Remove nb-parameters from t_forcerec
[gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEw_VdwLJ_GeomP1P1_avx_128_fma_double.c
bloba455c511bdd8511cb08450fdd3876d502e820abf
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
36 * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
38 #include "gmxpre.h"
40 #include "config.h"
42 #include <math.h>
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
47 #include "kernelutil_x86_avx_128_fma_double.h"
50 * Gromacs nonbonded kernel: nb_kernel_ElecEw_VdwLJ_GeomP1P1_VF_avx_128_fma_double
51 * Electrostatics interaction: Ewald
52 * VdW interaction: LennardJones
53 * Geometry: Particle-Particle
54 * Calculate force/pot: PotentialAndForce
56 void
57 nb_kernel_ElecEw_VdwLJ_GeomP1P1_VF_avx_128_fma_double
58 (t_nblist * gmx_restrict nlist,
59 rvec * gmx_restrict xx,
60 rvec * gmx_restrict ff,
61 struct t_forcerec * gmx_restrict fr,
62 t_mdatoms * gmx_restrict mdatoms,
63 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64 t_nrnb * gmx_restrict nrnb)
66 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67 * just 0 for non-waters.
68 * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
69 * jnr indices corresponding to data put in the four positions in the SIMD register.
71 int i_shift_offset,i_coord_offset,outeriter,inneriter;
72 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73 int jnrA,jnrB;
74 int j_coord_offsetA,j_coord_offsetB;
75 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
76 real rcutoff_scalar;
77 real *shiftvec,*fshift,*x,*f;
78 __m128d tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79 int vdwioffset0;
80 __m128d ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81 int vdwjidx0A,vdwjidx0B;
82 __m128d jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
83 __m128d dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
84 __m128d velec,felec,velecsum,facel,crf,krf,krf2;
85 real *charge;
86 int nvdwtype;
87 __m128d rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
88 int *vdwtype;
89 real *vdwparam;
90 __m128d one_sixth = _mm_set1_pd(1.0/6.0);
91 __m128d one_twelfth = _mm_set1_pd(1.0/12.0);
92 __m128i ewitab;
93 __m128d ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
94 real *ewtab;
95 __m128d dummy_mask,cutoff_mask;
96 __m128d signbit = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
97 __m128d one = _mm_set1_pd(1.0);
98 __m128d two = _mm_set1_pd(2.0);
99 x = xx[0];
100 f = ff[0];
102 nri = nlist->nri;
103 iinr = nlist->iinr;
104 jindex = nlist->jindex;
105 jjnr = nlist->jjnr;
106 shiftidx = nlist->shift;
107 gid = nlist->gid;
108 shiftvec = fr->shift_vec[0];
109 fshift = fr->fshift[0];
110 facel = _mm_set1_pd(fr->ic->epsfac);
111 charge = mdatoms->chargeA;
112 nvdwtype = fr->ntype;
113 vdwparam = fr->nbfp;
114 vdwtype = mdatoms->typeA;
116 sh_ewald = _mm_set1_pd(fr->ic->sh_ewald);
117 ewtab = fr->ic->tabq_coul_FDV0;
118 ewtabscale = _mm_set1_pd(fr->ic->tabq_scale);
119 ewtabhalfspace = _mm_set1_pd(0.5/fr->ic->tabq_scale);
121 /* Avoid stupid compiler warnings */
122 jnrA = jnrB = 0;
123 j_coord_offsetA = 0;
124 j_coord_offsetB = 0;
126 outeriter = 0;
127 inneriter = 0;
129 /* Start outer loop over neighborlists */
130 for(iidx=0; iidx<nri; iidx++)
132 /* Load shift vector for this list */
133 i_shift_offset = DIM*shiftidx[iidx];
135 /* Load limits for loop over neighbors */
136 j_index_start = jindex[iidx];
137 j_index_end = jindex[iidx+1];
139 /* Get outer coordinate index */
140 inr = iinr[iidx];
141 i_coord_offset = DIM*inr;
143 /* Load i particle coords and add shift vector */
144 gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
146 fix0 = _mm_setzero_pd();
147 fiy0 = _mm_setzero_pd();
148 fiz0 = _mm_setzero_pd();
150 /* Load parameters for i particles */
151 iq0 = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
152 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
154 /* Reset potential sums */
155 velecsum = _mm_setzero_pd();
156 vvdwsum = _mm_setzero_pd();
158 /* Start inner kernel loop */
159 for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
162 /* Get j neighbor index, and coordinate index */
163 jnrA = jjnr[jidx];
164 jnrB = jjnr[jidx+1];
165 j_coord_offsetA = DIM*jnrA;
166 j_coord_offsetB = DIM*jnrB;
168 /* load j atom coordinates */
169 gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
170 &jx0,&jy0,&jz0);
172 /* Calculate displacement vector */
173 dx00 = _mm_sub_pd(ix0,jx0);
174 dy00 = _mm_sub_pd(iy0,jy0);
175 dz00 = _mm_sub_pd(iz0,jz0);
177 /* Calculate squared distance and things based on it */
178 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
180 rinv00 = avx128fma_invsqrt_d(rsq00);
182 rinvsq00 = _mm_mul_pd(rinv00,rinv00);
184 /* Load parameters for j particles */
185 jq0 = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
186 vdwjidx0A = 2*vdwtype[jnrA+0];
187 vdwjidx0B = 2*vdwtype[jnrB+0];
189 /**************************
190 * CALCULATE INTERACTIONS *
191 **************************/
193 r00 = _mm_mul_pd(rsq00,rinv00);
195 /* Compute parameters for interactions between i and j atoms */
196 qq00 = _mm_mul_pd(iq0,jq0);
197 gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
198 vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
200 /* EWALD ELECTROSTATICS */
202 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
203 ewrt = _mm_mul_pd(r00,ewtabscale);
204 ewitab = _mm_cvttpd_epi32(ewrt);
205 #ifdef __XOP__
206 eweps = _mm_frcz_pd(ewrt);
207 #else
208 eweps = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
209 #endif
210 twoeweps = _mm_add_pd(eweps,eweps);
211 ewitab = _mm_slli_epi32(ewitab,2);
212 ewtabF = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
213 ewtabD = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
214 GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
215 ewtabV = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
216 ewtabFn = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
217 GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
218 felec = _mm_macc_pd(eweps,ewtabD,ewtabF);
219 velec = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
220 velec = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
221 felec = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
223 /* LENNARD-JONES DISPERSION/REPULSION */
225 rinvsix = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
226 vvdw6 = _mm_mul_pd(c6_00,rinvsix);
227 vvdw12 = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
228 vvdw = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
229 fvdw = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
231 /* Update potential sum for this i atom from the interaction with this j atom. */
232 velecsum = _mm_add_pd(velecsum,velec);
233 vvdwsum = _mm_add_pd(vvdwsum,vvdw);
235 fscal = _mm_add_pd(felec,fvdw);
237 /* Update vectorial force */
238 fix0 = _mm_macc_pd(dx00,fscal,fix0);
239 fiy0 = _mm_macc_pd(dy00,fscal,fiy0);
240 fiz0 = _mm_macc_pd(dz00,fscal,fiz0);
242 gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
243 _mm_mul_pd(dx00,fscal),
244 _mm_mul_pd(dy00,fscal),
245 _mm_mul_pd(dz00,fscal));
247 /* Inner loop uses 56 flops */
250 if(jidx<j_index_end)
253 jnrA = jjnr[jidx];
254 j_coord_offsetA = DIM*jnrA;
256 /* load j atom coordinates */
257 gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
258 &jx0,&jy0,&jz0);
260 /* Calculate displacement vector */
261 dx00 = _mm_sub_pd(ix0,jx0);
262 dy00 = _mm_sub_pd(iy0,jy0);
263 dz00 = _mm_sub_pd(iz0,jz0);
265 /* Calculate squared distance and things based on it */
266 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
268 rinv00 = avx128fma_invsqrt_d(rsq00);
270 rinvsq00 = _mm_mul_pd(rinv00,rinv00);
272 /* Load parameters for j particles */
273 jq0 = _mm_load_sd(charge+jnrA+0);
274 vdwjidx0A = 2*vdwtype[jnrA+0];
276 /**************************
277 * CALCULATE INTERACTIONS *
278 **************************/
280 r00 = _mm_mul_pd(rsq00,rinv00);
282 /* Compute parameters for interactions between i and j atoms */
283 qq00 = _mm_mul_pd(iq0,jq0);
284 gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
286 /* EWALD ELECTROSTATICS */
288 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
289 ewrt = _mm_mul_pd(r00,ewtabscale);
290 ewitab = _mm_cvttpd_epi32(ewrt);
291 #ifdef __XOP__
292 eweps = _mm_frcz_pd(ewrt);
293 #else
294 eweps = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
295 #endif
296 twoeweps = _mm_add_pd(eweps,eweps);
297 ewitab = _mm_slli_epi32(ewitab,2);
298 ewtabF = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
299 ewtabD = _mm_setzero_pd();
300 GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
301 ewtabV = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
302 ewtabFn = _mm_setzero_pd();
303 GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
304 felec = _mm_macc_pd(eweps,ewtabD,ewtabF);
305 velec = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
306 velec = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
307 felec = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
309 /* LENNARD-JONES DISPERSION/REPULSION */
311 rinvsix = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
312 vvdw6 = _mm_mul_pd(c6_00,rinvsix);
313 vvdw12 = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
314 vvdw = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
315 fvdw = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
317 /* Update potential sum for this i atom from the interaction with this j atom. */
318 velec = _mm_unpacklo_pd(velec,_mm_setzero_pd());
319 velecsum = _mm_add_pd(velecsum,velec);
320 vvdw = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
321 vvdwsum = _mm_add_pd(vvdwsum,vvdw);
323 fscal = _mm_add_pd(felec,fvdw);
325 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
327 /* Update vectorial force */
328 fix0 = _mm_macc_pd(dx00,fscal,fix0);
329 fiy0 = _mm_macc_pd(dy00,fscal,fiy0);
330 fiz0 = _mm_macc_pd(dz00,fscal,fiz0);
332 gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
333 _mm_mul_pd(dx00,fscal),
334 _mm_mul_pd(dy00,fscal),
335 _mm_mul_pd(dz00,fscal));
337 /* Inner loop uses 56 flops */
340 /* End of innermost loop */
342 gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
343 f+i_coord_offset,fshift+i_shift_offset);
345 ggid = gid[iidx];
346 /* Update potential energies */
347 gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
348 gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
350 /* Increment number of inner iterations */
351 inneriter += j_index_end - j_index_start;
353 /* Outer loop uses 9 flops */
356 /* Increment number of outer iterations */
357 outeriter += nri;
359 /* Update outer/inner flops */
361 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*56);
364 * Gromacs nonbonded kernel: nb_kernel_ElecEw_VdwLJ_GeomP1P1_F_avx_128_fma_double
365 * Electrostatics interaction: Ewald
366 * VdW interaction: LennardJones
367 * Geometry: Particle-Particle
368 * Calculate force/pot: Force
370 void
371 nb_kernel_ElecEw_VdwLJ_GeomP1P1_F_avx_128_fma_double
372 (t_nblist * gmx_restrict nlist,
373 rvec * gmx_restrict xx,
374 rvec * gmx_restrict ff,
375 struct t_forcerec * gmx_restrict fr,
376 t_mdatoms * gmx_restrict mdatoms,
377 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
378 t_nrnb * gmx_restrict nrnb)
380 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
381 * just 0 for non-waters.
382 * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
383 * jnr indices corresponding to data put in the four positions in the SIMD register.
385 int i_shift_offset,i_coord_offset,outeriter,inneriter;
386 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
387 int jnrA,jnrB;
388 int j_coord_offsetA,j_coord_offsetB;
389 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
390 real rcutoff_scalar;
391 real *shiftvec,*fshift,*x,*f;
392 __m128d tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
393 int vdwioffset0;
394 __m128d ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
395 int vdwjidx0A,vdwjidx0B;
396 __m128d jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
397 __m128d dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
398 __m128d velec,felec,velecsum,facel,crf,krf,krf2;
399 real *charge;
400 int nvdwtype;
401 __m128d rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
402 int *vdwtype;
403 real *vdwparam;
404 __m128d one_sixth = _mm_set1_pd(1.0/6.0);
405 __m128d one_twelfth = _mm_set1_pd(1.0/12.0);
406 __m128i ewitab;
407 __m128d ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
408 real *ewtab;
409 __m128d dummy_mask,cutoff_mask;
410 __m128d signbit = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
411 __m128d one = _mm_set1_pd(1.0);
412 __m128d two = _mm_set1_pd(2.0);
413 x = xx[0];
414 f = ff[0];
416 nri = nlist->nri;
417 iinr = nlist->iinr;
418 jindex = nlist->jindex;
419 jjnr = nlist->jjnr;
420 shiftidx = nlist->shift;
421 gid = nlist->gid;
422 shiftvec = fr->shift_vec[0];
423 fshift = fr->fshift[0];
424 facel = _mm_set1_pd(fr->ic->epsfac);
425 charge = mdatoms->chargeA;
426 nvdwtype = fr->ntype;
427 vdwparam = fr->nbfp;
428 vdwtype = mdatoms->typeA;
430 sh_ewald = _mm_set1_pd(fr->ic->sh_ewald);
431 ewtab = fr->ic->tabq_coul_F;
432 ewtabscale = _mm_set1_pd(fr->ic->tabq_scale);
433 ewtabhalfspace = _mm_set1_pd(0.5/fr->ic->tabq_scale);
435 /* Avoid stupid compiler warnings */
436 jnrA = jnrB = 0;
437 j_coord_offsetA = 0;
438 j_coord_offsetB = 0;
440 outeriter = 0;
441 inneriter = 0;
443 /* Start outer loop over neighborlists */
444 for(iidx=0; iidx<nri; iidx++)
446 /* Load shift vector for this list */
447 i_shift_offset = DIM*shiftidx[iidx];
449 /* Load limits for loop over neighbors */
450 j_index_start = jindex[iidx];
451 j_index_end = jindex[iidx+1];
453 /* Get outer coordinate index */
454 inr = iinr[iidx];
455 i_coord_offset = DIM*inr;
457 /* Load i particle coords and add shift vector */
458 gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
460 fix0 = _mm_setzero_pd();
461 fiy0 = _mm_setzero_pd();
462 fiz0 = _mm_setzero_pd();
464 /* Load parameters for i particles */
465 iq0 = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
466 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
468 /* Start inner kernel loop */
469 for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
472 /* Get j neighbor index, and coordinate index */
473 jnrA = jjnr[jidx];
474 jnrB = jjnr[jidx+1];
475 j_coord_offsetA = DIM*jnrA;
476 j_coord_offsetB = DIM*jnrB;
478 /* load j atom coordinates */
479 gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
480 &jx0,&jy0,&jz0);
482 /* Calculate displacement vector */
483 dx00 = _mm_sub_pd(ix0,jx0);
484 dy00 = _mm_sub_pd(iy0,jy0);
485 dz00 = _mm_sub_pd(iz0,jz0);
487 /* Calculate squared distance and things based on it */
488 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
490 rinv00 = avx128fma_invsqrt_d(rsq00);
492 rinvsq00 = _mm_mul_pd(rinv00,rinv00);
494 /* Load parameters for j particles */
495 jq0 = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
496 vdwjidx0A = 2*vdwtype[jnrA+0];
497 vdwjidx0B = 2*vdwtype[jnrB+0];
499 /**************************
500 * CALCULATE INTERACTIONS *
501 **************************/
503 r00 = _mm_mul_pd(rsq00,rinv00);
505 /* Compute parameters for interactions between i and j atoms */
506 qq00 = _mm_mul_pd(iq0,jq0);
507 gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
508 vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
510 /* EWALD ELECTROSTATICS */
512 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
513 ewrt = _mm_mul_pd(r00,ewtabscale);
514 ewitab = _mm_cvttpd_epi32(ewrt);
515 #ifdef __XOP__
516 eweps = _mm_frcz_pd(ewrt);
517 #else
518 eweps = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
519 #endif
520 twoeweps = _mm_add_pd(eweps,eweps);
521 gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
522 &ewtabF,&ewtabFn);
523 felec = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
524 felec = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
526 /* LENNARD-JONES DISPERSION/REPULSION */
528 rinvsix = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
529 fvdw = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
531 fscal = _mm_add_pd(felec,fvdw);
533 /* Update vectorial force */
534 fix0 = _mm_macc_pd(dx00,fscal,fix0);
535 fiy0 = _mm_macc_pd(dy00,fscal,fiy0);
536 fiz0 = _mm_macc_pd(dz00,fscal,fiz0);
538 gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
539 _mm_mul_pd(dx00,fscal),
540 _mm_mul_pd(dy00,fscal),
541 _mm_mul_pd(dz00,fscal));
543 /* Inner loop uses 46 flops */
546 if(jidx<j_index_end)
549 jnrA = jjnr[jidx];
550 j_coord_offsetA = DIM*jnrA;
552 /* load j atom coordinates */
553 gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
554 &jx0,&jy0,&jz0);
556 /* Calculate displacement vector */
557 dx00 = _mm_sub_pd(ix0,jx0);
558 dy00 = _mm_sub_pd(iy0,jy0);
559 dz00 = _mm_sub_pd(iz0,jz0);
561 /* Calculate squared distance and things based on it */
562 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
564 rinv00 = avx128fma_invsqrt_d(rsq00);
566 rinvsq00 = _mm_mul_pd(rinv00,rinv00);
568 /* Load parameters for j particles */
569 jq0 = _mm_load_sd(charge+jnrA+0);
570 vdwjidx0A = 2*vdwtype[jnrA+0];
572 /**************************
573 * CALCULATE INTERACTIONS *
574 **************************/
576 r00 = _mm_mul_pd(rsq00,rinv00);
578 /* Compute parameters for interactions between i and j atoms */
579 qq00 = _mm_mul_pd(iq0,jq0);
580 gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
582 /* EWALD ELECTROSTATICS */
584 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
585 ewrt = _mm_mul_pd(r00,ewtabscale);
586 ewitab = _mm_cvttpd_epi32(ewrt);
587 #ifdef __XOP__
588 eweps = _mm_frcz_pd(ewrt);
589 #else
590 eweps = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
591 #endif
592 twoeweps = _mm_add_pd(eweps,eweps);
593 gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
594 felec = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
595 felec = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
597 /* LENNARD-JONES DISPERSION/REPULSION */
599 rinvsix = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
600 fvdw = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
602 fscal = _mm_add_pd(felec,fvdw);
604 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
606 /* Update vectorial force */
607 fix0 = _mm_macc_pd(dx00,fscal,fix0);
608 fiy0 = _mm_macc_pd(dy00,fscal,fiy0);
609 fiz0 = _mm_macc_pd(dz00,fscal,fiz0);
611 gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
612 _mm_mul_pd(dx00,fscal),
613 _mm_mul_pd(dy00,fscal),
614 _mm_mul_pd(dz00,fscal));
616 /* Inner loop uses 46 flops */
619 /* End of innermost loop */
621 gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
622 f+i_coord_offset,fshift+i_shift_offset);
624 /* Increment number of inner iterations */
625 inneriter += j_index_end - j_index_start;
627 /* Outer loop uses 7 flops */
630 /* Increment number of outer iterations */
631 outeriter += nri;
633 /* Update outer/inner flops */
635 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*46);