Remove nb-parameters from t_forcerec
[gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecRF_VdwLJ_GeomW4P1_avx_256_single.c
blob776539c909a57fda9206a90252f42e4e92d0de7d
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
36 * Note: this file was generated by the GROMACS avx_256_single kernel generator.
38 #include "gmxpre.h"
40 #include "config.h"
42 #include <math.h>
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
47 #include "kernelutil_x86_avx_256_single.h"
50 * Gromacs nonbonded kernel: nb_kernel_ElecRF_VdwLJ_GeomW4P1_VF_avx_256_single
51 * Electrostatics interaction: ReactionField
52 * VdW interaction: LennardJones
53 * Geometry: Water4-Particle
54 * Calculate force/pot: PotentialAndForce
56 void
57 nb_kernel_ElecRF_VdwLJ_GeomW4P1_VF_avx_256_single
58 (t_nblist * gmx_restrict nlist,
59 rvec * gmx_restrict xx,
60 rvec * gmx_restrict ff,
61 struct t_forcerec * gmx_restrict fr,
62 t_mdatoms * gmx_restrict mdatoms,
63 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64 t_nrnb * gmx_restrict nrnb)
66 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67 * just 0 for non-waters.
68 * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
69 * jnr indices corresponding to data put in the four positions in the SIMD register.
71 int i_shift_offset,i_coord_offset,outeriter,inneriter;
72 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73 int jnrA,jnrB,jnrC,jnrD;
74 int jnrE,jnrF,jnrG,jnrH;
75 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76 int jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78 int j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
79 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
80 real rcutoff_scalar;
81 real *shiftvec,*fshift,*x,*f;
82 real *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
83 real scratch[4*DIM];
84 __m256 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85 real * vdwioffsetptr0;
86 __m256 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87 real * vdwioffsetptr1;
88 __m256 ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
89 real * vdwioffsetptr2;
90 __m256 ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
91 real * vdwioffsetptr3;
92 __m256 ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
93 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
94 __m256 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
95 __m256 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
96 __m256 dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
97 __m256 dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
98 __m256 dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
99 __m256 velec,felec,velecsum,facel,crf,krf,krf2;
100 real *charge;
101 int nvdwtype;
102 __m256 rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
103 int *vdwtype;
104 real *vdwparam;
105 __m256 one_sixth = _mm256_set1_ps(1.0/6.0);
106 __m256 one_twelfth = _mm256_set1_ps(1.0/12.0);
107 __m256 dummy_mask,cutoff_mask;
108 __m256 signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
109 __m256 one = _mm256_set1_ps(1.0);
110 __m256 two = _mm256_set1_ps(2.0);
111 x = xx[0];
112 f = ff[0];
114 nri = nlist->nri;
115 iinr = nlist->iinr;
116 jindex = nlist->jindex;
117 jjnr = nlist->jjnr;
118 shiftidx = nlist->shift;
119 gid = nlist->gid;
120 shiftvec = fr->shift_vec[0];
121 fshift = fr->fshift[0];
122 facel = _mm256_set1_ps(fr->ic->epsfac);
123 charge = mdatoms->chargeA;
124 krf = _mm256_set1_ps(fr->ic->k_rf);
125 krf2 = _mm256_set1_ps(fr->ic->k_rf*2.0);
126 crf = _mm256_set1_ps(fr->ic->c_rf);
127 nvdwtype = fr->ntype;
128 vdwparam = fr->nbfp;
129 vdwtype = mdatoms->typeA;
131 /* Setup water-specific parameters */
132 inr = nlist->iinr[0];
133 iq1 = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
134 iq2 = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
135 iq3 = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+3]));
136 vdwioffsetptr0 = vdwparam+2*nvdwtype*vdwtype[inr+0];
138 /* Avoid stupid compiler warnings */
139 jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
140 j_coord_offsetA = 0;
141 j_coord_offsetB = 0;
142 j_coord_offsetC = 0;
143 j_coord_offsetD = 0;
144 j_coord_offsetE = 0;
145 j_coord_offsetF = 0;
146 j_coord_offsetG = 0;
147 j_coord_offsetH = 0;
149 outeriter = 0;
150 inneriter = 0;
152 for(iidx=0;iidx<4*DIM;iidx++)
154 scratch[iidx] = 0.0;
157 /* Start outer loop over neighborlists */
158 for(iidx=0; iidx<nri; iidx++)
160 /* Load shift vector for this list */
161 i_shift_offset = DIM*shiftidx[iidx];
163 /* Load limits for loop over neighbors */
164 j_index_start = jindex[iidx];
165 j_index_end = jindex[iidx+1];
167 /* Get outer coordinate index */
168 inr = iinr[iidx];
169 i_coord_offset = DIM*inr;
171 /* Load i particle coords and add shift vector */
172 gmx_mm256_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
173 &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
175 fix0 = _mm256_setzero_ps();
176 fiy0 = _mm256_setzero_ps();
177 fiz0 = _mm256_setzero_ps();
178 fix1 = _mm256_setzero_ps();
179 fiy1 = _mm256_setzero_ps();
180 fiz1 = _mm256_setzero_ps();
181 fix2 = _mm256_setzero_ps();
182 fiy2 = _mm256_setzero_ps();
183 fiz2 = _mm256_setzero_ps();
184 fix3 = _mm256_setzero_ps();
185 fiy3 = _mm256_setzero_ps();
186 fiz3 = _mm256_setzero_ps();
188 /* Reset potential sums */
189 velecsum = _mm256_setzero_ps();
190 vvdwsum = _mm256_setzero_ps();
192 /* Start inner kernel loop */
193 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
196 /* Get j neighbor index, and coordinate index */
197 jnrA = jjnr[jidx];
198 jnrB = jjnr[jidx+1];
199 jnrC = jjnr[jidx+2];
200 jnrD = jjnr[jidx+3];
201 jnrE = jjnr[jidx+4];
202 jnrF = jjnr[jidx+5];
203 jnrG = jjnr[jidx+6];
204 jnrH = jjnr[jidx+7];
205 j_coord_offsetA = DIM*jnrA;
206 j_coord_offsetB = DIM*jnrB;
207 j_coord_offsetC = DIM*jnrC;
208 j_coord_offsetD = DIM*jnrD;
209 j_coord_offsetE = DIM*jnrE;
210 j_coord_offsetF = DIM*jnrF;
211 j_coord_offsetG = DIM*jnrG;
212 j_coord_offsetH = DIM*jnrH;
214 /* load j atom coordinates */
215 gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
216 x+j_coord_offsetC,x+j_coord_offsetD,
217 x+j_coord_offsetE,x+j_coord_offsetF,
218 x+j_coord_offsetG,x+j_coord_offsetH,
219 &jx0,&jy0,&jz0);
221 /* Calculate displacement vector */
222 dx00 = _mm256_sub_ps(ix0,jx0);
223 dy00 = _mm256_sub_ps(iy0,jy0);
224 dz00 = _mm256_sub_ps(iz0,jz0);
225 dx10 = _mm256_sub_ps(ix1,jx0);
226 dy10 = _mm256_sub_ps(iy1,jy0);
227 dz10 = _mm256_sub_ps(iz1,jz0);
228 dx20 = _mm256_sub_ps(ix2,jx0);
229 dy20 = _mm256_sub_ps(iy2,jy0);
230 dz20 = _mm256_sub_ps(iz2,jz0);
231 dx30 = _mm256_sub_ps(ix3,jx0);
232 dy30 = _mm256_sub_ps(iy3,jy0);
233 dz30 = _mm256_sub_ps(iz3,jz0);
235 /* Calculate squared distance and things based on it */
236 rsq00 = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
237 rsq10 = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
238 rsq20 = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
239 rsq30 = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
241 rinv10 = avx256_invsqrt_f(rsq10);
242 rinv20 = avx256_invsqrt_f(rsq20);
243 rinv30 = avx256_invsqrt_f(rsq30);
245 rinvsq00 = avx256_inv_f(rsq00);
246 rinvsq10 = _mm256_mul_ps(rinv10,rinv10);
247 rinvsq20 = _mm256_mul_ps(rinv20,rinv20);
248 rinvsq30 = _mm256_mul_ps(rinv30,rinv30);
250 /* Load parameters for j particles */
251 jq0 = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
252 charge+jnrC+0,charge+jnrD+0,
253 charge+jnrE+0,charge+jnrF+0,
254 charge+jnrG+0,charge+jnrH+0);
255 vdwjidx0A = 2*vdwtype[jnrA+0];
256 vdwjidx0B = 2*vdwtype[jnrB+0];
257 vdwjidx0C = 2*vdwtype[jnrC+0];
258 vdwjidx0D = 2*vdwtype[jnrD+0];
259 vdwjidx0E = 2*vdwtype[jnrE+0];
260 vdwjidx0F = 2*vdwtype[jnrF+0];
261 vdwjidx0G = 2*vdwtype[jnrG+0];
262 vdwjidx0H = 2*vdwtype[jnrH+0];
264 fjx0 = _mm256_setzero_ps();
265 fjy0 = _mm256_setzero_ps();
266 fjz0 = _mm256_setzero_ps();
268 /**************************
269 * CALCULATE INTERACTIONS *
270 **************************/
272 /* Compute parameters for interactions between i and j atoms */
273 gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
274 vdwioffsetptr0+vdwjidx0B,
275 vdwioffsetptr0+vdwjidx0C,
276 vdwioffsetptr0+vdwjidx0D,
277 vdwioffsetptr0+vdwjidx0E,
278 vdwioffsetptr0+vdwjidx0F,
279 vdwioffsetptr0+vdwjidx0G,
280 vdwioffsetptr0+vdwjidx0H,
281 &c6_00,&c12_00);
283 /* LENNARD-JONES DISPERSION/REPULSION */
285 rinvsix = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
286 vvdw6 = _mm256_mul_ps(c6_00,rinvsix);
287 vvdw12 = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
288 vvdw = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
289 fvdw = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
291 /* Update potential sum for this i atom from the interaction with this j atom. */
292 vvdwsum = _mm256_add_ps(vvdwsum,vvdw);
294 fscal = fvdw;
296 /* Calculate temporary vectorial force */
297 tx = _mm256_mul_ps(fscal,dx00);
298 ty = _mm256_mul_ps(fscal,dy00);
299 tz = _mm256_mul_ps(fscal,dz00);
301 /* Update vectorial force */
302 fix0 = _mm256_add_ps(fix0,tx);
303 fiy0 = _mm256_add_ps(fiy0,ty);
304 fiz0 = _mm256_add_ps(fiz0,tz);
306 fjx0 = _mm256_add_ps(fjx0,tx);
307 fjy0 = _mm256_add_ps(fjy0,ty);
308 fjz0 = _mm256_add_ps(fjz0,tz);
310 /**************************
311 * CALCULATE INTERACTIONS *
312 **************************/
314 /* Compute parameters for interactions between i and j atoms */
315 qq10 = _mm256_mul_ps(iq1,jq0);
317 /* REACTION-FIELD ELECTROSTATICS */
318 velec = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_add_ps(rinv10,_mm256_mul_ps(krf,rsq10)),crf));
319 felec = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
321 /* Update potential sum for this i atom from the interaction with this j atom. */
322 velecsum = _mm256_add_ps(velecsum,velec);
324 fscal = felec;
326 /* Calculate temporary vectorial force */
327 tx = _mm256_mul_ps(fscal,dx10);
328 ty = _mm256_mul_ps(fscal,dy10);
329 tz = _mm256_mul_ps(fscal,dz10);
331 /* Update vectorial force */
332 fix1 = _mm256_add_ps(fix1,tx);
333 fiy1 = _mm256_add_ps(fiy1,ty);
334 fiz1 = _mm256_add_ps(fiz1,tz);
336 fjx0 = _mm256_add_ps(fjx0,tx);
337 fjy0 = _mm256_add_ps(fjy0,ty);
338 fjz0 = _mm256_add_ps(fjz0,tz);
340 /**************************
341 * CALCULATE INTERACTIONS *
342 **************************/
344 /* Compute parameters for interactions between i and j atoms */
345 qq20 = _mm256_mul_ps(iq2,jq0);
347 /* REACTION-FIELD ELECTROSTATICS */
348 velec = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_add_ps(rinv20,_mm256_mul_ps(krf,rsq20)),crf));
349 felec = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
351 /* Update potential sum for this i atom from the interaction with this j atom. */
352 velecsum = _mm256_add_ps(velecsum,velec);
354 fscal = felec;
356 /* Calculate temporary vectorial force */
357 tx = _mm256_mul_ps(fscal,dx20);
358 ty = _mm256_mul_ps(fscal,dy20);
359 tz = _mm256_mul_ps(fscal,dz20);
361 /* Update vectorial force */
362 fix2 = _mm256_add_ps(fix2,tx);
363 fiy2 = _mm256_add_ps(fiy2,ty);
364 fiz2 = _mm256_add_ps(fiz2,tz);
366 fjx0 = _mm256_add_ps(fjx0,tx);
367 fjy0 = _mm256_add_ps(fjy0,ty);
368 fjz0 = _mm256_add_ps(fjz0,tz);
370 /**************************
371 * CALCULATE INTERACTIONS *
372 **************************/
374 /* Compute parameters for interactions between i and j atoms */
375 qq30 = _mm256_mul_ps(iq3,jq0);
377 /* REACTION-FIELD ELECTROSTATICS */
378 velec = _mm256_mul_ps(qq30,_mm256_sub_ps(_mm256_add_ps(rinv30,_mm256_mul_ps(krf,rsq30)),crf));
379 felec = _mm256_mul_ps(qq30,_mm256_sub_ps(_mm256_mul_ps(rinv30,rinvsq30),krf2));
381 /* Update potential sum for this i atom from the interaction with this j atom. */
382 velecsum = _mm256_add_ps(velecsum,velec);
384 fscal = felec;
386 /* Calculate temporary vectorial force */
387 tx = _mm256_mul_ps(fscal,dx30);
388 ty = _mm256_mul_ps(fscal,dy30);
389 tz = _mm256_mul_ps(fscal,dz30);
391 /* Update vectorial force */
392 fix3 = _mm256_add_ps(fix3,tx);
393 fiy3 = _mm256_add_ps(fiy3,ty);
394 fiz3 = _mm256_add_ps(fiz3,tz);
396 fjx0 = _mm256_add_ps(fjx0,tx);
397 fjy0 = _mm256_add_ps(fjy0,ty);
398 fjz0 = _mm256_add_ps(fjz0,tz);
400 fjptrA = f+j_coord_offsetA;
401 fjptrB = f+j_coord_offsetB;
402 fjptrC = f+j_coord_offsetC;
403 fjptrD = f+j_coord_offsetD;
404 fjptrE = f+j_coord_offsetE;
405 fjptrF = f+j_coord_offsetF;
406 fjptrG = f+j_coord_offsetG;
407 fjptrH = f+j_coord_offsetH;
409 gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
411 /* Inner loop uses 131 flops */
414 if(jidx<j_index_end)
417 /* Get j neighbor index, and coordinate index */
418 jnrlistA = jjnr[jidx];
419 jnrlistB = jjnr[jidx+1];
420 jnrlistC = jjnr[jidx+2];
421 jnrlistD = jjnr[jidx+3];
422 jnrlistE = jjnr[jidx+4];
423 jnrlistF = jjnr[jidx+5];
424 jnrlistG = jjnr[jidx+6];
425 jnrlistH = jjnr[jidx+7];
426 /* Sign of each element will be negative for non-real atoms.
427 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
428 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
430 dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
431 gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
433 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
434 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
435 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
436 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
437 jnrE = (jnrlistE>=0) ? jnrlistE : 0;
438 jnrF = (jnrlistF>=0) ? jnrlistF : 0;
439 jnrG = (jnrlistG>=0) ? jnrlistG : 0;
440 jnrH = (jnrlistH>=0) ? jnrlistH : 0;
441 j_coord_offsetA = DIM*jnrA;
442 j_coord_offsetB = DIM*jnrB;
443 j_coord_offsetC = DIM*jnrC;
444 j_coord_offsetD = DIM*jnrD;
445 j_coord_offsetE = DIM*jnrE;
446 j_coord_offsetF = DIM*jnrF;
447 j_coord_offsetG = DIM*jnrG;
448 j_coord_offsetH = DIM*jnrH;
450 /* load j atom coordinates */
451 gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
452 x+j_coord_offsetC,x+j_coord_offsetD,
453 x+j_coord_offsetE,x+j_coord_offsetF,
454 x+j_coord_offsetG,x+j_coord_offsetH,
455 &jx0,&jy0,&jz0);
457 /* Calculate displacement vector */
458 dx00 = _mm256_sub_ps(ix0,jx0);
459 dy00 = _mm256_sub_ps(iy0,jy0);
460 dz00 = _mm256_sub_ps(iz0,jz0);
461 dx10 = _mm256_sub_ps(ix1,jx0);
462 dy10 = _mm256_sub_ps(iy1,jy0);
463 dz10 = _mm256_sub_ps(iz1,jz0);
464 dx20 = _mm256_sub_ps(ix2,jx0);
465 dy20 = _mm256_sub_ps(iy2,jy0);
466 dz20 = _mm256_sub_ps(iz2,jz0);
467 dx30 = _mm256_sub_ps(ix3,jx0);
468 dy30 = _mm256_sub_ps(iy3,jy0);
469 dz30 = _mm256_sub_ps(iz3,jz0);
471 /* Calculate squared distance and things based on it */
472 rsq00 = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
473 rsq10 = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
474 rsq20 = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
475 rsq30 = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
477 rinv10 = avx256_invsqrt_f(rsq10);
478 rinv20 = avx256_invsqrt_f(rsq20);
479 rinv30 = avx256_invsqrt_f(rsq30);
481 rinvsq00 = avx256_inv_f(rsq00);
482 rinvsq10 = _mm256_mul_ps(rinv10,rinv10);
483 rinvsq20 = _mm256_mul_ps(rinv20,rinv20);
484 rinvsq30 = _mm256_mul_ps(rinv30,rinv30);
486 /* Load parameters for j particles */
487 jq0 = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
488 charge+jnrC+0,charge+jnrD+0,
489 charge+jnrE+0,charge+jnrF+0,
490 charge+jnrG+0,charge+jnrH+0);
491 vdwjidx0A = 2*vdwtype[jnrA+0];
492 vdwjidx0B = 2*vdwtype[jnrB+0];
493 vdwjidx0C = 2*vdwtype[jnrC+0];
494 vdwjidx0D = 2*vdwtype[jnrD+0];
495 vdwjidx0E = 2*vdwtype[jnrE+0];
496 vdwjidx0F = 2*vdwtype[jnrF+0];
497 vdwjidx0G = 2*vdwtype[jnrG+0];
498 vdwjidx0H = 2*vdwtype[jnrH+0];
500 fjx0 = _mm256_setzero_ps();
501 fjy0 = _mm256_setzero_ps();
502 fjz0 = _mm256_setzero_ps();
504 /**************************
505 * CALCULATE INTERACTIONS *
506 **************************/
508 /* Compute parameters for interactions between i and j atoms */
509 gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
510 vdwioffsetptr0+vdwjidx0B,
511 vdwioffsetptr0+vdwjidx0C,
512 vdwioffsetptr0+vdwjidx0D,
513 vdwioffsetptr0+vdwjidx0E,
514 vdwioffsetptr0+vdwjidx0F,
515 vdwioffsetptr0+vdwjidx0G,
516 vdwioffsetptr0+vdwjidx0H,
517 &c6_00,&c12_00);
519 /* LENNARD-JONES DISPERSION/REPULSION */
521 rinvsix = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
522 vvdw6 = _mm256_mul_ps(c6_00,rinvsix);
523 vvdw12 = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
524 vvdw = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
525 fvdw = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
527 /* Update potential sum for this i atom from the interaction with this j atom. */
528 vvdw = _mm256_andnot_ps(dummy_mask,vvdw);
529 vvdwsum = _mm256_add_ps(vvdwsum,vvdw);
531 fscal = fvdw;
533 fscal = _mm256_andnot_ps(dummy_mask,fscal);
535 /* Calculate temporary vectorial force */
536 tx = _mm256_mul_ps(fscal,dx00);
537 ty = _mm256_mul_ps(fscal,dy00);
538 tz = _mm256_mul_ps(fscal,dz00);
540 /* Update vectorial force */
541 fix0 = _mm256_add_ps(fix0,tx);
542 fiy0 = _mm256_add_ps(fiy0,ty);
543 fiz0 = _mm256_add_ps(fiz0,tz);
545 fjx0 = _mm256_add_ps(fjx0,tx);
546 fjy0 = _mm256_add_ps(fjy0,ty);
547 fjz0 = _mm256_add_ps(fjz0,tz);
549 /**************************
550 * CALCULATE INTERACTIONS *
551 **************************/
553 /* Compute parameters for interactions between i and j atoms */
554 qq10 = _mm256_mul_ps(iq1,jq0);
556 /* REACTION-FIELD ELECTROSTATICS */
557 velec = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_add_ps(rinv10,_mm256_mul_ps(krf,rsq10)),crf));
558 felec = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
560 /* Update potential sum for this i atom from the interaction with this j atom. */
561 velec = _mm256_andnot_ps(dummy_mask,velec);
562 velecsum = _mm256_add_ps(velecsum,velec);
564 fscal = felec;
566 fscal = _mm256_andnot_ps(dummy_mask,fscal);
568 /* Calculate temporary vectorial force */
569 tx = _mm256_mul_ps(fscal,dx10);
570 ty = _mm256_mul_ps(fscal,dy10);
571 tz = _mm256_mul_ps(fscal,dz10);
573 /* Update vectorial force */
574 fix1 = _mm256_add_ps(fix1,tx);
575 fiy1 = _mm256_add_ps(fiy1,ty);
576 fiz1 = _mm256_add_ps(fiz1,tz);
578 fjx0 = _mm256_add_ps(fjx0,tx);
579 fjy0 = _mm256_add_ps(fjy0,ty);
580 fjz0 = _mm256_add_ps(fjz0,tz);
582 /**************************
583 * CALCULATE INTERACTIONS *
584 **************************/
586 /* Compute parameters for interactions between i and j atoms */
587 qq20 = _mm256_mul_ps(iq2,jq0);
589 /* REACTION-FIELD ELECTROSTATICS */
590 velec = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_add_ps(rinv20,_mm256_mul_ps(krf,rsq20)),crf));
591 felec = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
593 /* Update potential sum for this i atom from the interaction with this j atom. */
594 velec = _mm256_andnot_ps(dummy_mask,velec);
595 velecsum = _mm256_add_ps(velecsum,velec);
597 fscal = felec;
599 fscal = _mm256_andnot_ps(dummy_mask,fscal);
601 /* Calculate temporary vectorial force */
602 tx = _mm256_mul_ps(fscal,dx20);
603 ty = _mm256_mul_ps(fscal,dy20);
604 tz = _mm256_mul_ps(fscal,dz20);
606 /* Update vectorial force */
607 fix2 = _mm256_add_ps(fix2,tx);
608 fiy2 = _mm256_add_ps(fiy2,ty);
609 fiz2 = _mm256_add_ps(fiz2,tz);
611 fjx0 = _mm256_add_ps(fjx0,tx);
612 fjy0 = _mm256_add_ps(fjy0,ty);
613 fjz0 = _mm256_add_ps(fjz0,tz);
615 /**************************
616 * CALCULATE INTERACTIONS *
617 **************************/
619 /* Compute parameters for interactions between i and j atoms */
620 qq30 = _mm256_mul_ps(iq3,jq0);
622 /* REACTION-FIELD ELECTROSTATICS */
623 velec = _mm256_mul_ps(qq30,_mm256_sub_ps(_mm256_add_ps(rinv30,_mm256_mul_ps(krf,rsq30)),crf));
624 felec = _mm256_mul_ps(qq30,_mm256_sub_ps(_mm256_mul_ps(rinv30,rinvsq30),krf2));
626 /* Update potential sum for this i atom from the interaction with this j atom. */
627 velec = _mm256_andnot_ps(dummy_mask,velec);
628 velecsum = _mm256_add_ps(velecsum,velec);
630 fscal = felec;
632 fscal = _mm256_andnot_ps(dummy_mask,fscal);
634 /* Calculate temporary vectorial force */
635 tx = _mm256_mul_ps(fscal,dx30);
636 ty = _mm256_mul_ps(fscal,dy30);
637 tz = _mm256_mul_ps(fscal,dz30);
639 /* Update vectorial force */
640 fix3 = _mm256_add_ps(fix3,tx);
641 fiy3 = _mm256_add_ps(fiy3,ty);
642 fiz3 = _mm256_add_ps(fiz3,tz);
644 fjx0 = _mm256_add_ps(fjx0,tx);
645 fjy0 = _mm256_add_ps(fjy0,ty);
646 fjz0 = _mm256_add_ps(fjz0,tz);
648 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
649 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
650 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
651 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
652 fjptrE = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
653 fjptrF = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
654 fjptrG = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
655 fjptrH = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
657 gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
659 /* Inner loop uses 131 flops */
662 /* End of innermost loop */
664 gmx_mm256_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
665 f+i_coord_offset,fshift+i_shift_offset);
667 ggid = gid[iidx];
668 /* Update potential energies */
669 gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
670 gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
672 /* Increment number of inner iterations */
673 inneriter += j_index_end - j_index_start;
675 /* Outer loop uses 26 flops */
678 /* Increment number of outer iterations */
679 outeriter += nri;
681 /* Update outer/inner flops */
683 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*131);
686 * Gromacs nonbonded kernel: nb_kernel_ElecRF_VdwLJ_GeomW4P1_F_avx_256_single
687 * Electrostatics interaction: ReactionField
688 * VdW interaction: LennardJones
689 * Geometry: Water4-Particle
690 * Calculate force/pot: Force
692 void
693 nb_kernel_ElecRF_VdwLJ_GeomW4P1_F_avx_256_single
694 (t_nblist * gmx_restrict nlist,
695 rvec * gmx_restrict xx,
696 rvec * gmx_restrict ff,
697 struct t_forcerec * gmx_restrict fr,
698 t_mdatoms * gmx_restrict mdatoms,
699 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
700 t_nrnb * gmx_restrict nrnb)
702 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
703 * just 0 for non-waters.
704 * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
705 * jnr indices corresponding to data put in the four positions in the SIMD register.
707 int i_shift_offset,i_coord_offset,outeriter,inneriter;
708 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
709 int jnrA,jnrB,jnrC,jnrD;
710 int jnrE,jnrF,jnrG,jnrH;
711 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
712 int jnrlistE,jnrlistF,jnrlistG,jnrlistH;
713 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
714 int j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
715 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
716 real rcutoff_scalar;
717 real *shiftvec,*fshift,*x,*f;
718 real *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
719 real scratch[4*DIM];
720 __m256 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
721 real * vdwioffsetptr0;
722 __m256 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
723 real * vdwioffsetptr1;
724 __m256 ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
725 real * vdwioffsetptr2;
726 __m256 ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
727 real * vdwioffsetptr3;
728 __m256 ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
729 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
730 __m256 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
731 __m256 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
732 __m256 dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
733 __m256 dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
734 __m256 dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
735 __m256 velec,felec,velecsum,facel,crf,krf,krf2;
736 real *charge;
737 int nvdwtype;
738 __m256 rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
739 int *vdwtype;
740 real *vdwparam;
741 __m256 one_sixth = _mm256_set1_ps(1.0/6.0);
742 __m256 one_twelfth = _mm256_set1_ps(1.0/12.0);
743 __m256 dummy_mask,cutoff_mask;
744 __m256 signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
745 __m256 one = _mm256_set1_ps(1.0);
746 __m256 two = _mm256_set1_ps(2.0);
747 x = xx[0];
748 f = ff[0];
750 nri = nlist->nri;
751 iinr = nlist->iinr;
752 jindex = nlist->jindex;
753 jjnr = nlist->jjnr;
754 shiftidx = nlist->shift;
755 gid = nlist->gid;
756 shiftvec = fr->shift_vec[0];
757 fshift = fr->fshift[0];
758 facel = _mm256_set1_ps(fr->ic->epsfac);
759 charge = mdatoms->chargeA;
760 krf = _mm256_set1_ps(fr->ic->k_rf);
761 krf2 = _mm256_set1_ps(fr->ic->k_rf*2.0);
762 crf = _mm256_set1_ps(fr->ic->c_rf);
763 nvdwtype = fr->ntype;
764 vdwparam = fr->nbfp;
765 vdwtype = mdatoms->typeA;
767 /* Setup water-specific parameters */
768 inr = nlist->iinr[0];
769 iq1 = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
770 iq2 = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
771 iq3 = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+3]));
772 vdwioffsetptr0 = vdwparam+2*nvdwtype*vdwtype[inr+0];
774 /* Avoid stupid compiler warnings */
775 jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
776 j_coord_offsetA = 0;
777 j_coord_offsetB = 0;
778 j_coord_offsetC = 0;
779 j_coord_offsetD = 0;
780 j_coord_offsetE = 0;
781 j_coord_offsetF = 0;
782 j_coord_offsetG = 0;
783 j_coord_offsetH = 0;
785 outeriter = 0;
786 inneriter = 0;
788 for(iidx=0;iidx<4*DIM;iidx++)
790 scratch[iidx] = 0.0;
793 /* Start outer loop over neighborlists */
794 for(iidx=0; iidx<nri; iidx++)
796 /* Load shift vector for this list */
797 i_shift_offset = DIM*shiftidx[iidx];
799 /* Load limits for loop over neighbors */
800 j_index_start = jindex[iidx];
801 j_index_end = jindex[iidx+1];
803 /* Get outer coordinate index */
804 inr = iinr[iidx];
805 i_coord_offset = DIM*inr;
807 /* Load i particle coords and add shift vector */
808 gmx_mm256_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
809 &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
811 fix0 = _mm256_setzero_ps();
812 fiy0 = _mm256_setzero_ps();
813 fiz0 = _mm256_setzero_ps();
814 fix1 = _mm256_setzero_ps();
815 fiy1 = _mm256_setzero_ps();
816 fiz1 = _mm256_setzero_ps();
817 fix2 = _mm256_setzero_ps();
818 fiy2 = _mm256_setzero_ps();
819 fiz2 = _mm256_setzero_ps();
820 fix3 = _mm256_setzero_ps();
821 fiy3 = _mm256_setzero_ps();
822 fiz3 = _mm256_setzero_ps();
824 /* Start inner kernel loop */
825 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
828 /* Get j neighbor index, and coordinate index */
829 jnrA = jjnr[jidx];
830 jnrB = jjnr[jidx+1];
831 jnrC = jjnr[jidx+2];
832 jnrD = jjnr[jidx+3];
833 jnrE = jjnr[jidx+4];
834 jnrF = jjnr[jidx+5];
835 jnrG = jjnr[jidx+6];
836 jnrH = jjnr[jidx+7];
837 j_coord_offsetA = DIM*jnrA;
838 j_coord_offsetB = DIM*jnrB;
839 j_coord_offsetC = DIM*jnrC;
840 j_coord_offsetD = DIM*jnrD;
841 j_coord_offsetE = DIM*jnrE;
842 j_coord_offsetF = DIM*jnrF;
843 j_coord_offsetG = DIM*jnrG;
844 j_coord_offsetH = DIM*jnrH;
846 /* load j atom coordinates */
847 gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
848 x+j_coord_offsetC,x+j_coord_offsetD,
849 x+j_coord_offsetE,x+j_coord_offsetF,
850 x+j_coord_offsetG,x+j_coord_offsetH,
851 &jx0,&jy0,&jz0);
853 /* Calculate displacement vector */
854 dx00 = _mm256_sub_ps(ix0,jx0);
855 dy00 = _mm256_sub_ps(iy0,jy0);
856 dz00 = _mm256_sub_ps(iz0,jz0);
857 dx10 = _mm256_sub_ps(ix1,jx0);
858 dy10 = _mm256_sub_ps(iy1,jy0);
859 dz10 = _mm256_sub_ps(iz1,jz0);
860 dx20 = _mm256_sub_ps(ix2,jx0);
861 dy20 = _mm256_sub_ps(iy2,jy0);
862 dz20 = _mm256_sub_ps(iz2,jz0);
863 dx30 = _mm256_sub_ps(ix3,jx0);
864 dy30 = _mm256_sub_ps(iy3,jy0);
865 dz30 = _mm256_sub_ps(iz3,jz0);
867 /* Calculate squared distance and things based on it */
868 rsq00 = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
869 rsq10 = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
870 rsq20 = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
871 rsq30 = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
873 rinv10 = avx256_invsqrt_f(rsq10);
874 rinv20 = avx256_invsqrt_f(rsq20);
875 rinv30 = avx256_invsqrt_f(rsq30);
877 rinvsq00 = avx256_inv_f(rsq00);
878 rinvsq10 = _mm256_mul_ps(rinv10,rinv10);
879 rinvsq20 = _mm256_mul_ps(rinv20,rinv20);
880 rinvsq30 = _mm256_mul_ps(rinv30,rinv30);
882 /* Load parameters for j particles */
883 jq0 = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
884 charge+jnrC+0,charge+jnrD+0,
885 charge+jnrE+0,charge+jnrF+0,
886 charge+jnrG+0,charge+jnrH+0);
887 vdwjidx0A = 2*vdwtype[jnrA+0];
888 vdwjidx0B = 2*vdwtype[jnrB+0];
889 vdwjidx0C = 2*vdwtype[jnrC+0];
890 vdwjidx0D = 2*vdwtype[jnrD+0];
891 vdwjidx0E = 2*vdwtype[jnrE+0];
892 vdwjidx0F = 2*vdwtype[jnrF+0];
893 vdwjidx0G = 2*vdwtype[jnrG+0];
894 vdwjidx0H = 2*vdwtype[jnrH+0];
896 fjx0 = _mm256_setzero_ps();
897 fjy0 = _mm256_setzero_ps();
898 fjz0 = _mm256_setzero_ps();
900 /**************************
901 * CALCULATE INTERACTIONS *
902 **************************/
904 /* Compute parameters for interactions between i and j atoms */
905 gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
906 vdwioffsetptr0+vdwjidx0B,
907 vdwioffsetptr0+vdwjidx0C,
908 vdwioffsetptr0+vdwjidx0D,
909 vdwioffsetptr0+vdwjidx0E,
910 vdwioffsetptr0+vdwjidx0F,
911 vdwioffsetptr0+vdwjidx0G,
912 vdwioffsetptr0+vdwjidx0H,
913 &c6_00,&c12_00);
915 /* LENNARD-JONES DISPERSION/REPULSION */
917 rinvsix = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
918 fvdw = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
920 fscal = fvdw;
922 /* Calculate temporary vectorial force */
923 tx = _mm256_mul_ps(fscal,dx00);
924 ty = _mm256_mul_ps(fscal,dy00);
925 tz = _mm256_mul_ps(fscal,dz00);
927 /* Update vectorial force */
928 fix0 = _mm256_add_ps(fix0,tx);
929 fiy0 = _mm256_add_ps(fiy0,ty);
930 fiz0 = _mm256_add_ps(fiz0,tz);
932 fjx0 = _mm256_add_ps(fjx0,tx);
933 fjy0 = _mm256_add_ps(fjy0,ty);
934 fjz0 = _mm256_add_ps(fjz0,tz);
936 /**************************
937 * CALCULATE INTERACTIONS *
938 **************************/
940 /* Compute parameters for interactions between i and j atoms */
941 qq10 = _mm256_mul_ps(iq1,jq0);
943 /* REACTION-FIELD ELECTROSTATICS */
944 felec = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
946 fscal = felec;
948 /* Calculate temporary vectorial force */
949 tx = _mm256_mul_ps(fscal,dx10);
950 ty = _mm256_mul_ps(fscal,dy10);
951 tz = _mm256_mul_ps(fscal,dz10);
953 /* Update vectorial force */
954 fix1 = _mm256_add_ps(fix1,tx);
955 fiy1 = _mm256_add_ps(fiy1,ty);
956 fiz1 = _mm256_add_ps(fiz1,tz);
958 fjx0 = _mm256_add_ps(fjx0,tx);
959 fjy0 = _mm256_add_ps(fjy0,ty);
960 fjz0 = _mm256_add_ps(fjz0,tz);
962 /**************************
963 * CALCULATE INTERACTIONS *
964 **************************/
966 /* Compute parameters for interactions between i and j atoms */
967 qq20 = _mm256_mul_ps(iq2,jq0);
969 /* REACTION-FIELD ELECTROSTATICS */
970 felec = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
972 fscal = felec;
974 /* Calculate temporary vectorial force */
975 tx = _mm256_mul_ps(fscal,dx20);
976 ty = _mm256_mul_ps(fscal,dy20);
977 tz = _mm256_mul_ps(fscal,dz20);
979 /* Update vectorial force */
980 fix2 = _mm256_add_ps(fix2,tx);
981 fiy2 = _mm256_add_ps(fiy2,ty);
982 fiz2 = _mm256_add_ps(fiz2,tz);
984 fjx0 = _mm256_add_ps(fjx0,tx);
985 fjy0 = _mm256_add_ps(fjy0,ty);
986 fjz0 = _mm256_add_ps(fjz0,tz);
988 /**************************
989 * CALCULATE INTERACTIONS *
990 **************************/
992 /* Compute parameters for interactions between i and j atoms */
993 qq30 = _mm256_mul_ps(iq3,jq0);
995 /* REACTION-FIELD ELECTROSTATICS */
996 felec = _mm256_mul_ps(qq30,_mm256_sub_ps(_mm256_mul_ps(rinv30,rinvsq30),krf2));
998 fscal = felec;
1000 /* Calculate temporary vectorial force */
1001 tx = _mm256_mul_ps(fscal,dx30);
1002 ty = _mm256_mul_ps(fscal,dy30);
1003 tz = _mm256_mul_ps(fscal,dz30);
1005 /* Update vectorial force */
1006 fix3 = _mm256_add_ps(fix3,tx);
1007 fiy3 = _mm256_add_ps(fiy3,ty);
1008 fiz3 = _mm256_add_ps(fiz3,tz);
1010 fjx0 = _mm256_add_ps(fjx0,tx);
1011 fjy0 = _mm256_add_ps(fjy0,ty);
1012 fjz0 = _mm256_add_ps(fjz0,tz);
1014 fjptrA = f+j_coord_offsetA;
1015 fjptrB = f+j_coord_offsetB;
1016 fjptrC = f+j_coord_offsetC;
1017 fjptrD = f+j_coord_offsetD;
1018 fjptrE = f+j_coord_offsetE;
1019 fjptrF = f+j_coord_offsetF;
1020 fjptrG = f+j_coord_offsetG;
1021 fjptrH = f+j_coord_offsetH;
1023 gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1025 /* Inner loop uses 111 flops */
1028 if(jidx<j_index_end)
1031 /* Get j neighbor index, and coordinate index */
1032 jnrlistA = jjnr[jidx];
1033 jnrlistB = jjnr[jidx+1];
1034 jnrlistC = jjnr[jidx+2];
1035 jnrlistD = jjnr[jidx+3];
1036 jnrlistE = jjnr[jidx+4];
1037 jnrlistF = jjnr[jidx+5];
1038 jnrlistG = jjnr[jidx+6];
1039 jnrlistH = jjnr[jidx+7];
1040 /* Sign of each element will be negative for non-real atoms.
1041 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1042 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1044 dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
1045 gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
1047 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
1048 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
1049 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
1050 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
1051 jnrE = (jnrlistE>=0) ? jnrlistE : 0;
1052 jnrF = (jnrlistF>=0) ? jnrlistF : 0;
1053 jnrG = (jnrlistG>=0) ? jnrlistG : 0;
1054 jnrH = (jnrlistH>=0) ? jnrlistH : 0;
1055 j_coord_offsetA = DIM*jnrA;
1056 j_coord_offsetB = DIM*jnrB;
1057 j_coord_offsetC = DIM*jnrC;
1058 j_coord_offsetD = DIM*jnrD;
1059 j_coord_offsetE = DIM*jnrE;
1060 j_coord_offsetF = DIM*jnrF;
1061 j_coord_offsetG = DIM*jnrG;
1062 j_coord_offsetH = DIM*jnrH;
1064 /* load j atom coordinates */
1065 gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1066 x+j_coord_offsetC,x+j_coord_offsetD,
1067 x+j_coord_offsetE,x+j_coord_offsetF,
1068 x+j_coord_offsetG,x+j_coord_offsetH,
1069 &jx0,&jy0,&jz0);
1071 /* Calculate displacement vector */
1072 dx00 = _mm256_sub_ps(ix0,jx0);
1073 dy00 = _mm256_sub_ps(iy0,jy0);
1074 dz00 = _mm256_sub_ps(iz0,jz0);
1075 dx10 = _mm256_sub_ps(ix1,jx0);
1076 dy10 = _mm256_sub_ps(iy1,jy0);
1077 dz10 = _mm256_sub_ps(iz1,jz0);
1078 dx20 = _mm256_sub_ps(ix2,jx0);
1079 dy20 = _mm256_sub_ps(iy2,jy0);
1080 dz20 = _mm256_sub_ps(iz2,jz0);
1081 dx30 = _mm256_sub_ps(ix3,jx0);
1082 dy30 = _mm256_sub_ps(iy3,jy0);
1083 dz30 = _mm256_sub_ps(iz3,jz0);
1085 /* Calculate squared distance and things based on it */
1086 rsq00 = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1087 rsq10 = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1088 rsq20 = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1089 rsq30 = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
1091 rinv10 = avx256_invsqrt_f(rsq10);
1092 rinv20 = avx256_invsqrt_f(rsq20);
1093 rinv30 = avx256_invsqrt_f(rsq30);
1095 rinvsq00 = avx256_inv_f(rsq00);
1096 rinvsq10 = _mm256_mul_ps(rinv10,rinv10);
1097 rinvsq20 = _mm256_mul_ps(rinv20,rinv20);
1098 rinvsq30 = _mm256_mul_ps(rinv30,rinv30);
1100 /* Load parameters for j particles */
1101 jq0 = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1102 charge+jnrC+0,charge+jnrD+0,
1103 charge+jnrE+0,charge+jnrF+0,
1104 charge+jnrG+0,charge+jnrH+0);
1105 vdwjidx0A = 2*vdwtype[jnrA+0];
1106 vdwjidx0B = 2*vdwtype[jnrB+0];
1107 vdwjidx0C = 2*vdwtype[jnrC+0];
1108 vdwjidx0D = 2*vdwtype[jnrD+0];
1109 vdwjidx0E = 2*vdwtype[jnrE+0];
1110 vdwjidx0F = 2*vdwtype[jnrF+0];
1111 vdwjidx0G = 2*vdwtype[jnrG+0];
1112 vdwjidx0H = 2*vdwtype[jnrH+0];
1114 fjx0 = _mm256_setzero_ps();
1115 fjy0 = _mm256_setzero_ps();
1116 fjz0 = _mm256_setzero_ps();
1118 /**************************
1119 * CALCULATE INTERACTIONS *
1120 **************************/
1122 /* Compute parameters for interactions between i and j atoms */
1123 gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1124 vdwioffsetptr0+vdwjidx0B,
1125 vdwioffsetptr0+vdwjidx0C,
1126 vdwioffsetptr0+vdwjidx0D,
1127 vdwioffsetptr0+vdwjidx0E,
1128 vdwioffsetptr0+vdwjidx0F,
1129 vdwioffsetptr0+vdwjidx0G,
1130 vdwioffsetptr0+vdwjidx0H,
1131 &c6_00,&c12_00);
1133 /* LENNARD-JONES DISPERSION/REPULSION */
1135 rinvsix = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1136 fvdw = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
1138 fscal = fvdw;
1140 fscal = _mm256_andnot_ps(dummy_mask,fscal);
1142 /* Calculate temporary vectorial force */
1143 tx = _mm256_mul_ps(fscal,dx00);
1144 ty = _mm256_mul_ps(fscal,dy00);
1145 tz = _mm256_mul_ps(fscal,dz00);
1147 /* Update vectorial force */
1148 fix0 = _mm256_add_ps(fix0,tx);
1149 fiy0 = _mm256_add_ps(fiy0,ty);
1150 fiz0 = _mm256_add_ps(fiz0,tz);
1152 fjx0 = _mm256_add_ps(fjx0,tx);
1153 fjy0 = _mm256_add_ps(fjy0,ty);
1154 fjz0 = _mm256_add_ps(fjz0,tz);
1156 /**************************
1157 * CALCULATE INTERACTIONS *
1158 **************************/
1160 /* Compute parameters for interactions between i and j atoms */
1161 qq10 = _mm256_mul_ps(iq1,jq0);
1163 /* REACTION-FIELD ELECTROSTATICS */
1164 felec = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
1166 fscal = felec;
1168 fscal = _mm256_andnot_ps(dummy_mask,fscal);
1170 /* Calculate temporary vectorial force */
1171 tx = _mm256_mul_ps(fscal,dx10);
1172 ty = _mm256_mul_ps(fscal,dy10);
1173 tz = _mm256_mul_ps(fscal,dz10);
1175 /* Update vectorial force */
1176 fix1 = _mm256_add_ps(fix1,tx);
1177 fiy1 = _mm256_add_ps(fiy1,ty);
1178 fiz1 = _mm256_add_ps(fiz1,tz);
1180 fjx0 = _mm256_add_ps(fjx0,tx);
1181 fjy0 = _mm256_add_ps(fjy0,ty);
1182 fjz0 = _mm256_add_ps(fjz0,tz);
1184 /**************************
1185 * CALCULATE INTERACTIONS *
1186 **************************/
1188 /* Compute parameters for interactions between i and j atoms */
1189 qq20 = _mm256_mul_ps(iq2,jq0);
1191 /* REACTION-FIELD ELECTROSTATICS */
1192 felec = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
1194 fscal = felec;
1196 fscal = _mm256_andnot_ps(dummy_mask,fscal);
1198 /* Calculate temporary vectorial force */
1199 tx = _mm256_mul_ps(fscal,dx20);
1200 ty = _mm256_mul_ps(fscal,dy20);
1201 tz = _mm256_mul_ps(fscal,dz20);
1203 /* Update vectorial force */
1204 fix2 = _mm256_add_ps(fix2,tx);
1205 fiy2 = _mm256_add_ps(fiy2,ty);
1206 fiz2 = _mm256_add_ps(fiz2,tz);
1208 fjx0 = _mm256_add_ps(fjx0,tx);
1209 fjy0 = _mm256_add_ps(fjy0,ty);
1210 fjz0 = _mm256_add_ps(fjz0,tz);
1212 /**************************
1213 * CALCULATE INTERACTIONS *
1214 **************************/
1216 /* Compute parameters for interactions between i and j atoms */
1217 qq30 = _mm256_mul_ps(iq3,jq0);
1219 /* REACTION-FIELD ELECTROSTATICS */
1220 felec = _mm256_mul_ps(qq30,_mm256_sub_ps(_mm256_mul_ps(rinv30,rinvsq30),krf2));
1222 fscal = felec;
1224 fscal = _mm256_andnot_ps(dummy_mask,fscal);
1226 /* Calculate temporary vectorial force */
1227 tx = _mm256_mul_ps(fscal,dx30);
1228 ty = _mm256_mul_ps(fscal,dy30);
1229 tz = _mm256_mul_ps(fscal,dz30);
1231 /* Update vectorial force */
1232 fix3 = _mm256_add_ps(fix3,tx);
1233 fiy3 = _mm256_add_ps(fiy3,ty);
1234 fiz3 = _mm256_add_ps(fiz3,tz);
1236 fjx0 = _mm256_add_ps(fjx0,tx);
1237 fjy0 = _mm256_add_ps(fjy0,ty);
1238 fjz0 = _mm256_add_ps(fjz0,tz);
1240 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1241 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1242 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1243 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1244 fjptrE = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1245 fjptrF = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1246 fjptrG = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1247 fjptrH = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1249 gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1251 /* Inner loop uses 111 flops */
1254 /* End of innermost loop */
1256 gmx_mm256_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1257 f+i_coord_offset,fshift+i_shift_offset);
1259 /* Increment number of inner iterations */
1260 inneriter += j_index_end - j_index_start;
1262 /* Outer loop uses 24 flops */
1265 /* Increment number of outer iterations */
1266 outeriter += nri;
1268 /* Update outer/inner flops */
1270 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*111);