Remove nb-parameters from t_forcerec
[gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecRF_VdwLJ_GeomW3P1_avx_128_fma_single.c
blob71c465e92d984796ef1d80739bb8dc1401a34e0e
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
36 * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
38 #include "gmxpre.h"
40 #include "config.h"
42 #include <math.h>
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
47 #include "kernelutil_x86_avx_128_fma_single.h"
50 * Gromacs nonbonded kernel: nb_kernel_ElecRF_VdwLJ_GeomW3P1_VF_avx_128_fma_single
51 * Electrostatics interaction: ReactionField
52 * VdW interaction: LennardJones
53 * Geometry: Water3-Particle
54 * Calculate force/pot: PotentialAndForce
56 void
57 nb_kernel_ElecRF_VdwLJ_GeomW3P1_VF_avx_128_fma_single
58 (t_nblist * gmx_restrict nlist,
59 rvec * gmx_restrict xx,
60 rvec * gmx_restrict ff,
61 struct t_forcerec * gmx_restrict fr,
62 t_mdatoms * gmx_restrict mdatoms,
63 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64 t_nrnb * gmx_restrict nrnb)
66 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67 * just 0 for non-waters.
68 * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
69 * jnr indices corresponding to data put in the four positions in the SIMD register.
71 int i_shift_offset,i_coord_offset,outeriter,inneriter;
72 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73 int jnrA,jnrB,jnrC,jnrD;
74 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
76 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
77 real rcutoff_scalar;
78 real *shiftvec,*fshift,*x,*f;
79 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
80 real scratch[4*DIM];
81 __m128 fscal,rcutoff,rcutoff2,jidxall;
82 int vdwioffset0;
83 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84 int vdwioffset1;
85 __m128 ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86 int vdwioffset2;
87 __m128 ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
89 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91 __m128 dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
92 __m128 dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
93 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
94 real *charge;
95 int nvdwtype;
96 __m128 rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
97 int *vdwtype;
98 real *vdwparam;
99 __m128 one_sixth = _mm_set1_ps(1.0/6.0);
100 __m128 one_twelfth = _mm_set1_ps(1.0/12.0);
101 __m128 dummy_mask,cutoff_mask;
102 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
103 __m128 one = _mm_set1_ps(1.0);
104 __m128 two = _mm_set1_ps(2.0);
105 x = xx[0];
106 f = ff[0];
108 nri = nlist->nri;
109 iinr = nlist->iinr;
110 jindex = nlist->jindex;
111 jjnr = nlist->jjnr;
112 shiftidx = nlist->shift;
113 gid = nlist->gid;
114 shiftvec = fr->shift_vec[0];
115 fshift = fr->fshift[0];
116 facel = _mm_set1_ps(fr->ic->epsfac);
117 charge = mdatoms->chargeA;
118 krf = _mm_set1_ps(fr->ic->k_rf);
119 krf2 = _mm_set1_ps(fr->ic->k_rf*2.0);
120 crf = _mm_set1_ps(fr->ic->c_rf);
121 nvdwtype = fr->ntype;
122 vdwparam = fr->nbfp;
123 vdwtype = mdatoms->typeA;
125 /* Setup water-specific parameters */
126 inr = nlist->iinr[0];
127 iq0 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
128 iq1 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
129 iq2 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
130 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
132 /* Avoid stupid compiler warnings */
133 jnrA = jnrB = jnrC = jnrD = 0;
134 j_coord_offsetA = 0;
135 j_coord_offsetB = 0;
136 j_coord_offsetC = 0;
137 j_coord_offsetD = 0;
139 outeriter = 0;
140 inneriter = 0;
142 for(iidx=0;iidx<4*DIM;iidx++)
144 scratch[iidx] = 0.0;
147 /* Start outer loop over neighborlists */
148 for(iidx=0; iidx<nri; iidx++)
150 /* Load shift vector for this list */
151 i_shift_offset = DIM*shiftidx[iidx];
153 /* Load limits for loop over neighbors */
154 j_index_start = jindex[iidx];
155 j_index_end = jindex[iidx+1];
157 /* Get outer coordinate index */
158 inr = iinr[iidx];
159 i_coord_offset = DIM*inr;
161 /* Load i particle coords and add shift vector */
162 gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
163 &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
165 fix0 = _mm_setzero_ps();
166 fiy0 = _mm_setzero_ps();
167 fiz0 = _mm_setzero_ps();
168 fix1 = _mm_setzero_ps();
169 fiy1 = _mm_setzero_ps();
170 fiz1 = _mm_setzero_ps();
171 fix2 = _mm_setzero_ps();
172 fiy2 = _mm_setzero_ps();
173 fiz2 = _mm_setzero_ps();
175 /* Reset potential sums */
176 velecsum = _mm_setzero_ps();
177 vvdwsum = _mm_setzero_ps();
179 /* Start inner kernel loop */
180 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
183 /* Get j neighbor index, and coordinate index */
184 jnrA = jjnr[jidx];
185 jnrB = jjnr[jidx+1];
186 jnrC = jjnr[jidx+2];
187 jnrD = jjnr[jidx+3];
188 j_coord_offsetA = DIM*jnrA;
189 j_coord_offsetB = DIM*jnrB;
190 j_coord_offsetC = DIM*jnrC;
191 j_coord_offsetD = DIM*jnrD;
193 /* load j atom coordinates */
194 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
195 x+j_coord_offsetC,x+j_coord_offsetD,
196 &jx0,&jy0,&jz0);
198 /* Calculate displacement vector */
199 dx00 = _mm_sub_ps(ix0,jx0);
200 dy00 = _mm_sub_ps(iy0,jy0);
201 dz00 = _mm_sub_ps(iz0,jz0);
202 dx10 = _mm_sub_ps(ix1,jx0);
203 dy10 = _mm_sub_ps(iy1,jy0);
204 dz10 = _mm_sub_ps(iz1,jz0);
205 dx20 = _mm_sub_ps(ix2,jx0);
206 dy20 = _mm_sub_ps(iy2,jy0);
207 dz20 = _mm_sub_ps(iz2,jz0);
209 /* Calculate squared distance and things based on it */
210 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
211 rsq10 = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
212 rsq20 = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
214 rinv00 = avx128fma_invsqrt_f(rsq00);
215 rinv10 = avx128fma_invsqrt_f(rsq10);
216 rinv20 = avx128fma_invsqrt_f(rsq20);
218 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
219 rinvsq10 = _mm_mul_ps(rinv10,rinv10);
220 rinvsq20 = _mm_mul_ps(rinv20,rinv20);
222 /* Load parameters for j particles */
223 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
224 charge+jnrC+0,charge+jnrD+0);
225 vdwjidx0A = 2*vdwtype[jnrA+0];
226 vdwjidx0B = 2*vdwtype[jnrB+0];
227 vdwjidx0C = 2*vdwtype[jnrC+0];
228 vdwjidx0D = 2*vdwtype[jnrD+0];
230 fjx0 = _mm_setzero_ps();
231 fjy0 = _mm_setzero_ps();
232 fjz0 = _mm_setzero_ps();
234 /**************************
235 * CALCULATE INTERACTIONS *
236 **************************/
238 /* Compute parameters for interactions between i and j atoms */
239 qq00 = _mm_mul_ps(iq0,jq0);
240 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
241 vdwparam+vdwioffset0+vdwjidx0B,
242 vdwparam+vdwioffset0+vdwjidx0C,
243 vdwparam+vdwioffset0+vdwjidx0D,
244 &c6_00,&c12_00);
246 /* REACTION-FIELD ELECTROSTATICS */
247 velec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_macc_ps(krf,rsq00,rinv00),crf));
248 felec = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
250 /* LENNARD-JONES DISPERSION/REPULSION */
252 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
253 vvdw6 = _mm_mul_ps(c6_00,rinvsix);
254 vvdw12 = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
255 vvdw = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
256 fvdw = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
258 /* Update potential sum for this i atom from the interaction with this j atom. */
259 velecsum = _mm_add_ps(velecsum,velec);
260 vvdwsum = _mm_add_ps(vvdwsum,vvdw);
262 fscal = _mm_add_ps(felec,fvdw);
264 /* Update vectorial force */
265 fix0 = _mm_macc_ps(dx00,fscal,fix0);
266 fiy0 = _mm_macc_ps(dy00,fscal,fiy0);
267 fiz0 = _mm_macc_ps(dz00,fscal,fiz0);
269 fjx0 = _mm_macc_ps(dx00,fscal,fjx0);
270 fjy0 = _mm_macc_ps(dy00,fscal,fjy0);
271 fjz0 = _mm_macc_ps(dz00,fscal,fjz0);
273 /**************************
274 * CALCULATE INTERACTIONS *
275 **************************/
277 /* Compute parameters for interactions between i and j atoms */
278 qq10 = _mm_mul_ps(iq1,jq0);
280 /* REACTION-FIELD ELECTROSTATICS */
281 velec = _mm_mul_ps(qq10,_mm_sub_ps(_mm_macc_ps(krf,rsq10,rinv10),crf));
282 felec = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
284 /* Update potential sum for this i atom from the interaction with this j atom. */
285 velecsum = _mm_add_ps(velecsum,velec);
287 fscal = felec;
289 /* Update vectorial force */
290 fix1 = _mm_macc_ps(dx10,fscal,fix1);
291 fiy1 = _mm_macc_ps(dy10,fscal,fiy1);
292 fiz1 = _mm_macc_ps(dz10,fscal,fiz1);
294 fjx0 = _mm_macc_ps(dx10,fscal,fjx0);
295 fjy0 = _mm_macc_ps(dy10,fscal,fjy0);
296 fjz0 = _mm_macc_ps(dz10,fscal,fjz0);
298 /**************************
299 * CALCULATE INTERACTIONS *
300 **************************/
302 /* Compute parameters for interactions between i and j atoms */
303 qq20 = _mm_mul_ps(iq2,jq0);
305 /* REACTION-FIELD ELECTROSTATICS */
306 velec = _mm_mul_ps(qq20,_mm_sub_ps(_mm_macc_ps(krf,rsq20,rinv20),crf));
307 felec = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
309 /* Update potential sum for this i atom from the interaction with this j atom. */
310 velecsum = _mm_add_ps(velecsum,velec);
312 fscal = felec;
314 /* Update vectorial force */
315 fix2 = _mm_macc_ps(dx20,fscal,fix2);
316 fiy2 = _mm_macc_ps(dy20,fscal,fiy2);
317 fiz2 = _mm_macc_ps(dz20,fscal,fiz2);
319 fjx0 = _mm_macc_ps(dx20,fscal,fjx0);
320 fjy0 = _mm_macc_ps(dy20,fscal,fjy0);
321 fjz0 = _mm_macc_ps(dz20,fscal,fjz0);
323 fjptrA = f+j_coord_offsetA;
324 fjptrB = f+j_coord_offsetB;
325 fjptrC = f+j_coord_offsetC;
326 fjptrD = f+j_coord_offsetD;
328 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
330 /* Inner loop uses 117 flops */
333 if(jidx<j_index_end)
336 /* Get j neighbor index, and coordinate index */
337 jnrlistA = jjnr[jidx];
338 jnrlistB = jjnr[jidx+1];
339 jnrlistC = jjnr[jidx+2];
340 jnrlistD = jjnr[jidx+3];
341 /* Sign of each element will be negative for non-real atoms.
342 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
343 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
345 dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
346 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
347 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
348 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
349 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
350 j_coord_offsetA = DIM*jnrA;
351 j_coord_offsetB = DIM*jnrB;
352 j_coord_offsetC = DIM*jnrC;
353 j_coord_offsetD = DIM*jnrD;
355 /* load j atom coordinates */
356 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
357 x+j_coord_offsetC,x+j_coord_offsetD,
358 &jx0,&jy0,&jz0);
360 /* Calculate displacement vector */
361 dx00 = _mm_sub_ps(ix0,jx0);
362 dy00 = _mm_sub_ps(iy0,jy0);
363 dz00 = _mm_sub_ps(iz0,jz0);
364 dx10 = _mm_sub_ps(ix1,jx0);
365 dy10 = _mm_sub_ps(iy1,jy0);
366 dz10 = _mm_sub_ps(iz1,jz0);
367 dx20 = _mm_sub_ps(ix2,jx0);
368 dy20 = _mm_sub_ps(iy2,jy0);
369 dz20 = _mm_sub_ps(iz2,jz0);
371 /* Calculate squared distance and things based on it */
372 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
373 rsq10 = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
374 rsq20 = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
376 rinv00 = avx128fma_invsqrt_f(rsq00);
377 rinv10 = avx128fma_invsqrt_f(rsq10);
378 rinv20 = avx128fma_invsqrt_f(rsq20);
380 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
381 rinvsq10 = _mm_mul_ps(rinv10,rinv10);
382 rinvsq20 = _mm_mul_ps(rinv20,rinv20);
384 /* Load parameters for j particles */
385 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
386 charge+jnrC+0,charge+jnrD+0);
387 vdwjidx0A = 2*vdwtype[jnrA+0];
388 vdwjidx0B = 2*vdwtype[jnrB+0];
389 vdwjidx0C = 2*vdwtype[jnrC+0];
390 vdwjidx0D = 2*vdwtype[jnrD+0];
392 fjx0 = _mm_setzero_ps();
393 fjy0 = _mm_setzero_ps();
394 fjz0 = _mm_setzero_ps();
396 /**************************
397 * CALCULATE INTERACTIONS *
398 **************************/
400 /* Compute parameters for interactions between i and j atoms */
401 qq00 = _mm_mul_ps(iq0,jq0);
402 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
403 vdwparam+vdwioffset0+vdwjidx0B,
404 vdwparam+vdwioffset0+vdwjidx0C,
405 vdwparam+vdwioffset0+vdwjidx0D,
406 &c6_00,&c12_00);
408 /* REACTION-FIELD ELECTROSTATICS */
409 velec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_macc_ps(krf,rsq00,rinv00),crf));
410 felec = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
412 /* LENNARD-JONES DISPERSION/REPULSION */
414 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
415 vvdw6 = _mm_mul_ps(c6_00,rinvsix);
416 vvdw12 = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
417 vvdw = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
418 fvdw = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
420 /* Update potential sum for this i atom from the interaction with this j atom. */
421 velec = _mm_andnot_ps(dummy_mask,velec);
422 velecsum = _mm_add_ps(velecsum,velec);
423 vvdw = _mm_andnot_ps(dummy_mask,vvdw);
424 vvdwsum = _mm_add_ps(vvdwsum,vvdw);
426 fscal = _mm_add_ps(felec,fvdw);
428 fscal = _mm_andnot_ps(dummy_mask,fscal);
430 /* Update vectorial force */
431 fix0 = _mm_macc_ps(dx00,fscal,fix0);
432 fiy0 = _mm_macc_ps(dy00,fscal,fiy0);
433 fiz0 = _mm_macc_ps(dz00,fscal,fiz0);
435 fjx0 = _mm_macc_ps(dx00,fscal,fjx0);
436 fjy0 = _mm_macc_ps(dy00,fscal,fjy0);
437 fjz0 = _mm_macc_ps(dz00,fscal,fjz0);
439 /**************************
440 * CALCULATE INTERACTIONS *
441 **************************/
443 /* Compute parameters for interactions between i and j atoms */
444 qq10 = _mm_mul_ps(iq1,jq0);
446 /* REACTION-FIELD ELECTROSTATICS */
447 velec = _mm_mul_ps(qq10,_mm_sub_ps(_mm_macc_ps(krf,rsq10,rinv10),crf));
448 felec = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
450 /* Update potential sum for this i atom from the interaction with this j atom. */
451 velec = _mm_andnot_ps(dummy_mask,velec);
452 velecsum = _mm_add_ps(velecsum,velec);
454 fscal = felec;
456 fscal = _mm_andnot_ps(dummy_mask,fscal);
458 /* Update vectorial force */
459 fix1 = _mm_macc_ps(dx10,fscal,fix1);
460 fiy1 = _mm_macc_ps(dy10,fscal,fiy1);
461 fiz1 = _mm_macc_ps(dz10,fscal,fiz1);
463 fjx0 = _mm_macc_ps(dx10,fscal,fjx0);
464 fjy0 = _mm_macc_ps(dy10,fscal,fjy0);
465 fjz0 = _mm_macc_ps(dz10,fscal,fjz0);
467 /**************************
468 * CALCULATE INTERACTIONS *
469 **************************/
471 /* Compute parameters for interactions between i and j atoms */
472 qq20 = _mm_mul_ps(iq2,jq0);
474 /* REACTION-FIELD ELECTROSTATICS */
475 velec = _mm_mul_ps(qq20,_mm_sub_ps(_mm_macc_ps(krf,rsq20,rinv20),crf));
476 felec = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
478 /* Update potential sum for this i atom from the interaction with this j atom. */
479 velec = _mm_andnot_ps(dummy_mask,velec);
480 velecsum = _mm_add_ps(velecsum,velec);
482 fscal = felec;
484 fscal = _mm_andnot_ps(dummy_mask,fscal);
486 /* Update vectorial force */
487 fix2 = _mm_macc_ps(dx20,fscal,fix2);
488 fiy2 = _mm_macc_ps(dy20,fscal,fiy2);
489 fiz2 = _mm_macc_ps(dz20,fscal,fiz2);
491 fjx0 = _mm_macc_ps(dx20,fscal,fjx0);
492 fjy0 = _mm_macc_ps(dy20,fscal,fjy0);
493 fjz0 = _mm_macc_ps(dz20,fscal,fjz0);
495 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
496 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
497 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
498 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
500 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
502 /* Inner loop uses 117 flops */
505 /* End of innermost loop */
507 gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
508 f+i_coord_offset,fshift+i_shift_offset);
510 ggid = gid[iidx];
511 /* Update potential energies */
512 gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
513 gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
515 /* Increment number of inner iterations */
516 inneriter += j_index_end - j_index_start;
518 /* Outer loop uses 20 flops */
521 /* Increment number of outer iterations */
522 outeriter += nri;
524 /* Update outer/inner flops */
526 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*117);
529 * Gromacs nonbonded kernel: nb_kernel_ElecRF_VdwLJ_GeomW3P1_F_avx_128_fma_single
530 * Electrostatics interaction: ReactionField
531 * VdW interaction: LennardJones
532 * Geometry: Water3-Particle
533 * Calculate force/pot: Force
535 void
536 nb_kernel_ElecRF_VdwLJ_GeomW3P1_F_avx_128_fma_single
537 (t_nblist * gmx_restrict nlist,
538 rvec * gmx_restrict xx,
539 rvec * gmx_restrict ff,
540 struct t_forcerec * gmx_restrict fr,
541 t_mdatoms * gmx_restrict mdatoms,
542 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
543 t_nrnb * gmx_restrict nrnb)
545 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
546 * just 0 for non-waters.
547 * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
548 * jnr indices corresponding to data put in the four positions in the SIMD register.
550 int i_shift_offset,i_coord_offset,outeriter,inneriter;
551 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
552 int jnrA,jnrB,jnrC,jnrD;
553 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
554 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
555 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
556 real rcutoff_scalar;
557 real *shiftvec,*fshift,*x,*f;
558 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
559 real scratch[4*DIM];
560 __m128 fscal,rcutoff,rcutoff2,jidxall;
561 int vdwioffset0;
562 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
563 int vdwioffset1;
564 __m128 ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
565 int vdwioffset2;
566 __m128 ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
567 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
568 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
569 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
570 __m128 dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
571 __m128 dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
572 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
573 real *charge;
574 int nvdwtype;
575 __m128 rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
576 int *vdwtype;
577 real *vdwparam;
578 __m128 one_sixth = _mm_set1_ps(1.0/6.0);
579 __m128 one_twelfth = _mm_set1_ps(1.0/12.0);
580 __m128 dummy_mask,cutoff_mask;
581 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
582 __m128 one = _mm_set1_ps(1.0);
583 __m128 two = _mm_set1_ps(2.0);
584 x = xx[0];
585 f = ff[0];
587 nri = nlist->nri;
588 iinr = nlist->iinr;
589 jindex = nlist->jindex;
590 jjnr = nlist->jjnr;
591 shiftidx = nlist->shift;
592 gid = nlist->gid;
593 shiftvec = fr->shift_vec[0];
594 fshift = fr->fshift[0];
595 facel = _mm_set1_ps(fr->ic->epsfac);
596 charge = mdatoms->chargeA;
597 krf = _mm_set1_ps(fr->ic->k_rf);
598 krf2 = _mm_set1_ps(fr->ic->k_rf*2.0);
599 crf = _mm_set1_ps(fr->ic->c_rf);
600 nvdwtype = fr->ntype;
601 vdwparam = fr->nbfp;
602 vdwtype = mdatoms->typeA;
604 /* Setup water-specific parameters */
605 inr = nlist->iinr[0];
606 iq0 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
607 iq1 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
608 iq2 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
609 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
611 /* Avoid stupid compiler warnings */
612 jnrA = jnrB = jnrC = jnrD = 0;
613 j_coord_offsetA = 0;
614 j_coord_offsetB = 0;
615 j_coord_offsetC = 0;
616 j_coord_offsetD = 0;
618 outeriter = 0;
619 inneriter = 0;
621 for(iidx=0;iidx<4*DIM;iidx++)
623 scratch[iidx] = 0.0;
626 /* Start outer loop over neighborlists */
627 for(iidx=0; iidx<nri; iidx++)
629 /* Load shift vector for this list */
630 i_shift_offset = DIM*shiftidx[iidx];
632 /* Load limits for loop over neighbors */
633 j_index_start = jindex[iidx];
634 j_index_end = jindex[iidx+1];
636 /* Get outer coordinate index */
637 inr = iinr[iidx];
638 i_coord_offset = DIM*inr;
640 /* Load i particle coords and add shift vector */
641 gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
642 &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
644 fix0 = _mm_setzero_ps();
645 fiy0 = _mm_setzero_ps();
646 fiz0 = _mm_setzero_ps();
647 fix1 = _mm_setzero_ps();
648 fiy1 = _mm_setzero_ps();
649 fiz1 = _mm_setzero_ps();
650 fix2 = _mm_setzero_ps();
651 fiy2 = _mm_setzero_ps();
652 fiz2 = _mm_setzero_ps();
654 /* Start inner kernel loop */
655 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
658 /* Get j neighbor index, and coordinate index */
659 jnrA = jjnr[jidx];
660 jnrB = jjnr[jidx+1];
661 jnrC = jjnr[jidx+2];
662 jnrD = jjnr[jidx+3];
663 j_coord_offsetA = DIM*jnrA;
664 j_coord_offsetB = DIM*jnrB;
665 j_coord_offsetC = DIM*jnrC;
666 j_coord_offsetD = DIM*jnrD;
668 /* load j atom coordinates */
669 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
670 x+j_coord_offsetC,x+j_coord_offsetD,
671 &jx0,&jy0,&jz0);
673 /* Calculate displacement vector */
674 dx00 = _mm_sub_ps(ix0,jx0);
675 dy00 = _mm_sub_ps(iy0,jy0);
676 dz00 = _mm_sub_ps(iz0,jz0);
677 dx10 = _mm_sub_ps(ix1,jx0);
678 dy10 = _mm_sub_ps(iy1,jy0);
679 dz10 = _mm_sub_ps(iz1,jz0);
680 dx20 = _mm_sub_ps(ix2,jx0);
681 dy20 = _mm_sub_ps(iy2,jy0);
682 dz20 = _mm_sub_ps(iz2,jz0);
684 /* Calculate squared distance and things based on it */
685 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
686 rsq10 = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
687 rsq20 = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
689 rinv00 = avx128fma_invsqrt_f(rsq00);
690 rinv10 = avx128fma_invsqrt_f(rsq10);
691 rinv20 = avx128fma_invsqrt_f(rsq20);
693 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
694 rinvsq10 = _mm_mul_ps(rinv10,rinv10);
695 rinvsq20 = _mm_mul_ps(rinv20,rinv20);
697 /* Load parameters for j particles */
698 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
699 charge+jnrC+0,charge+jnrD+0);
700 vdwjidx0A = 2*vdwtype[jnrA+0];
701 vdwjidx0B = 2*vdwtype[jnrB+0];
702 vdwjidx0C = 2*vdwtype[jnrC+0];
703 vdwjidx0D = 2*vdwtype[jnrD+0];
705 fjx0 = _mm_setzero_ps();
706 fjy0 = _mm_setzero_ps();
707 fjz0 = _mm_setzero_ps();
709 /**************************
710 * CALCULATE INTERACTIONS *
711 **************************/
713 /* Compute parameters for interactions between i and j atoms */
714 qq00 = _mm_mul_ps(iq0,jq0);
715 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
716 vdwparam+vdwioffset0+vdwjidx0B,
717 vdwparam+vdwioffset0+vdwjidx0C,
718 vdwparam+vdwioffset0+vdwjidx0D,
719 &c6_00,&c12_00);
721 /* REACTION-FIELD ELECTROSTATICS */
722 felec = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
724 /* LENNARD-JONES DISPERSION/REPULSION */
726 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
727 fvdw = _mm_mul_ps(_mm_msub_ps(c12_00,rinvsix,c6_00),_mm_mul_ps(rinvsix,rinvsq00));
729 fscal = _mm_add_ps(felec,fvdw);
731 /* Update vectorial force */
732 fix0 = _mm_macc_ps(dx00,fscal,fix0);
733 fiy0 = _mm_macc_ps(dy00,fscal,fiy0);
734 fiz0 = _mm_macc_ps(dz00,fscal,fiz0);
736 fjx0 = _mm_macc_ps(dx00,fscal,fjx0);
737 fjy0 = _mm_macc_ps(dy00,fscal,fjy0);
738 fjz0 = _mm_macc_ps(dz00,fscal,fjz0);
740 /**************************
741 * CALCULATE INTERACTIONS *
742 **************************/
744 /* Compute parameters for interactions between i and j atoms */
745 qq10 = _mm_mul_ps(iq1,jq0);
747 /* REACTION-FIELD ELECTROSTATICS */
748 felec = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
750 fscal = felec;
752 /* Update vectorial force */
753 fix1 = _mm_macc_ps(dx10,fscal,fix1);
754 fiy1 = _mm_macc_ps(dy10,fscal,fiy1);
755 fiz1 = _mm_macc_ps(dz10,fscal,fiz1);
757 fjx0 = _mm_macc_ps(dx10,fscal,fjx0);
758 fjy0 = _mm_macc_ps(dy10,fscal,fjy0);
759 fjz0 = _mm_macc_ps(dz10,fscal,fjz0);
761 /**************************
762 * CALCULATE INTERACTIONS *
763 **************************/
765 /* Compute parameters for interactions between i and j atoms */
766 qq20 = _mm_mul_ps(iq2,jq0);
768 /* REACTION-FIELD ELECTROSTATICS */
769 felec = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
771 fscal = felec;
773 /* Update vectorial force */
774 fix2 = _mm_macc_ps(dx20,fscal,fix2);
775 fiy2 = _mm_macc_ps(dy20,fscal,fiy2);
776 fiz2 = _mm_macc_ps(dz20,fscal,fiz2);
778 fjx0 = _mm_macc_ps(dx20,fscal,fjx0);
779 fjy0 = _mm_macc_ps(dy20,fscal,fjy0);
780 fjz0 = _mm_macc_ps(dz20,fscal,fjz0);
782 fjptrA = f+j_coord_offsetA;
783 fjptrB = f+j_coord_offsetB;
784 fjptrC = f+j_coord_offsetC;
785 fjptrD = f+j_coord_offsetD;
787 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
789 /* Inner loop uses 97 flops */
792 if(jidx<j_index_end)
795 /* Get j neighbor index, and coordinate index */
796 jnrlistA = jjnr[jidx];
797 jnrlistB = jjnr[jidx+1];
798 jnrlistC = jjnr[jidx+2];
799 jnrlistD = jjnr[jidx+3];
800 /* Sign of each element will be negative for non-real atoms.
801 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
802 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
804 dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
805 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
806 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
807 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
808 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
809 j_coord_offsetA = DIM*jnrA;
810 j_coord_offsetB = DIM*jnrB;
811 j_coord_offsetC = DIM*jnrC;
812 j_coord_offsetD = DIM*jnrD;
814 /* load j atom coordinates */
815 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
816 x+j_coord_offsetC,x+j_coord_offsetD,
817 &jx0,&jy0,&jz0);
819 /* Calculate displacement vector */
820 dx00 = _mm_sub_ps(ix0,jx0);
821 dy00 = _mm_sub_ps(iy0,jy0);
822 dz00 = _mm_sub_ps(iz0,jz0);
823 dx10 = _mm_sub_ps(ix1,jx0);
824 dy10 = _mm_sub_ps(iy1,jy0);
825 dz10 = _mm_sub_ps(iz1,jz0);
826 dx20 = _mm_sub_ps(ix2,jx0);
827 dy20 = _mm_sub_ps(iy2,jy0);
828 dz20 = _mm_sub_ps(iz2,jz0);
830 /* Calculate squared distance and things based on it */
831 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
832 rsq10 = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
833 rsq20 = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
835 rinv00 = avx128fma_invsqrt_f(rsq00);
836 rinv10 = avx128fma_invsqrt_f(rsq10);
837 rinv20 = avx128fma_invsqrt_f(rsq20);
839 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
840 rinvsq10 = _mm_mul_ps(rinv10,rinv10);
841 rinvsq20 = _mm_mul_ps(rinv20,rinv20);
843 /* Load parameters for j particles */
844 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
845 charge+jnrC+0,charge+jnrD+0);
846 vdwjidx0A = 2*vdwtype[jnrA+0];
847 vdwjidx0B = 2*vdwtype[jnrB+0];
848 vdwjidx0C = 2*vdwtype[jnrC+0];
849 vdwjidx0D = 2*vdwtype[jnrD+0];
851 fjx0 = _mm_setzero_ps();
852 fjy0 = _mm_setzero_ps();
853 fjz0 = _mm_setzero_ps();
855 /**************************
856 * CALCULATE INTERACTIONS *
857 **************************/
859 /* Compute parameters for interactions between i and j atoms */
860 qq00 = _mm_mul_ps(iq0,jq0);
861 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
862 vdwparam+vdwioffset0+vdwjidx0B,
863 vdwparam+vdwioffset0+vdwjidx0C,
864 vdwparam+vdwioffset0+vdwjidx0D,
865 &c6_00,&c12_00);
867 /* REACTION-FIELD ELECTROSTATICS */
868 felec = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
870 /* LENNARD-JONES DISPERSION/REPULSION */
872 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
873 fvdw = _mm_mul_ps(_mm_msub_ps(c12_00,rinvsix,c6_00),_mm_mul_ps(rinvsix,rinvsq00));
875 fscal = _mm_add_ps(felec,fvdw);
877 fscal = _mm_andnot_ps(dummy_mask,fscal);
879 /* Update vectorial force */
880 fix0 = _mm_macc_ps(dx00,fscal,fix0);
881 fiy0 = _mm_macc_ps(dy00,fscal,fiy0);
882 fiz0 = _mm_macc_ps(dz00,fscal,fiz0);
884 fjx0 = _mm_macc_ps(dx00,fscal,fjx0);
885 fjy0 = _mm_macc_ps(dy00,fscal,fjy0);
886 fjz0 = _mm_macc_ps(dz00,fscal,fjz0);
888 /**************************
889 * CALCULATE INTERACTIONS *
890 **************************/
892 /* Compute parameters for interactions between i and j atoms */
893 qq10 = _mm_mul_ps(iq1,jq0);
895 /* REACTION-FIELD ELECTROSTATICS */
896 felec = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
898 fscal = felec;
900 fscal = _mm_andnot_ps(dummy_mask,fscal);
902 /* Update vectorial force */
903 fix1 = _mm_macc_ps(dx10,fscal,fix1);
904 fiy1 = _mm_macc_ps(dy10,fscal,fiy1);
905 fiz1 = _mm_macc_ps(dz10,fscal,fiz1);
907 fjx0 = _mm_macc_ps(dx10,fscal,fjx0);
908 fjy0 = _mm_macc_ps(dy10,fscal,fjy0);
909 fjz0 = _mm_macc_ps(dz10,fscal,fjz0);
911 /**************************
912 * CALCULATE INTERACTIONS *
913 **************************/
915 /* Compute parameters for interactions between i and j atoms */
916 qq20 = _mm_mul_ps(iq2,jq0);
918 /* REACTION-FIELD ELECTROSTATICS */
919 felec = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
921 fscal = felec;
923 fscal = _mm_andnot_ps(dummy_mask,fscal);
925 /* Update vectorial force */
926 fix2 = _mm_macc_ps(dx20,fscal,fix2);
927 fiy2 = _mm_macc_ps(dy20,fscal,fiy2);
928 fiz2 = _mm_macc_ps(dz20,fscal,fiz2);
930 fjx0 = _mm_macc_ps(dx20,fscal,fjx0);
931 fjy0 = _mm_macc_ps(dy20,fscal,fjy0);
932 fjz0 = _mm_macc_ps(dz20,fscal,fjz0);
934 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
935 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
936 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
937 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
939 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
941 /* Inner loop uses 97 flops */
944 /* End of innermost loop */
946 gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
947 f+i_coord_offset,fshift+i_shift_offset);
949 /* Increment number of inner iterations */
950 inneriter += j_index_end - j_index_start;
952 /* Outer loop uses 18 flops */
955 /* Increment number of outer iterations */
956 outeriter += nri;
958 /* Update outer/inner flops */
960 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*97);