Fix copyright years for new code
[gromacs.git] / src / gromacs / gmxlib / restcbt.c
blob272c9fde1b19ad828bb9e92eafda7e64f94f4899
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
36 #include <math.h>
37 #include <assert.h>
38 #include "physics.h"
39 #include "vec.h"
40 #include "gromacs/math/utilities.h"
41 #include "txtdump.h"
42 #include "bondf.h"
43 #include "gromacs/utility/smalloc.h"
44 #include "pbc.h"
45 #include "ns.h"
46 #include "macros.h"
47 #include "names.h"
48 #include "mshift.h"
49 #include "main.h"
50 #include "disre.h"
51 #include "orires.h"
52 #include "force.h"
53 #include "nonbonded.h"
55 /* This function computes factors needed for restricted angle potential.
56 * For explanations on formula used see file "restcbt.h" */
58 void compute_factors_restangles(int type, const t_iparams forceparams[],
59 rvec delta_ante, rvec delta_post,
60 real *prefactor, real *ratio_ante, real *ratio_post, real *v)
62 real theta_equil, k_bending;
63 real cosine_theta_equil;
64 real c_ante, c_cros, c_post;
65 real norm;
66 real delta_cosine, cosine_theta;
67 real sine_theta_sq;
68 real term_theta_theta_equil;
70 k_bending = forceparams[type].harmonic.krA;
71 theta_equil = forceparams[type].harmonic.rA*DEG2RAD;
72 theta_equil = M_PI - theta_equil;
73 cosine_theta_equil = cos(theta_equil);
75 c_ante = iprod(delta_ante, delta_ante);
76 c_cros = iprod(delta_ante, delta_post);
77 c_post = iprod(delta_post, delta_post);
79 norm = gmx_invsqrt(c_ante * c_post);
80 cosine_theta = c_cros * norm;
81 sine_theta_sq = 1 - cosine_theta * cosine_theta;
83 *ratio_ante = c_cros / c_ante;
84 *ratio_post = c_cros / c_post;
86 delta_cosine = cosine_theta - cosine_theta_equil;
87 term_theta_theta_equil = 1 - cosine_theta * cosine_theta_equil;
88 *prefactor = -(k_bending) * delta_cosine * norm * term_theta_theta_equil / (sine_theta_sq * sine_theta_sq);
90 *v = k_bending * 0.5 * delta_cosine * delta_cosine / sine_theta_sq;
95 /* Compute factors for restricted dihedral potential
96 * For explanations on formula used see file "restcbt.h" */
97 void compute_factors_restrdihs(int type, const t_iparams forceparams[],
98 rvec delta_ante, rvec delta_crnt, rvec delta_post,
99 real *factor_phi_ai_ante, real *factor_phi_ai_crnt, real *factor_phi_ai_post,
100 real *factor_phi_aj_ante, real *factor_phi_aj_crnt, real *factor_phi_aj_post,
101 real *factor_phi_ak_ante, real *factor_phi_ak_crnt, real *factor_phi_ak_post,
102 real *factor_phi_al_ante, real *factor_phi_al_crnt, real *factor_phi_al_post,
103 real *prefactor_phi, real *v)
106 real phi0, sine_phi0, cosine_phi0;
107 real k_torsion;
108 real c_self_ante, c_self_crnt, c_self_post;
109 real c_cros_ante, c_cros_acrs, c_cros_post;
110 real c_prod, d_post, d_ante;
111 real sine_phi_sq, cosine_phi;
112 real delta_cosine, term_phi_phi0;
113 real ratio_phi_ante, ratio_phi_post;
114 real cos_phi, norm_phi;
116 /* Read parameters phi0 and k_torsion */
117 phi0 = forceparams[type].pdihs.phiA * DEG2RAD;
118 cosine_phi0 = cos(phi0);
119 sine_phi0 = sin(phi0);
120 k_torsion = forceparams[type].pdihs.cpA;
122 /* Computation of the cosine of the dihedral angle. The scalar ("dot") product method
123 * is used. c_*_* cummulate the scalar products of the differences of particles
124 * positions while c_prod, d_ante and d_post are differences of products of scalar
125 * terms that are parts of the derivatives of forces */
126 c_self_ante = iprod(delta_ante, delta_ante);
127 c_self_crnt = iprod(delta_crnt, delta_crnt);
128 c_self_post = iprod(delta_post, delta_post);
129 c_cros_ante = iprod(delta_ante, delta_crnt);
130 c_cros_acrs = iprod(delta_ante, delta_post);
131 c_cros_post = iprod(delta_crnt, delta_post);
132 c_prod = c_cros_ante * c_cros_post - c_self_crnt * c_cros_acrs;
133 d_ante = c_self_ante * c_self_crnt - c_cros_ante * c_cros_ante;
134 d_post = c_self_post * c_self_crnt - c_cros_post * c_cros_post;
136 /* When three consecutive beads align, we obtain values close to zero.
137 * Here we avoid small values to prevent round-off errors. */
138 if (d_ante < GMX_REAL_EPS)
140 d_ante = GMX_REAL_EPS;
142 if (d_post < GMX_REAL_EPS)
144 d_post = GMX_REAL_EPS;
147 /* Computes the square of the sinus of phi in sine_phi_sq */
148 norm_phi = gmx_invsqrt(d_ante * d_post);
149 cosine_phi = c_prod * norm_phi;
150 sine_phi_sq = 1.0 - cosine_phi * cosine_phi;
152 /* It is possible that cosine_phi is slightly bigger than 1.0 due to round-off errors. */
153 if (sine_phi_sq < 0.0)
155 sine_phi_sq = 0.0;
158 /* Computation of the differences of cosines (delta_cosine) and a term (term_phi_phi0)
159 * that is part of the common prefactor_phi */
161 delta_cosine = cosine_phi - cosine_phi0;
162 term_phi_phi0 = 1 - cosine_phi * cosine_phi0;
165 /* Computation of ratios */
166 ratio_phi_ante = c_prod / d_ante;
167 ratio_phi_post = c_prod / d_post;
169 /* Computation of the prefactor - common term for all forces */
170 *prefactor_phi = -(k_torsion) * delta_cosine * norm_phi * term_phi_phi0 / (sine_phi_sq * sine_phi_sq);
172 /* Computation of force factors. Factors factor_phi_* are coming from the
173 * derivatives of the torsion angle (phi) with respect to the beads ai, aj, al, ak,
174 * (four) coordinates and they are multiplied in the force computations with the
175 * differences of the particles positions stored in parameters delta_ante,
176 * delta_crnt, delta_post. For formulas see file "restcbt.h" */
178 *factor_phi_ai_ante = ratio_phi_ante * c_self_crnt;
179 *factor_phi_ai_crnt = -c_cros_post - ratio_phi_ante * c_cros_ante;
180 *factor_phi_ai_post = c_self_crnt;
181 *factor_phi_aj_ante = -c_cros_post - ratio_phi_ante * (c_self_crnt + c_cros_ante);
182 *factor_phi_aj_crnt = c_cros_post + c_cros_acrs * 2.0 + ratio_phi_ante * (c_self_ante + c_cros_ante) + ratio_phi_post * c_self_post;
183 *factor_phi_aj_post = -(c_cros_ante + c_self_crnt) - ratio_phi_post * c_cros_post;
184 *factor_phi_ak_ante = c_cros_post + c_self_crnt + ratio_phi_ante * c_cros_ante;
185 *factor_phi_ak_crnt = -(c_cros_ante + c_cros_acrs * 2.0)- ratio_phi_ante * c_self_ante - ratio_phi_post * (c_self_post + c_cros_post);
186 *factor_phi_ak_post = c_cros_ante + ratio_phi_post * (c_self_crnt + c_cros_post);
187 *factor_phi_al_ante = -c_self_crnt;
188 *factor_phi_al_crnt = c_cros_ante + ratio_phi_post * c_cros_post;
189 *factor_phi_al_post = -ratio_phi_post * c_self_crnt;
191 /* Contribution to energy - see formula in file "restcbt.h"*/
192 *v = k_torsion * 0.5 * delta_cosine * delta_cosine / sine_phi_sq;
197 /* Compute factors for CBT potential
198 * For explanations on formula used see file "restcbt.h" */
200 void compute_factors_cbtdihs(int type, const t_iparams forceparams[],
201 rvec delta_ante, rvec delta_crnt, rvec delta_post,
202 rvec f_phi_ai, rvec f_phi_aj, rvec f_phi_ak, rvec f_phi_al,
203 rvec f_theta_ante_ai, rvec f_theta_ante_aj, rvec f_theta_ante_ak,
204 rvec f_theta_post_aj, rvec f_theta_post_ak, rvec f_theta_post_al,
205 real * v)
207 int j, d;
208 real torsion_coef[NR_CBTDIHS];
209 real c_self_ante, c_self_crnt, c_self_post;
210 real c_cros_ante, c_cros_acrs, c_cros_post;
211 real c_prod, d_ante, d_post;
212 real norm_phi, norm_theta_ante, norm_theta_post;
213 real cosine_phi, cosine_theta_ante, cosine_theta_post;
214 real sine_theta_ante_sq, sine_theta_post_sq;
215 real sine_theta_ante, sine_theta_post;
216 real prefactor_phi;
217 real ratio_phi_ante, ratio_phi_post;
218 real r1, r2;
219 real factor_phi_ai_ante, factor_phi_ai_crnt, factor_phi_ai_post;
220 real factor_phi_aj_ante, factor_phi_aj_crnt, factor_phi_aj_post;
221 real factor_phi_ak_ante, factor_phi_ak_crnt, factor_phi_ak_post;
222 real factor_phi_al_ante, factor_phi_al_crnt, factor_phi_al_post;
223 real prefactor_theta_ante, ratio_theta_ante_ante, ratio_theta_ante_crnt;
224 real prefactor_theta_post, ratio_theta_post_crnt, ratio_theta_post_post;
226 /* The formula for combined bending-torsion potential (see file "restcbt.h") contains
227 * in its expression not only the dihedral angle \f[\phi\f] but also \f[\theta_{i-1}\f]
228 * (theta_ante bellow) and \f[\theta_{i}\f] (theta_post bellow)--- the adjacent bending
229 * angles. The forces for the particles ai, aj, ak, al have components coming from the
230 * derivatives of the potential with respect to all three angles.
231 * This function is organised in 4 parts
232 * PART 1 - Computes force factors common to all the derivatives for the four particles
233 * PART 2 - Computes the force components due to the derivatives of dihedral angle Phi
234 * PART 3 - Computes the force components due to the derivatives of bending angle Theta_Ante
235 * PART 4 - Computes the force components due to the derivatives of bending angle Theta_Post
236 * Bellow we will respct thuis structure */
239 /* PART 1 - COMPUTES FORCE FACTORS COMMON TO ALL DERIVATIVES FOR THE FOUR PARTICLES */
242 for (j = 0; (j < NR_CBTDIHS); j++)
244 torsion_coef[j] = forceparams[type].cbtdihs.cbtcA[j];
247 /* Computation of the cosine of the dihedral angle. The scalar ("dot") product method
248 * is used. c_*_* cummulate the scalar products of the differences of particles
249 * positions while c_prod, d_ante and d_post are differences of products of scalar
250 * terms that are parts of the derivatives of forces */
252 c_self_ante = iprod(delta_ante, delta_ante);
253 c_self_crnt = iprod(delta_crnt, delta_crnt);
254 c_self_post = iprod(delta_post, delta_post);
255 c_cros_ante = iprod(delta_ante, delta_crnt);
256 c_cros_acrs = iprod(delta_ante, delta_post);
257 c_cros_post = iprod(delta_crnt, delta_post);
258 c_prod = c_cros_ante * c_cros_post - c_self_crnt * c_cros_acrs;
259 d_ante = c_self_ante * c_self_crnt - c_cros_ante * c_cros_ante;
260 d_post = c_self_post * c_self_crnt - c_cros_post * c_cros_post;
262 /* When three consecutive beads align, we obtain values close to zero.
263 Here we avoid small values to prevent round-off errors. */
264 if (d_ante < GMX_REAL_EPS)
266 d_ante = GMX_REAL_EPS;
268 if (d_post < GMX_REAL_EPS)
270 d_post = GMX_REAL_EPS;
273 /* Computations of cosines */
274 norm_phi = gmx_invsqrt(d_ante * d_post);
275 norm_theta_ante = gmx_invsqrt(c_self_ante * c_self_crnt);
276 norm_theta_post = gmx_invsqrt(c_self_crnt * c_self_post);
277 cosine_phi = c_prod * norm_phi;
278 cosine_theta_ante = c_cros_ante * norm_theta_ante;
279 cosine_theta_post = c_cros_post * norm_theta_post;
280 sine_theta_ante_sq = 1 - cosine_theta_ante * cosine_theta_ante;
281 sine_theta_post_sq = 1 - cosine_theta_post * cosine_theta_post;
283 /* It is possible that cosine_theta is slightly bigger than 1.0 due to round-off errors. */
284 if (sine_theta_ante_sq < 0.0)
286 sine_theta_ante_sq = 0.0;
288 if (sine_theta_post_sq < 0.0)
290 sine_theta_post_sq = 0.0;
293 sine_theta_ante = sqrt(sine_theta_ante_sq);
294 sine_theta_post = sqrt(sine_theta_post_sq);
296 /* PART 2 - COMPUTES FORCE COMPONENTS DUE TO DERIVATIVES TO DIHEDRAL ANGLE PHI */
298 /* Computation of ratios */
299 ratio_phi_ante = c_prod / d_ante;
300 ratio_phi_post = c_prod / d_post;
302 /* Computation of the prefactor */
303 /* Computing 2nd power */
304 r1 = cosine_phi;
306 prefactor_phi = -torsion_coef[0] * norm_phi * (torsion_coef[2] + torsion_coef[3] * 2.0 * cosine_phi + torsion_coef[4] * 3.0 * (r1 * r1) + 4*torsion_coef[5]*r1*r1*r1) *
307 sine_theta_ante_sq * sine_theta_ante * sine_theta_post_sq * sine_theta_post;
309 /* Computation of factors (important for gaining speed). Factors factor_phi_* are coming from the
310 * derivatives of the torsion angle (phi) with respect to the beads ai, aj, al, ak,
311 * (four) coordinates and they are multiplied in the force computations with the
312 * differences of the particles positions stored in parameters delta_ante,
313 * delta_crnt, delta_post. For formulas see file "restcbt.h" */
315 factor_phi_ai_ante = ratio_phi_ante * c_self_crnt;
316 factor_phi_ai_crnt = -c_cros_post - ratio_phi_ante * c_cros_ante;
317 factor_phi_ai_post = c_self_crnt;
318 factor_phi_aj_ante = -c_cros_post - ratio_phi_ante * (c_self_crnt + c_cros_ante);
319 factor_phi_aj_crnt = c_cros_post + c_cros_acrs * 2.0 + ratio_phi_ante * (c_self_ante + c_cros_ante) + ratio_phi_post * c_self_post;
320 factor_phi_aj_post = -(c_cros_ante + c_self_crnt) - ratio_phi_post * c_cros_post;
321 factor_phi_ak_ante = c_cros_post + c_self_crnt + ratio_phi_ante * c_cros_ante;
322 factor_phi_ak_crnt = -(c_cros_ante + c_cros_acrs * 2.0) - ratio_phi_ante * c_self_ante - ratio_phi_post * (c_self_post + c_cros_post);
323 factor_phi_ak_post = c_cros_ante + ratio_phi_post * (c_self_crnt + c_cros_post);
324 factor_phi_al_ante = -c_self_crnt;
325 factor_phi_al_crnt = c_cros_ante + ratio_phi_post * c_cros_post;
326 factor_phi_al_post = -ratio_phi_post * c_self_crnt;
328 /* Computation of forces due to the derivatives of dihedral angle phi*/
329 for (d = 0; d < DIM; d++)
331 f_phi_ai[d] = prefactor_phi * (factor_phi_ai_ante * delta_ante[d] + factor_phi_ai_crnt * delta_crnt[d] + factor_phi_ai_post * delta_post[d]);
332 f_phi_aj[d] = prefactor_phi * (factor_phi_aj_ante * delta_ante[d] + factor_phi_aj_crnt * delta_crnt[d] + factor_phi_aj_post * delta_post[d]);
333 f_phi_ak[d] = prefactor_phi * (factor_phi_ak_ante * delta_ante[d] + factor_phi_ak_crnt * delta_crnt[d] + factor_phi_ak_post * delta_post[d]);
334 f_phi_al[d] = prefactor_phi * (factor_phi_al_ante * delta_ante[d] + factor_phi_al_crnt * delta_crnt[d] + factor_phi_al_post * delta_post[d]);
337 /* PART 3 - COMPUTES THE FORCE COMPONENTS DUE TO THE DERIVATIVES OF BENDING ANGLE THETHA_ANTHE */
338 /* Computation of ratios */
339 ratio_theta_ante_ante = c_cros_ante / c_self_ante;
340 ratio_theta_ante_crnt = c_cros_ante / c_self_crnt;
342 /* Computation of the prefactor */
343 /* Computing 2nd power */
344 r1 = cosine_phi;
345 /* Computing 3rd power */
346 r2 = cosine_phi;
348 prefactor_theta_ante = -torsion_coef[0] * norm_theta_ante * ( torsion_coef[1] + torsion_coef[2] * cosine_phi + torsion_coef[3] * (r1 * r1) +
349 torsion_coef[4] * (r2 * (r2 * r2))+ torsion_coef[5] * (r2 * (r2 * (r2 * r2)))) * (-3.0) * cosine_theta_ante * sine_theta_ante * sine_theta_post_sq * sine_theta_post;
352 /* Computation of forces due to the derivatives of bending angle theta_ante */
353 for (d = 0; d < DIM; d++)
355 f_theta_ante_ai[d] = prefactor_theta_ante * (ratio_theta_ante_ante * delta_ante[d] - delta_crnt[d]);
356 f_theta_ante_aj[d] = prefactor_theta_ante * ((ratio_theta_ante_crnt + 1.0) * delta_crnt[d] - (ratio_theta_ante_ante + 1.0) * delta_ante[d]);
357 f_theta_ante_ak[d] = prefactor_theta_ante * (delta_ante[d] - ratio_theta_ante_crnt * delta_crnt[d]);
360 /* PART 4 - COMPUTES THE FORCE COMPONENTS DUE TO THE DERIVATIVES OF THE BENDING ANGLE THETA_POST */
362 /* Computation of ratios */
363 ratio_theta_post_crnt = c_cros_post / c_self_crnt;
364 ratio_theta_post_post = c_cros_post / c_self_post;
366 /* Computation of the prefactor */
367 /* Computing 2nd power */
368 r1 = cosine_phi;
369 /* Computing 3rd power */
370 r2 = cosine_phi;
372 prefactor_theta_post = -torsion_coef[0] * norm_theta_post * (torsion_coef[1] + torsion_coef[2] * cosine_phi + torsion_coef[3] * (r1 * r1) +
373 torsion_coef[4] * (r2 * (r2 * r2)) + torsion_coef[5] * (r2 * (r2 * (r2 * r2)))) * sine_theta_ante_sq * sine_theta_ante * (-3.0) * cosine_theta_post * sine_theta_post;
376 /* Computation of forces due to the derivatives of bending angle Theta_Post */
377 for (d = 0; d < DIM; d++)
379 f_theta_post_aj[d] = prefactor_theta_post * (ratio_theta_post_crnt * delta_crnt[d] - delta_post[d]);
380 f_theta_post_ak[d] = prefactor_theta_post * ((ratio_theta_post_post + 1.0) * delta_post[d] - (ratio_theta_post_crnt + 1.0) * delta_crnt[d]);
381 f_theta_post_al[d] = prefactor_theta_post * (delta_crnt[d] - ratio_theta_post_post * delta_post[d]);
383 r1 = cosine_phi;
384 r2 = cosine_phi;
386 /* Contribution to energy - for formula see file "restcbt.h" */
387 *v = torsion_coef[0] * (torsion_coef[1] + torsion_coef[2] * cosine_phi + torsion_coef[3] * (r1 * r1) +
388 torsion_coef[4] * (r2 * (r2 * r2)) + torsion_coef[5] * (r2 * (r2 * (r2 * r2)))) * sine_theta_ante_sq *
389 sine_theta_ante * sine_theta_post_sq * sine_theta_post;