIM*0+XX] += fix0;
447 f[i_coord_offset+DIM*0+YY] += fiy0;
448 f[i_coord_offset+DIM*0+ZZ] += fiz0;
449 tx += fix0;
450 ty += fiy0;
451 tz += fiz0;
452 fshift[i_shift_offset+XX] += tx;
453 fshift[i_shift_offset+YY] += ty;
454 fshift[i_shift_offset+ZZ] += tz;
456 /* Increment number of inner iterations */
457 inneriter += j_index_end - j_index_start;
459 /* Outer loop uses 13 flops */
462 /* Increment number of outer iterations */
463 outeriter += nri;
465 /* Update outer/inner flops */
467 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*13 + inneriter*69);