Remove nb-parameters from t_forcerec
[gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_avx_128_fma_double.c
blob409a897d15af7cc14134fc9c6bf6c76763c31176
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
36 * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
38 #include "gmxpre.h"
40 #include "config.h"
42 #include <math.h>
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
47 #include "kernelutil_x86_avx_128_fma_double.h"
50 * Gromacs nonbonded kernel: nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_VF_avx_128_fma_double
51 * Electrostatics interaction: CubicSplineTable
52 * VdW interaction: LennardJones
53 * Geometry: Particle-Particle
54 * Calculate force/pot: PotentialAndForce
56 void
57 nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_VF_avx_128_fma_double
58 (t_nblist * gmx_restrict nlist,
59 rvec * gmx_restrict xx,
60 rvec * gmx_restrict ff,
61 struct t_forcerec * gmx_restrict fr,
62 t_mdatoms * gmx_restrict mdatoms,
63 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64 t_nrnb * gmx_restrict nrnb)
66 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67 * just 0 for non-waters.
68 * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
69 * jnr indices corresponding to data put in the four positions in the SIMD register.
71 int i_shift_offset,i_coord_offset,outeriter,inneriter;
72 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73 int jnrA,jnrB;
74 int j_coord_offsetA,j_coord_offsetB;
75 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
76 real rcutoff_scalar;
77 real *shiftvec,*fshift,*x,*f;
78 __m128d tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79 int vdwioffset0;
80 __m128d ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81 int vdwjidx0A,vdwjidx0B;
82 __m128d jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
83 __m128d dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
84 __m128d velec,felec,velecsum,facel,crf,krf,krf2;
85 real *charge;
86 int nvdwtype;
87 __m128d rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
88 int *vdwtype;
89 real *vdwparam;
90 __m128d one_sixth = _mm_set1_pd(1.0/6.0);
91 __m128d one_twelfth = _mm_set1_pd(1.0/12.0);
92 __m128i vfitab;
93 __m128i ifour = _mm_set1_epi32(4);
94 __m128d rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
95 real *vftab;
96 __m128d dummy_mask,cutoff_mask;
97 __m128d signbit = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
98 __m128d one = _mm_set1_pd(1.0);
99 __m128d two = _mm_set1_pd(2.0);
100 x = xx[0];
101 f = ff[0];
103 nri = nlist->nri;
104 iinr = nlist->iinr;
105 jindex = nlist->jindex;
106 jjnr = nlist->jjnr;
107 shiftidx = nlist->shift;
108 gid = nlist->gid;
109 shiftvec = fr->shift_vec[0];
110 fshift = fr->fshift[0];
111 facel = _mm_set1_pd(fr->ic->epsfac);
112 charge = mdatoms->chargeA;
113 nvdwtype = fr->ntype;
114 vdwparam = fr->nbfp;
115 vdwtype = mdatoms->typeA;
117 vftab = kernel_data->table_elec->data;
118 vftabscale = _mm_set1_pd(kernel_data->table_elec->scale);
120 /* Avoid stupid compiler warnings */
121 jnrA = jnrB = 0;
122 j_coord_offsetA = 0;
123 j_coord_offsetB = 0;
125 outeriter = 0;
126 inneriter = 0;
128 /* Start outer loop over neighborlists */
129 for(iidx=0; iidx<nri; iidx++)
131 /* Load shift vector for this list */
132 i_shift_offset = DIM*shiftidx[iidx];
134 /* Load limits for loop over neighbors */
135 j_index_start = jindex[iidx];
136 j_index_end = jindex[iidx+1];
138 /* Get outer coordinate index */
139 inr = iinr[iidx];
140 i_coord_offset = DIM*inr;
142 /* Load i particle coords and add shift vector */
143 gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
145 fix0 = _mm_setzero_pd();
146 fiy0 = _mm_setzero_pd();
147 fiz0 = _mm_setzero_pd();
149 /* Load parameters for i particles */
150 iq0 = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
151 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
153 /* Reset potential sums */
154 velecsum = _mm_setzero_pd();
155 vvdwsum = _mm_setzero_pd();
157 /* Start inner kernel loop */
158 for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
161 /* Get j neighbor index, and coordinate index */
162 jnrA = jjnr[jidx];
163 jnrB = jjnr[jidx+1];
164 j_coord_offsetA = DIM*jnrA;
165 j_coord_offsetB = DIM*jnrB;
167 /* load j atom coordinates */
168 gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
169 &jx0,&jy0,&jz0);
171 /* Calculate displacement vector */
172 dx00 = _mm_sub_pd(ix0,jx0);
173 dy00 = _mm_sub_pd(iy0,jy0);
174 dz00 = _mm_sub_pd(iz0,jz0);
176 /* Calculate squared distance and things based on it */
177 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
179 rinv00 = avx128fma_invsqrt_d(rsq00);
181 rinvsq00 = _mm_mul_pd(rinv00,rinv00);
183 /* Load parameters for j particles */
184 jq0 = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
185 vdwjidx0A = 2*vdwtype[jnrA+0];
186 vdwjidx0B = 2*vdwtype[jnrB+0];
188 /**************************
189 * CALCULATE INTERACTIONS *
190 **************************/
192 r00 = _mm_mul_pd(rsq00,rinv00);
194 /* Compute parameters for interactions between i and j atoms */
195 qq00 = _mm_mul_pd(iq0,jq0);
196 gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
197 vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
199 /* Calculate table index by multiplying r with table scale and truncate to integer */
200 rt = _mm_mul_pd(r00,vftabscale);
201 vfitab = _mm_cvttpd_epi32(rt);
202 #ifdef __XOP__
203 vfeps = _mm_frcz_pd(rt);
204 #else
205 vfeps = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
206 #endif
207 twovfeps = _mm_add_pd(vfeps,vfeps);
208 vfitab = _mm_slli_epi32(vfitab,2);
210 /* CUBIC SPLINE TABLE ELECTROSTATICS */
211 Y = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
212 F = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
213 GMX_MM_TRANSPOSE2_PD(Y,F);
214 G = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
215 H = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
216 GMX_MM_TRANSPOSE2_PD(G,H);
217 Fp = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
218 VV = _mm_macc_pd(vfeps,Fp,Y);
219 velec = _mm_mul_pd(qq00,VV);
220 FF = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
221 felec = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
223 /* LENNARD-JONES DISPERSION/REPULSION */
225 rinvsix = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
226 vvdw6 = _mm_mul_pd(c6_00,rinvsix);
227 vvdw12 = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
228 vvdw = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
229 fvdw = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
231 /* Update potential sum for this i atom from the interaction with this j atom. */
232 velecsum = _mm_add_pd(velecsum,velec);
233 vvdwsum = _mm_add_pd(vvdwsum,vvdw);
235 fscal = _mm_add_pd(felec,fvdw);
237 /* Update vectorial force */
238 fix0 = _mm_macc_pd(dx00,fscal,fix0);
239 fiy0 = _mm_macc_pd(dy00,fscal,fiy0);
240 fiz0 = _mm_macc_pd(dz00,fscal,fiz0);
242 gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
243 _mm_mul_pd(dx00,fscal),
244 _mm_mul_pd(dy00,fscal),
245 _mm_mul_pd(dz00,fscal));
247 /* Inner loop uses 59 flops */
250 if(jidx<j_index_end)
253 jnrA = jjnr[jidx];
254 j_coord_offsetA = DIM*jnrA;
256 /* load j atom coordinates */
257 gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
258 &jx0,&jy0,&jz0);
260 /* Calculate displacement vector */
261 dx00 = _mm_sub_pd(ix0,jx0);
262 dy00 = _mm_sub_pd(iy0,jy0);
263 dz00 = _mm_sub_pd(iz0,jz0);
265 /* Calculate squared distance and things based on it */
266 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
268 rinv00 = avx128fma_invsqrt_d(rsq00);
270 rinvsq00 = _mm_mul_pd(rinv00,rinv00);
272 /* Load parameters for j particles */
273 jq0 = _mm_load_sd(charge+jnrA+0);
274 vdwjidx0A = 2*vdwtype[jnrA+0];
276 /**************************
277 * CALCULATE INTERACTIONS *
278 **************************/
280 r00 = _mm_mul_pd(rsq00,rinv00);
282 /* Compute parameters for interactions between i and j atoms */
283 qq00 = _mm_mul_pd(iq0,jq0);
284 gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
286 /* Calculate table index by multiplying r with table scale and truncate to integer */
287 rt = _mm_mul_pd(r00,vftabscale);
288 vfitab = _mm_cvttpd_epi32(rt);
289 #ifdef __XOP__
290 vfeps = _mm_frcz_pd(rt);
291 #else
292 vfeps = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
293 #endif
294 twovfeps = _mm_add_pd(vfeps,vfeps);
295 vfitab = _mm_slli_epi32(vfitab,2);
297 /* CUBIC SPLINE TABLE ELECTROSTATICS */
298 Y = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
299 F = _mm_setzero_pd();
300 GMX_MM_TRANSPOSE2_PD(Y,F);
301 G = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
302 H = _mm_setzero_pd();
303 GMX_MM_TRANSPOSE2_PD(G,H);
304 Fp = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
305 VV = _mm_macc_pd(vfeps,Fp,Y);
306 velec = _mm_mul_pd(qq00,VV);
307 FF = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
308 felec = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
310 /* LENNARD-JONES DISPERSION/REPULSION */
312 rinvsix = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
313 vvdw6 = _mm_mul_pd(c6_00,rinvsix);
314 vvdw12 = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
315 vvdw = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
316 fvdw = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
318 /* Update potential sum for this i atom from the interaction with this j atom. */
319 velec = _mm_unpacklo_pd(velec,_mm_setzero_pd());
320 velecsum = _mm_add_pd(velecsum,velec);
321 vvdw = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
322 vvdwsum = _mm_add_pd(vvdwsum,vvdw);
324 fscal = _mm_add_pd(felec,fvdw);
326 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
328 /* Update vectorial force */
329 fix0 = _mm_macc_pd(dx00,fscal,fix0);
330 fiy0 = _mm_macc_pd(dy00,fscal,fiy0);
331 fiz0 = _mm_macc_pd(dz00,fscal,fiz0);
333 gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
334 _mm_mul_pd(dx00,fscal),
335 _mm_mul_pd(dy00,fscal),
336 _mm_mul_pd(dz00,fscal));
338 /* Inner loop uses 59 flops */
341 /* End of innermost loop */
343 gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
344 f+i_coord_offset,fshift+i_shift_offset);
346 ggid = gid[iidx];
347 /* Update potential energies */
348 gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
349 gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
351 /* Increment number of inner iterations */
352 inneriter += j_index_end - j_index_start;
354 /* Outer loop uses 9 flops */
357 /* Increment number of outer iterations */
358 outeriter += nri;
360 /* Update outer/inner flops */
362 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*59);
365 * Gromacs nonbonded kernel: nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_F_avx_128_fma_double
366 * Electrostatics interaction: CubicSplineTable
367 * VdW interaction: LennardJones
368 * Geometry: Particle-Particle
369 * Calculate force/pot: Force
371 void
372 nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_F_avx_128_fma_double
373 (t_nblist * gmx_restrict nlist,
374 rvec * gmx_restrict xx,
375 rvec * gmx_restrict ff,
376 struct t_forcerec * gmx_restrict fr,
377 t_mdatoms * gmx_restrict mdatoms,
378 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
379 t_nrnb * gmx_restrict nrnb)
381 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
382 * just 0 for non-waters.
383 * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
384 * jnr indices corresponding to data put in the four positions in the SIMD register.
386 int i_shift_offset,i_coord_offset,outeriter,inneriter;
387 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
388 int jnrA,jnrB;
389 int j_coord_offsetA,j_coord_offsetB;
390 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
391 real rcutoff_scalar;
392 real *shiftvec,*fshift,*x,*f;
393 __m128d tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
394 int vdwioffset0;
395 __m128d ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
396 int vdwjidx0A,vdwjidx0B;
397 __m128d jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
398 __m128d dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
399 __m128d velec,felec,velecsum,facel,crf,krf,krf2;
400 real *charge;
401 int nvdwtype;
402 __m128d rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
403 int *vdwtype;
404 real *vdwparam;
405 __m128d one_sixth = _mm_set1_pd(1.0/6.0);
406 __m128d one_twelfth = _mm_set1_pd(1.0/12.0);
407 __m128i vfitab;
408 __m128i ifour = _mm_set1_epi32(4);
409 __m128d rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
410 real *vftab;
411 __m128d dummy_mask,cutoff_mask;
412 __m128d signbit = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
413 __m128d one = _mm_set1_pd(1.0);
414 __m128d two = _mm_set1_pd(2.0);
415 x = xx[0];
416 f = ff[0];
418 nri = nlist->nri;
419 iinr = nlist->iinr;
420 jindex = nlist->jindex;
421 jjnr = nlist->jjnr;
422 shiftidx = nlist->shift;
423 gid = nlist->gid;
424 shiftvec = fr->shift_vec[0];
425 fshift = fr->fshift[0];
426 facel = _mm_set1_pd(fr->ic->epsfac);
427 charge = mdatoms->chargeA;
428 nvdwtype = fr->ntype;
429 vdwparam = fr->nbfp;
430 vdwtype = mdatoms->typeA;
432 vftab = kernel_data->table_elec->data;
433 vftabscale = _mm_set1_pd(kernel_data->table_elec->scale);
435 /* Avoid stupid compiler warnings */
436 jnrA = jnrB = 0;
437 j_coord_offsetA = 0;
438 j_coord_offsetB = 0;
440 outeriter = 0;
441 inneriter = 0;
443 /* Start outer loop over neighborlists */
444 for(iidx=0; iidx<nri; iidx++)
446 /* Load shift vector for this list */
447 i_shift_offset = DIM*shiftidx[iidx];
449 /* Load limits for loop over neighbors */
450 j_index_start = jindex[iidx];
451 j_index_end = jindex[iidx+1];
453 /* Get outer coordinate index */
454 inr = iinr[iidx];
455 i_coord_offset = DIM*inr;
457 /* Load i particle coords and add shift vector */
458 gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
460 fix0 = _mm_setzero_pd();
461 fiy0 = _mm_setzero_pd();
462 fiz0 = _mm_setzero_pd();
464 /* Load parameters for i particles */
465 iq0 = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
466 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
468 /* Start inner kernel loop */
469 for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
472 /* Get j neighbor index, and coordinate index */
473 jnrA = jjnr[jidx];
474 jnrB = jjnr[jidx+1];
475 j_coord_offsetA = DIM*jnrA;
476 j_coord_offsetB = DIM*jnrB;
478 /* load j atom coordinates */
479 gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
480 &jx0,&jy0,&jz0);
482 /* Calculate displacement vector */
483 dx00 = _mm_sub_pd(ix0,jx0);
484 dy00 = _mm_sub_pd(iy0,jy0);
485 dz00 = _mm_sub_pd(iz0,jz0);
487 /* Calculate squared distance and things based on it */
488 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
490 rinv00 = avx128fma_invsqrt_d(rsq00);
492 rinvsq00 = _mm_mul_pd(rinv00,rinv00);
494 /* Load parameters for j particles */
495 jq0 = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
496 vdwjidx0A = 2*vdwtype[jnrA+0];
497 vdwjidx0B = 2*vdwtype[jnrB+0];
499 /**************************
500 * CALCULATE INTERACTIONS *
501 **************************/
503 r00 = _mm_mul_pd(rsq00,rinv00);
505 /* Compute parameters for interactions between i and j atoms */
506 qq00 = _mm_mul_pd(iq0,jq0);
507 gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
508 vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
510 /* Calculate table index by multiplying r with table scale and truncate to integer */
511 rt = _mm_mul_pd(r00,vftabscale);
512 vfitab = _mm_cvttpd_epi32(rt);
513 #ifdef __XOP__
514 vfeps = _mm_frcz_pd(rt);
515 #else
516 vfeps = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
517 #endif
518 twovfeps = _mm_add_pd(vfeps,vfeps);
519 vfitab = _mm_slli_epi32(vfitab,2);
521 /* CUBIC SPLINE TABLE ELECTROSTATICS */
522 Y = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
523 F = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
524 GMX_MM_TRANSPOSE2_PD(Y,F);
525 G = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
526 H = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
527 GMX_MM_TRANSPOSE2_PD(G,H);
528 Fp = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
529 FF = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
530 felec = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
532 /* LENNARD-JONES DISPERSION/REPULSION */
534 rinvsix = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
535 fvdw = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
537 fscal = _mm_add_pd(felec,fvdw);
539 /* Update vectorial force */
540 fix0 = _mm_macc_pd(dx00,fscal,fix0);
541 fiy0 = _mm_macc_pd(dy00,fscal,fiy0);
542 fiz0 = _mm_macc_pd(dz00,fscal,fiz0);
544 gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
545 _mm_mul_pd(dx00,fscal),
546 _mm_mul_pd(dy00,fscal),
547 _mm_mul_pd(dz00,fscal));
549 /* Inner loop uses 50 flops */
552 if(jidx<j_index_end)
555 jnrA = jjnr[jidx];
556 j_coord_offsetA = DIM*jnrA;
558 /* load j atom coordinates */
559 gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
560 &jx0,&jy0,&jz0);
562 /* Calculate displacement vector */
563 dx00 = _mm_sub_pd(ix0,jx0);
564 dy00 = _mm_sub_pd(iy0,jy0);
565 dz00 = _mm_sub_pd(iz0,jz0);
567 /* Calculate squared distance and things based on it */
568 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
570 rinv00 = avx128fma_invsqrt_d(rsq00);
572 rinvsq00 = _mm_mul_pd(rinv00,rinv00);
574 /* Load parameters for j particles */
575 jq0 = _mm_load_sd(charge+jnrA+0);
576 vdwjidx0A = 2*vdwtype[jnrA+0];
578 /**************************
579 * CALCULATE INTERACTIONS *
580 **************************/
582 r00 = _mm_mul_pd(rsq00,rinv00);
584 /* Compute parameters for interactions between i and j atoms */
585 qq00 = _mm_mul_pd(iq0,jq0);
586 gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
588 /* Calculate table index by multiplying r with table scale and truncate to integer */
589 rt = _mm_mul_pd(r00,vftabscale);
590 vfitab = _mm_cvttpd_epi32(rt);
591 #ifdef __XOP__
592 vfeps = _mm_frcz_pd(rt);
593 #else
594 vfeps = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
595 #endif
596 twovfeps = _mm_add_pd(vfeps,vfeps);
597 vfitab = _mm_slli_epi32(vfitab,2);
599 /* CUBIC SPLINE TABLE ELECTROSTATICS */
600 Y = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
601 F = _mm_setzero_pd();
602 GMX_MM_TRANSPOSE2_PD(Y,F);
603 G = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
604 H = _mm_setzero_pd();
605 GMX_MM_TRANSPOSE2_PD(G,H);
606 Fp = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
607 FF = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
608 felec = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
610 /* LENNARD-JONES DISPERSION/REPULSION */
612 rinvsix = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
613 fvdw = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
615 fscal = _mm_add_pd(felec,fvdw);
617 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
619 /* Update vectorial force */
620 fix0 = _mm_macc_pd(dx00,fscal,fix0);
621 fiy0 = _mm_macc_pd(dy00,fscal,fiy0);
622 fiz0 = _mm_macc_pd(dz00,fscal,fiz0);
624 gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
625 _mm_mul_pd(dx00,fscal),
626 _mm_mul_pd(dy00,fscal),
627 _mm_mul_pd(dz00,fscal));
629 /* Inner loop uses 50 flops */
632 /* End of innermost loop */
634 gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
635 f+i_coord_offset,fshift+i_shift_offset);
637 /* Increment number of inner iterations */
638 inneriter += j_index_end - j_index_start;
640 /* Outer loop uses 7 flops */
643 /* Increment number of outer iterations */
644 outeriter += nri;
646 /* Update outer/inner flops */
648 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*50);