2 <?xml-stylesheet type="text/xsl" href="referencedata.xsl"?>
4 <Bool Name="Error parsing mdp file">false</Bool>
5 <String Name="OutputMdpFile">
6 ; VARIOUS PREPROCESSING OPTIONS
7 ; Preprocessor information: use cpp syntax.
8 ; e.g.: -I/home/joe/doe -I/home/mary/roe
10 ; e.g.: -DPOSRES -DFLEXIBLE (note these variable names are case sensitive)
13 ; RUN CONTROL PARAMETERS
15 ; Start time and timestep in ps
19 ; For exact run continuation or redoing part of a run
21 ; Part index is updated automatically on checkpointing (keeps files separate)
23 ; mode for center of mass motion removal
25 ; number of steps for center of mass motion removal
27 ; group(s) for center of mass motion removal
30 ; LANGEVIN DYNAMICS OPTIONS
31 ; Friction coefficient (amu/ps) and random seed
35 ; ENERGY MINIMIZATION OPTIONS
36 ; Force tolerance and initial step-size
39 ; Max number of iterations in relax-shells
41 ; Step size (ps^2) for minimization of flexible constraints
43 ; Frequency of steepest descents steps when doing CG
47 ; TEST PARTICLE INSERTION OPTIONS
50 ; OUTPUT CONTROL OPTIONS
51 ; Output frequency for coords (x), velocities (v) and forces (f)
55 ; Output frequency for energies to log file and energy file
59 ; Output frequency and precision for .xtc file
60 nstxout-compressed = 0
61 compressed-x-precision = 1000
62 ; This selects the subset of atoms for the compressed
63 ; trajectory file. You can select multiple groups. By
64 ; default, all atoms will be written.
66 ; Selection of energy groups
69 ; NEIGHBORSEARCHING PARAMETERS
70 ; cut-off scheme (Verlet: particle based cut-offs, group: using charge groups)
71 cutoff-scheme = Verlet
72 ; nblist update frequency
74 ; Periodic boundary conditions: xyz, no, xy
76 periodic-molecules = no
77 ; Allowed energy error due to the Verlet buffer in kJ/mol/ps per atom,
78 ; a value of -1 means: use rlist
79 verlet-buffer-tolerance = 0.005
82 ; long-range cut-off for switched potentials
84 ; OPTIONS FOR ELECTROSTATICS AND VDW
85 ; Method for doing electrostatics
87 coulomb-modifier = Potential-shift-Verlet
90 ; Relative dielectric constant for the medium and the reaction field
93 ; Method for doing Van der Waals
95 vdw-modifier = Potential-shift-Verlet
99 ; Apply long range dispersion corrections for Energy and Pressure
101 ; Extension of the potential lookup tables beyond the cut-off
103 ; Separate tables between energy group pairs
105 ; Spacing for the PME/PPPM FFT grid
106 fourierspacing = 0.12
107 ; FFT grid size, when a value is 0 fourierspacing will be used
111 ; EWALD/PME/PPPM parameters
114 ewald-rtol-lj = 0.001
115 lj-pme-comb-rule = Geometric
118 implicit-solvent = no
120 ; OPTIONS FOR WEAK COUPLING ALGORITHMS
121 ; Temperature coupling
125 print-nose-hoover-chain-variables = no
126 ; Groups to couple separately
128 ; Time constant (ps) and reference temperature (K)
133 pcoupltype = Isotropic
135 ; Time constant (ps), compressibility (1/bar) and reference P (bar)
139 ; Scaling of reference coordinates, No, All or COM
140 refcoord-scaling = No
142 ; OPTIONS FOR QMMM calculations
144 ; Groups treated Quantum Mechanically
164 ; Scale factor for MM charges
165 MMChargeScaleFactor = 1
167 ; SIMULATED ANNEALING
168 ; Type of annealing for each temperature group (no/single/periodic)
170 ; Number of time points to use for specifying annealing in each group
172 ; List of times at the annealing points for each group
174 ; Temp. at each annealing point, for each group.
177 ; GENERATE VELOCITIES FOR STARTUP RUN
184 ; Type of constraint algorithm
185 constraint-algorithm = Lincs
186 ; Do not constrain the start configuration
188 ; Use successive overrelaxation to reduce the number of shake iterations
190 ; Relative tolerance of shake
192 ; Highest order in the expansion of the constraint coupling matrix
194 ; Number of iterations in the final step of LINCS. 1 is fine for
195 ; normal simulations, but use 2 to conserve energy in NVE runs.
196 ; For energy minimization with constraints it should be 4 to 8.
198 ; Lincs will write a warning to the stderr if in one step a bond
199 ; rotates over more degrees than
201 ; Convert harmonic bonds to morse potentials
204 ; ENERGY GROUP EXCLUSIONS
205 ; Pairs of energy groups for which all non-bonded interactions are excluded
209 ; Number of walls, type, atom types, densities and box-z scale factor for Ewald
224 ; Enforced rotation: No or Yes
227 ; Group to display and/or manipulate in interactive MD session
230 ; NMR refinement stuff
231 ; Distance restraints type: No, Simple or Ensemble
233 ; Force weighting of pairs in one distance restraint: Conservative or Equal
234 disre-weighting = Conservative
235 ; Use sqrt of the time averaged times the instantaneous violation
239 ; Output frequency for pair distances to energy file
241 ; Orientation restraints: No or Yes
243 ; Orientation restraints force constant and tau for time averaging
247 ; Output frequency for trace(SD) and S to energy file
250 ; Free energy variables
253 couple-lambda0 = vdw-q
254 couple-lambda1 = vdw-q
257 init-lambda-state = -1
266 temperature-lambdas =
267 calc-lambda-neighbors = 1
268 init-lambda-weights =
269 dhdl-print-energy = no
275 separate-dhdl-file = yes
276 dhdl-derivatives = yes
278 dh_hist_spacing = 0.1
280 ; Non-equilibrium MD stuff
288 ; simulated tempering variables
289 simulated-tempering = no
290 simulated-tempering-scaling = geometric
294 ; Ion/water position swapping for computational electrophysiology setups
295 ; Swap positions along direction: no, X, Y, Z
299 ; User defined thingies
311 ; Format for electric-field-x, etc. is: four real variables:
312 ; amplitude (V/nm), frequency omega (1/ps), time for the pulse peak (ps),
313 ; and sigma (ps) width of the pulse. Omega = 0 means static field,
314 ; sigma = 0 means no pulse, leaving the field to be a cosine function.
315 electric-field-x = 0 0 0 0
316 electric-field-y = 0 0 0 0
317 electric-field-z = 0 0 0 0
319 ; Density guided simulation
320 density-guided-simulation-active = false