Remove nb-parameters from t_forcerec
[gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_c.c
blobf6ead5e379074f2322ab14944f1b54738e651aa5
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 2012,2013,2014.2015,2017, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
36 * Note: this file was generated by the GROMACS c kernel generator.
38 #include "gmxpre.h"
40 #include "config.h"
42 #include <math.h>
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
48 * Gromacs nonbonded kernel: nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_VF_c
49 * Electrostatics interaction: Coulomb
50 * VdW interaction: CubicSplineTable
51 * Geometry: Water4-Particle
52 * Calculate force/pot: PotentialAndForce
54 void
55 nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_VF_c
56 (t_nblist * gmx_restrict nlist,
57 rvec * gmx_restrict xx,
58 rvec * gmx_restrict ff,
59 struct t_forcerec * gmx_restrict fr,
60 t_mdatoms * gmx_restrict mdatoms,
61 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
62 t_nrnb * gmx_restrict nrnb)
64 int i_shift_offset,i_coord_offset,j_coord_offset;
65 int j_index_start,j_index_end;
66 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
67 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
68 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
69 real *shiftvec,*fshift,*x,*f;
70 int vdwioffset0;
71 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
72 int vdwioffset1;
73 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
74 int vdwioffset2;
75 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
76 int vdwioffset3;
77 real ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
78 int vdwjidx0;
79 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
81 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
82 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
83 real dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30,cexp1_30,cexp2_30;
84 real velec,felec,velecsum,facel,crf,krf,krf2;
85 real *charge;
86 int nvdwtype;
87 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
88 int *vdwtype;
89 real *vdwparam;
90 int vfitab;
91 real rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
92 real *vftab;
94 x = xx[0];
95 f = ff[0];
97 nri = nlist->nri;
98 iinr = nlist->iinr;
99 jindex = nlist->jindex;
100 jjnr = nlist->jjnr;
101 shiftidx = nlist->shift;
102 gid = nlist->gid;
103 shiftvec = fr->shift_vec[0];
104 fshift = fr->fshift[0];
105 facel = fr->ic->epsfac;
106 charge = mdatoms->chargeA;
107 nvdwtype = fr->ntype;
108 vdwparam = fr->nbfp;
109 vdwtype = mdatoms->typeA;
111 vftab = kernel_data->table_vdw->data;
112 vftabscale = kernel_data->table_vdw->scale;
114 /* Setup water-specific parameters */
115 inr = nlist->iinr[0];
116 iq1 = facel*charge[inr+1];
117 iq2 = facel*charge[inr+2];
118 iq3 = facel*charge[inr+3];
119 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
121 outeriter = 0;
122 inneriter = 0;
124 /* Start outer loop over neighborlists */
125 for(iidx=0; iidx<nri; iidx++)
127 /* Load shift vector for this list */
128 i_shift_offset = DIM*shiftidx[iidx];
129 shX = shiftvec[i_shift_offset+XX];
130 shY = shiftvec[i_shift_offset+YY];
131 shZ = shiftvec[i_shift_offset+ZZ];
133 /* Load limits for loop over neighbors */
134 j_index_start = jindex[iidx];
135 j_index_end = jindex[iidx+1];
137 /* Get outer coordinate index */
138 inr = iinr[iidx];
139 i_coord_offset = DIM*inr;
141 /* Load i particle coords and add shift vector */
142 ix0 = shX + x[i_coord_offset+DIM*0+XX];
143 iy0 = shY + x[i_coord_offset+DIM*0+YY];
144 iz0 = shZ + x[i_coord_offset+DIM*0+ZZ];
145 ix1 = shX + x[i_coord_offset+DIM*1+XX];
146 iy1 = shY + x[i_coord_offset+DIM*1+YY];
147 iz1 = shZ + x[i_coord_offset+DIM*1+ZZ];
148 ix2 = shX + x[i_coord_offset+DIM*2+XX];
149 iy2 = shY + x[i_coord_offset+DIM*2+YY];
150 iz2 = shZ + x[i_coord_offset+DIM*2+ZZ];
151 ix3 = shX + x[i_coord_offset+DIM*3+XX];
152 iy3 = shY + x[i_coord_offset+DIM*3+YY];
153 iz3 = shZ + x[i_coord_offset+DIM*3+ZZ];
155 fix0 = 0.0;
156 fiy0 = 0.0;
157 fiz0 = 0.0;
158 fix1 = 0.0;
159 fiy1 = 0.0;
160 fiz1 = 0.0;
161 fix2 = 0.0;
162 fiy2 = 0.0;
163 fiz2 = 0.0;
164 fix3 = 0.0;
165 fiy3 = 0.0;
166 fiz3 = 0.0;
168 /* Reset potential sums */
169 velecsum = 0.0;
170 vvdwsum = 0.0;
172 /* Start inner kernel loop */
173 for(jidx=j_index_start; jidx<j_index_end; jidx++)
175 /* Get j neighbor index, and coordinate index */
176 jnr = jjnr[jidx];
177 j_coord_offset = DIM*jnr;
179 /* load j atom coordinates */
180 jx0 = x[j_coord_offset+DIM*0+XX];
181 jy0 = x[j_coord_offset+DIM*0+YY];
182 jz0 = x[j_coord_offset+DIM*0+ZZ];
184 /* Calculate displacement vector */
185 dx00 = ix0 - jx0;
186 dy00 = iy0 - jy0;
187 dz00 = iz0 - jz0;
188 dx10 = ix1 - jx0;
189 dy10 = iy1 - jy0;
190 dz10 = iz1 - jz0;
191 dx20 = ix2 - jx0;
192 dy20 = iy2 - jy0;
193 dz20 = iz2 - jz0;
194 dx30 = ix3 - jx0;
195 dy30 = iy3 - jy0;
196 dz30 = iz3 - jz0;
198 /* Calculate squared distance and things based on it */
199 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
200 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
201 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
202 rsq30 = dx30*dx30+dy30*dy30+dz30*dz30;
204 rinv00 = 1.0/sqrt(rsq00);
205 rinv10 = 1.0/sqrt(rsq10);
206 rinv20 = 1.0/sqrt(rsq20);
207 rinv30 = 1.0/sqrt(rsq30);
209 rinvsq10 = rinv10*rinv10;
210 rinvsq20 = rinv20*rinv20;
211 rinvsq30 = rinv30*rinv30;
213 /* Load parameters for j particles */
214 jq0 = charge[jnr+0];
215 vdwjidx0 = 2*vdwtype[jnr+0];
217 /**************************
218 * CALCULATE INTERACTIONS *
219 **************************/
221 r00 = rsq00*rinv00;
223 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
224 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
226 /* Calculate table index by multiplying r with table scale and truncate to integer */
227 rt = r00*vftabscale;
228 vfitab = rt;
229 vfeps = rt-vfitab;
230 vfitab = 2*4*vfitab;
232 /* CUBIC SPLINE TABLE DISPERSION */
233 vfitab += 0;
234 Y = vftab[vfitab];
235 F = vftab[vfitab+1];
236 Geps = vfeps*vftab[vfitab+2];
237 Heps2 = vfeps*vfeps*vftab[vfitab+3];
238 Fp = F+Geps+Heps2;
239 VV = Y+vfeps*Fp;
240 vvdw6 = c6_00*VV;
241 FF = Fp+Geps+2.0*Heps2;
242 fvdw6 = c6_00*FF;
244 /* CUBIC SPLINE TABLE REPULSION */
245 Y = vftab[vfitab+4];
246 F = vftab[vfitab+5];
247 Geps = vfeps*vftab[vfitab+6];
248 Heps2 = vfeps*vfeps*vftab[vfitab+7];
249 Fp = F+Geps+Heps2;
250 VV = Y+vfeps*Fp;
251 vvdw12 = c12_00*VV;
252 FF = Fp+Geps+2.0*Heps2;
253 fvdw12 = c12_00*FF;
254 vvdw = vvdw12+vvdw6;
255 fvdw = -(fvdw6+fvdw12)*vftabscale*rinv00;
257 /* Update potential sums from outer loop */
258 vvdwsum += vvdw;
260 fscal = fvdw;
262 /* Calculate temporary vectorial force */
263 tx = fscal*dx00;
264 ty = fscal*dy00;
265 tz = fscal*dz00;
267 /* Update vectorial force */
268 fix0 += tx;
269 fiy0 += ty;
270 fiz0 += tz;
271 f[j_coord_offset+DIM*0+XX] -= tx;
272 f[j_coord_offset+DIM*0+YY] -= ty;
273 f[j_coord_offset+DIM*0+ZZ] -= tz;
275 /**************************
276 * CALCULATE INTERACTIONS *
277 **************************/
279 qq10 = iq1*jq0;
281 /* COULOMB ELECTROSTATICS */
282 velec = qq10*rinv10;
283 felec = velec*rinvsq10;
285 /* Update potential sums from outer loop */
286 velecsum += velec;
288 fscal = felec;
290 /* Calculate temporary vectorial force */
291 tx = fscal*dx10;
292 ty = fscal*dy10;
293 tz = fscal*dz10;
295 /* Update vectorial force */
296 fix1 += tx;
297 fiy1 += ty;
298 fiz1 += tz;
299 f[j_coord_offset+DIM*0+XX] -= tx;
300 f[j_coord_offset+DIM*0+YY] -= ty;
301 f[j_coord_offset+DIM*0+ZZ] -= tz;
303 /**************************
304 * CALCULATE INTERACTIONS *
305 **************************/
307 qq20 = iq2*jq0;
309 /* COULOMB ELECTROSTATICS */
310 velec = qq20*rinv20;
311 felec = velec*rinvsq20;
313 /* Update potential sums from outer loop */
314 velecsum += velec;
316 fscal = felec;
318 /* Calculate temporary vectorial force */
319 tx = fscal*dx20;
320 ty = fscal*dy20;
321 tz = fscal*dz20;
323 /* Update vectorial force */
324 fix2 += tx;
325 fiy2 += ty;
326 fiz2 += tz;
327 f[j_coord_offset+DIM*0+XX] -= tx;
328 f[j_coord_offset+DIM*0+YY] -= ty;
329 f[j_coord_offset+DIM*0+ZZ] -= tz;
331 /**************************
332 * CALCULATE INTERACTIONS *
333 **************************/
335 qq30 = iq3*jq0;
337 /* COULOMB ELECTROSTATICS */
338 velec = qq30*rinv30;
339 felec = velec*rinvsq30;
341 /* Update potential sums from outer loop */
342 velecsum += velec;
344 fscal = felec;
346 /* Calculate temporary vectorial force */
347 tx = fscal*dx30;
348 ty = fscal*dy30;
349 tz = fscal*dz30;
351 /* Update vectorial force */
352 fix3 += tx;
353 fiy3 += ty;
354 fiz3 += tz;
355 f[j_coord_offset+DIM*0+XX] -= tx;
356 f[j_coord_offset+DIM*0+YY] -= ty;
357 f[j_coord_offset+DIM*0+ZZ] -= tz;
359 /* Inner loop uses 139 flops */
361 /* End of innermost loop */
363 tx = ty = tz = 0;
364 f[i_coord_offset+DIM*0+XX] += fix0;
365 f[i_coord_offset+DIM*0+YY] += fiy0;
366 f[i_coord_offset+DIM*0+ZZ] += fiz0;
367 tx += fix0;
368 ty += fiy0;
369 tz += fiz0;
370 f[i_coord_offset+DIM*1+XX] += fix1;
371 f[i_coord_offset+DIM*1+YY] += fiy1;
372 f[i_coord_offset+DIM*1+ZZ] += fiz1;
373 tx += fix1;
374 ty += fiy1;
375 tz += fiz1;
376 f[i_coord_offset+DIM*2+XX] += fix2;
377 f[i_coord_offset+DIM*2+YY] += fiy2;
378 f[i_coord_offset+DIM*2+ZZ] += fiz2;
379 tx += fix2;
380 ty += fiy2;
381 tz += fiz2;
382 f[i_coord_offset+DIM*3+XX] += fix3;
383 f[i_coord_offset+DIM*3+YY] += fiy3;
384 f[i_coord_offset+DIM*3+ZZ] += fiz3;
385 tx += fix3;
386 ty += fiy3;
387 tz += fiz3;
388 fshift[i_shift_offset+XX] += tx;
389 fshift[i_shift_offset+YY] += ty;
390 fshift[i_shift_offset+ZZ] += tz;
392 ggid = gid[iidx];
393 /* Update potential energies */
394 kernel_data->energygrp_elec[ggid] += velecsum;
395 kernel_data->energygrp_vdw[ggid] += vvdwsum;
397 /* Increment number of inner iterations */
398 inneriter += j_index_end - j_index_start;
400 /* Outer loop uses 41 flops */
403 /* Increment number of outer iterations */
404 outeriter += nri;
406 /* Update outer/inner flops */
408 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*41 + inneriter*139);
411 * Gromacs nonbonded kernel: nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_F_c
412 * Electrostatics interaction: Coulomb
413 * VdW interaction: CubicSplineTable
414 * Geometry: Water4-Particle
415 * Calculate force/pot: Force
417 void
418 nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_F_c
419 (t_nblist * gmx_restrict nlist,
420 rvec * gmx_restrict xx,
421 rvec * gmx_restrict ff,
422 struct t_forcerec * gmx_restrict fr,
423 t_mdatoms * gmx_restrict mdatoms,
424 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
425 t_nrnb * gmx_restrict nrnb)
427 int i_shift_offset,i_coord_offset,j_coord_offset;
428 int j_index_start,j_index_end;
429 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
430 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
431 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
432 real *shiftvec,*fshift,*x,*f;
433 int vdwioffset0;
434 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
435 int vdwioffset1;
436 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
437 int vdwioffset2;
438 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
439 int vdwioffset3;
440 real ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
441 int vdwjidx0;
442 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
443 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
444 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
445 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
446 real dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30,cexp1_30,cexp2_30;
447 real velec,felec,velecsum,facel,crf,krf,krf2;
448 real *charge;
449 int nvdwtype;
450 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
451 int *vdwtype;
452 real *vdwparam;
453 int vfitab;
454 real rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
455 real *vftab;
457 x = xx[0];
458 f = ff[0];
460 nri = nlist->nri;
461 iinr = nlist->iinr;
462 jindex = nlist->jindex;
463 jjnr = nlist->jjnr;
464 shiftidx = nlist->shift;
465 gid = nlist->gid;
466 shiftvec = fr->shift_vec[0];
467 fshift = fr->fshift[0];
468 facel = fr->ic->epsfac;
469 charge = mdatoms->chargeA;
470 nvdwtype = fr->ntype;
471 vdwparam = fr->nbfp;
472 vdwtype = mdatoms->typeA;
474 vftab = kernel_data->table_vdw->data;
475 vftabscale = kernel_data->table_vdw->scale;
477 /* Setup water-specific parameters */
478 inr = nlist->iinr[0];
479 iq1 = facel*charge[inr+1];
480 iq2 = facel*charge[inr+2];
481 iq3 = facel*charge[inr+3];
482 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
484 outeriter = 0;
485 inneriter = 0;
487 /* Start outer loop over neighborlists */
488 for(iidx=0; iidx<nri; iidx++)
490 /* Load shift vector for this list */
491 i_shift_offset = DIM*shiftidx[iidx];
492 shX = shiftvec[i_shift_offset+XX];
493 shY = shiftvec[i_shift_offset+YY];
494 shZ = shiftvec[i_shift_offset+ZZ];
496 /* Load limits for loop over neighbors */
497 j_index_start = jindex[iidx];
498 j_index_end = jindex[iidx+1];
500 /* Get outer coordinate index */
501 inr = iinr[iidx];
502 i_coord_offset = DIM*inr;
504 /* Load i particle coords and add shift vector */
505 ix0 = shX + x[i_coord_offset+DIM*0+XX];
506 iy0 = shY + x[i_coord_offset+DIM*0+YY];
507 iz0 = shZ + x[i_coord_offset+DIM*0+ZZ];
508 ix1 = shX + x[i_coord_offset+DIM*1+XX];
509 iy1 = shY + x[i_coord_offset+DIM*1+YY];
510 iz1 = shZ + x[i_coord_offset+DIM*1+ZZ];
511 ix2 = shX + x[i_coord_offset+DIM*2+XX];
512 iy2 = shY + x[i_coord_offset+DIM*2+YY];
513 iz2 = shZ + x[i_coord_offset+DIM*2+ZZ];
514 ix3 = shX + x[i_coord_offset+DIM*3+XX];
515 iy3 = shY + x[i_coord_offset+DIM*3+YY];
516 iz3 = shZ + x[i_coord_offset+DIM*3+ZZ];
518 fix0 = 0.0;
519 fiy0 = 0.0;
520 fiz0 = 0.0;
521 fix1 = 0.0;
522 fiy1 = 0.0;
523 fiz1 = 0.0;
524 fix2 = 0.0;
525 fiy2 = 0.0;
526 fiz2 = 0.0;
527 fix3 = 0.0;
528 fiy3 = 0.0;
529 fiz3 = 0.0;
531 /* Start inner kernel loop */
532 for(jidx=j_index_start; jidx<j_index_end; jidx++)
534 /* Get j neighbor index, and coordinate index */
535 jnr = jjnr[jidx];
536 j_coord_offset = DIM*jnr;
538 /* load j atom coordinates */
539 jx0 = x[j_coord_offset+DIM*0+XX];
540 jy0 = x[j_coord_offset+DIM*0+YY];
541 jz0 = x[j_coord_offset+DIM*0+ZZ];
543 /* Calculate displacement vector */
544 dx00 = ix0 - jx0;
545 dy00 = iy0 - jy0;
546 dz00 = iz0 - jz0;
547 dx10 = ix1 - jx0;
548 dy10 = iy1 - jy0;
549 dz10 = iz1 - jz0;
550 dx20 = ix2 - jx0;
551 dy20 = iy2 - jy0;
552 dz20 = iz2 - jz0;
553 dx30 = ix3 - jx0;
554 dy30 = iy3 - jy0;
555 dz30 = iz3 - jz0;
557 /* Calculate squared distance and things based on it */
558 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
559 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
560 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
561 rsq30 = dx30*dx30+dy30*dy30+dz30*dz30;
563 rinv00 = 1.0/sqrt(rsq00);
564 rinv10 = 1.0/sqrt(rsq10);
565 rinv20 = 1.0/sqrt(rsq20);
566 rinv30 = 1.0/sqrt(rsq30);
568 rinvsq10 = rinv10*rinv10;
569 rinvsq20 = rinv20*rinv20;
570 rinvsq30 = rinv30*rinv30;
572 /* Load parameters for j particles */
573 jq0 = charge[jnr+0];
574 vdwjidx0 = 2*vdwtype[jnr+0];
576 /**************************
577 * CALCULATE INTERACTIONS *
578 **************************/
580 r00 = rsq00*rinv00;
582 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
583 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
585 /* Calculate table index by multiplying r with table scale and truncate to integer */
586 rt = r00*vftabscale;
587 vfitab = rt;
588 vfeps = rt-vfitab;
589 vfitab = 2*4*vfitab;
591 /* CUBIC SPLINE TABLE DISPERSION */
592 vfitab += 0;
593 F = vftab[vfitab+1];
594 Geps = vfeps*vftab[vfitab+2];
595 Heps2 = vfeps*vfeps*vftab[vfitab+3];
596 Fp = F+Geps+Heps2;
597 FF = Fp+Geps+2.0*Heps2;
598 fvdw6 = c6_00*FF;
600 /* CUBIC SPLINE TABLE REPULSION */
601 F = vftab[vfitab+5];
602 Geps = vfeps*vftab[vfitab+6];
603 Heps2 = vfeps*vfeps*vftab[vfitab+7];
604 Fp = F+Geps+Heps2;
605 FF = Fp+Geps+2.0*Heps2;
606 fvdw12 = c12_00*FF;
607 fvdw = -(fvdw6+fvdw12)*vftabscale*rinv00;
609 fscal = fvdw;
611 /* Calculate temporary vectorial force */
612 tx = fscal*dx00;
613 ty = fscal*dy00;
614 tz = fscal*dz00;
616 /* Update vectorial force */
617 fix0 += tx;
618 fiy0 += ty;
619 fiz0 += tz;
620 f[j_coord_offset+DIM*0+XX] -= tx;
621 f[j_coord_offset+DIM*0+YY] -= ty;
622 f[j_coord_offset+DIM*0+ZZ] -= tz;
624 /**************************
625 * CALCULATE INTERACTIONS *
626 **************************/
628 qq10 = iq1*jq0;
630 /* COULOMB ELECTROSTATICS */
631 velec = qq10*rinv10;
632 felec = velec*rinvsq10;
634 fscal = felec;
636 /* Calculate temporary vectorial force */
637 tx = fscal*dx10;
638 ty = fscal*dy10;
639 tz = fscal*dz10;
641 /* Update vectorial force */
642 fix1 += tx;
643 fiy1 += ty;
644 fiz1 += tz;
645 f[j_coord_offset+DIM*0+XX] -= tx;
646 f[j_coord_offset+DIM*0+YY] -= ty;
647 f[j_coord_offset+DIM*0+ZZ] -= tz;
649 /**************************
650 * CALCULATE INTERACTIONS *
651 **************************/
653 qq20 = iq2*jq0;
655 /* COULOMB ELECTROSTATICS */
656 velec = qq20*rinv20;
657 felec = velec*rinvsq20;
659 fscal = felec;
661 /* Calculate temporary vectorial force */
662 tx = fscal*dx20;
663 ty = fscal*dy20;
664 tz = fscal*dz20;
666 /* Update vectorial force */
667 fix2 += tx;
668 fiy2 += ty;
669 fiz2 += tz;
670 f[j_coord_offset+DIM*0+XX] -= tx;
671 f[j_coord_offset+DIM*0+YY] -= ty;
672 f[j_coord_offset+DIM*0+ZZ] -= tz;
674 /**************************
675 * CALCULATE INTERACTIONS *
676 **************************/
678 qq30 = iq3*jq0;
680 /* COULOMB ELECTROSTATICS */
681 velec = qq30*rinv30;
682 felec = velec*rinvsq30;
684 fscal = felec;
686 /* Calculate temporary vectorial force */
687 tx = fscal*dx30;
688 ty = fscal*dy30;
689 tz = fscal*dz30;
691 /* Update vectorial force */
692 fix3 += tx;
693 fiy3 += ty;
694 fiz3 += tz;
695 f[j_coord_offset+DIM*0+XX] -= tx;
696 f[j_coord_offset+DIM*0+YY] -= ty;
697 f[j_coord_offset+DIM*0+ZZ] -= tz;
699 /* Inner loop uses 128 flops */
701 /* End of innermost loop */
703 tx = ty = tz = 0;
704 f[i_coord_offset+DIM*0+XX] += fix0;
705 f[i_coord_offset+DIM*0+YY] += fiy0;
706 f[i_coord_offset+DIM*0+ZZ] += fiz0;
707 tx += fix0;
708 ty += fiy0;
709 tz += fiz0;
710 f[i_coord_offset+DIM*1+XX] += fix1;
711 f[i_coord_offset+DIM*1+YY] += fiy1;
712 f[i_coord_offset+DIM*1+ZZ] += fiz1;
713 tx += fix1;
714 ty += fiy1;
715 tz += fiz1;
716 f[i_coord_offset+DIM*2+XX] += fix2;
717 f[i_coord_offset+DIM*2+YY] += fiy2;
718 f[i_coord_offset+DIM*2+ZZ] += fiz2;
719 tx += fix2;
720 ty += fiy2;
721 tz += fiz2;
722 f[i_coord_offset+DIM*3+XX] += fix3;
723 f[i_coord_offset+DIM*3+YY] += fiy3;
724 f[i_coord_offset+DIM*3+ZZ] += fiz3;
725 tx += fix3;
726 ty += fiy3;
727 tz += fiz3;
728 fshift[i_shift_offset+XX] += tx;
729 fshift[i_shift_offset+YY] += ty;
730 fshift[i_shift_offset+ZZ] += tz;
732 /* Increment number of inner iterations */
733 inneriter += j_index_end - j_index_start;
735 /* Outer loop uses 39 flops */
738 /* Increment number of outer iterations */
739 outeriter += nri;
741 /* Update outer/inner flops */
743 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*39 + inneriter*128);