Improve TPI handling
[gromacs.git] / src / gromacs / mdrun / tpi.cpp
blob8e2c547d5bca8b7b200de0da74dd0b5e41ef0778
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
5 * Copyright (c) 2001-2004, The GROMACS development team.
6 * Copyright (c) 2013,2014,2015,2016,2017 by the GROMACS development team.
7 * Copyright (c) 2018,2019,2020, by the GROMACS development team, led by
8 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
9 * and including many others, as listed in the AUTHORS file in the
10 * top-level source directory and at http://www.gromacs.org.
12 * GROMACS is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU Lesser General Public License
14 * as published by the Free Software Foundation; either version 2.1
15 * of the License, or (at your option) any later version.
17 * GROMACS is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * Lesser General Public License for more details.
22 * You should have received a copy of the GNU Lesser General Public
23 * License along with GROMACS; if not, see
24 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
25 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
27 * If you want to redistribute modifications to GROMACS, please
28 * consider that scientific software is very special. Version
29 * control is crucial - bugs must be traceable. We will be happy to
30 * consider code for inclusion in the official distribution, but
31 * derived work must not be called official GROMACS. Details are found
32 * in the README & COPYING files - if they are missing, get the
33 * official version at http://www.gromacs.org.
35 * To help us fund GROMACS development, we humbly ask that you cite
36 * the research papers on the package. Check out http://www.gromacs.org.
38 /*! \internal \file
40 * \brief This file defines the integrator for test particle insertion
42 * \author Berk Hess <hess@kth.se>
43 * \ingroup module_mdrun
45 #include "gmxpre.h"
47 #include <cmath>
48 #include <cstdlib>
49 #include <cstring>
50 #include <ctime>
52 #include <algorithm>
54 #include <cfenv>
56 #include "gromacs/commandline/filenm.h"
57 #include "gromacs/domdec/dlbtiming.h"
58 #include "gromacs/domdec/domdec.h"
59 #include "gromacs/ewald/pme.h"
60 #include "gromacs/fileio/confio.h"
61 #include "gromacs/fileio/trxio.h"
62 #include "gromacs/fileio/xvgr.h"
63 #include "gromacs/gmxlib/conformation_utilities.h"
64 #include "gromacs/gmxlib/network.h"
65 #include "gromacs/gmxlib/nrnb.h"
66 #include "gromacs/math/units.h"
67 #include "gromacs/math/vec.h"
68 #include "gromacs/mdlib/constr.h"
69 #include "gromacs/mdlib/dispersioncorrection.h"
70 #include "gromacs/mdlib/energyoutput.h"
71 #include "gromacs/mdlib/force.h"
72 #include "gromacs/mdlib/force_flags.h"
73 #include "gromacs/mdlib/gmx_omp_nthreads.h"
74 #include "gromacs/mdlib/mdatoms.h"
75 #include "gromacs/mdlib/tgroup.h"
76 #include "gromacs/mdlib/update.h"
77 #include "gromacs/mdlib/vsite.h"
78 #include "gromacs/mdrunutility/printtime.h"
79 #include "gromacs/mdtypes/commrec.h"
80 #include "gromacs/mdtypes/forcerec.h"
81 #include "gromacs/mdtypes/group.h"
82 #include "gromacs/mdtypes/inputrec.h"
83 #include "gromacs/mdtypes/interaction_const.h"
84 #include "gromacs/mdtypes/md_enums.h"
85 #include "gromacs/mdtypes/mdatom.h"
86 #include "gromacs/mdtypes/mdrunoptions.h"
87 #include "gromacs/mdtypes/state.h"
88 #include "gromacs/nbnxm/nbnxm.h"
89 #include "gromacs/pbcutil/pbc.h"
90 #include "gromacs/random/threefry.h"
91 #include "gromacs/random/uniformrealdistribution.h"
92 #include "gromacs/timing/wallcycle.h"
93 #include "gromacs/timing/walltime_accounting.h"
94 #include "gromacs/topology/mtop_util.h"
95 #include "gromacs/trajectory/trajectoryframe.h"
96 #include "gromacs/utility/cstringutil.h"
97 #include "gromacs/utility/fatalerror.h"
98 #include "gromacs/utility/gmxassert.h"
99 #include "gromacs/utility/logger.h"
100 #include "gromacs/utility/smalloc.h"
102 #include "legacysimulator.h"
104 //! Global max algorithm
105 static void global_max(t_commrec* cr, int* n)
107 int *sum, i;
109 snew(sum, cr->nnodes);
110 sum[cr->nodeid] = *n;
111 gmx_sumi(cr->nnodes, sum, cr);
112 for (i = 0; i < cr->nnodes; i++)
114 *n = std::max(*n, sum[i]);
117 sfree(sum);
120 //! Reallocate arrays.
121 static void realloc_bins(double** bin, int* nbin, int nbin_new)
123 int i;
125 if (nbin_new != *nbin)
127 srenew(*bin, nbin_new);
128 for (i = *nbin; i < nbin_new; i++)
130 (*bin)[i] = 0;
132 *nbin = nbin_new;
136 //! Computes and returns the RF exclusion energy for the last molecule starting at \p beginAtom
137 static real reactionFieldExclusionCorrection(gmx::ArrayRef<const gmx::RVec> x,
138 const t_mdatoms& mdatoms,
139 const interaction_const_t& ic,
140 const int beginAtom)
142 real energy = 0;
144 for (int i = beginAtom; i < mdatoms.homenr; i++)
146 const real qi = mdatoms.chargeA[i];
147 energy -= 0.5 * qi * qi * ic.c_rf;
149 for (int j = i + 1; j < mdatoms.homenr; j++)
151 const real qj = mdatoms.chargeA[j];
152 const real rsq = distance2(x[i], x[j]);
153 energy += qi * qj * (ic.k_rf * rsq - ic.c_rf);
157 return ic.epsfac * energy;
160 namespace gmx
163 // TODO: Convert to use the nbnxm kernels by putting the system and the teset molecule on two separate search grids
164 void LegacySimulator::do_tpi()
166 GMX_RELEASE_ASSERT(gmx_omp_nthreads_get(emntDefault) == 1, "TPI does not support OpenMP");
168 gmx_localtop_t top;
169 PaddedHostVector<gmx::RVec> f{};
170 real lambda, t, temp, beta, drmax, epot;
171 double embU, sum_embU, *sum_UgembU, V, V_all, VembU_all;
172 t_trxstatus* status;
173 t_trxframe rerun_fr;
174 gmx_bool bDispCorr, bCharge, bRFExcl, bNotLastFrame, bStateChanged, bNS;
175 tensor force_vir, shake_vir, vir, pres;
176 int a_tp0, a_tp1, ngid, gid_tp, nener, e;
177 rvec* x_mol;
178 rvec mu_tot, x_init, dx;
179 int nnodes, frame;
180 int64_t frame_step_prev, frame_step;
181 int64_t nsteps, stepblocksize = 0, step;
182 int64_t seed;
183 int i;
184 FILE* fp_tpi = nullptr;
185 char * ptr, *dump_pdb, **leg, str[STRLEN], str2[STRLEN];
186 double dbl, dump_ener;
187 gmx_bool bCavity;
188 int nat_cavity = 0, d;
189 real * mass_cavity = nullptr, mass_tot;
190 int nbin;
191 double invbinw, *bin, refvolshift, logV, bUlogV;
192 gmx_bool bEnergyOutOfBounds;
193 const char* tpid_leg[2] = { "direct", "reweighted" };
194 auto mdatoms = mdAtoms->mdatoms();
196 GMX_UNUSED_VALUE(outputProvider);
198 if (EVDW_PME(inputrec->vdwtype))
200 gmx_fatal(FARGS, "Test particle insertion not implemented with LJ-PME");
202 if (haveEwaldSurfaceContribution(*inputrec))
204 gmx_fatal(FARGS,
205 "TPI with PME currently only works in a 3D geometry with tin-foil "
206 "boundary conditions");
209 GMX_LOG(mdlog.info)
210 .asParagraph()
211 .appendText(
212 "Note that it is planned to change the command gmx mdrun -tpi "
213 "(and -tpic) to make the functionality available in a different "
214 "form in a future version of GROMACS, e.g. gmx test-particle-insertion.");
216 /* Since there is no upper limit to the insertion energies,
217 * we need to set an upper limit for the distribution output.
219 real bU_bin_limit = 50;
220 real bU_logV_bin_limit = bU_bin_limit + 10;
222 nnodes = cr->nnodes;
224 gmx_mtop_generate_local_top(*top_global, &top, inputrec->efep != efepNO);
226 SimulationGroups* groups = &top_global->groups;
228 bCavity = (inputrec->eI == eiTPIC);
229 if (bCavity)
231 ptr = getenv("GMX_TPIC_MASSES");
232 if (ptr == nullptr)
234 nat_cavity = 1;
236 else
238 /* Read (multiple) masses from env var GMX_TPIC_MASSES,
239 * The center of mass of the last atoms is then used for TPIC.
241 nat_cavity = 0;
242 while (sscanf(ptr, "%20lf%n", &dbl, &i) > 0)
244 srenew(mass_cavity, nat_cavity + 1);
245 mass_cavity[nat_cavity] = dbl;
246 fprintf(fplog, "mass[%d] = %f\n", nat_cavity + 1, mass_cavity[nat_cavity]);
247 nat_cavity++;
248 ptr += i;
250 if (nat_cavity == 0)
252 gmx_fatal(FARGS, "Found %d masses in GMX_TPIC_MASSES", nat_cavity);
258 init_em(fplog,TPI,inputrec,&lambda,nrnb,mu_tot,
259 state_global->box,fr,mdatoms,top,cr,nfile,fnm,NULL,NULL);*/
260 /* We never need full pbc for TPI */
261 fr->pbcType = PbcType::Xyz;
262 /* Determine the temperature for the Boltzmann weighting */
263 temp = inputrec->opts.ref_t[0];
264 if (fplog)
266 for (i = 1; (i < inputrec->opts.ngtc); i++)
268 if (inputrec->opts.ref_t[i] != temp)
270 fprintf(fplog,
271 "\nWARNING: The temperatures of the different temperature coupling groups "
272 "are not identical\n\n");
273 fprintf(stderr,
274 "\nWARNING: The temperatures of the different temperature coupling groups "
275 "are not identical\n\n");
278 fprintf(fplog, "\n The temperature for test particle insertion is %.3f K\n\n", temp);
280 beta = 1.0 / (BOLTZ * temp);
282 /* Number of insertions per frame */
283 nsteps = inputrec->nsteps;
285 /* Use the same neighborlist with more insertions points
286 * in a sphere of radius drmax around the initial point
288 /* This should be a proper mdp parameter */
289 drmax = inputrec->rtpi;
291 /* An environment variable can be set to dump all configurations
292 * to pdb with an insertion energy <= this value.
294 dump_pdb = getenv("GMX_TPI_DUMP");
295 dump_ener = 0;
296 if (dump_pdb)
298 sscanf(dump_pdb, "%20lf", &dump_ener);
301 atoms2md(top_global, inputrec, -1, nullptr, top_global->natoms, mdAtoms);
302 update_mdatoms(mdatoms, inputrec->fepvals->init_lambda);
304 f.resizeWithPadding(top_global->natoms);
306 /* Print to log file */
307 walltime_accounting_start_time(walltime_accounting);
308 wallcycle_start(wcycle, ewcRUN);
309 print_start(fplog, cr, walltime_accounting, "Test Particle Insertion");
311 /* The last charge group is the group to be inserted */
312 const t_atoms& atomsToInsert = top_global->moltype[top_global->molblock.back().type].atoms;
313 a_tp0 = top_global->natoms - atomsToInsert.nr;
314 a_tp1 = top_global->natoms;
315 if (debug)
317 fprintf(debug, "TPI atoms %d-%d\n", a_tp0, a_tp1);
320 auto x = makeArrayRef(state_global->x);
322 if (EEL_PME(fr->ic->eeltype))
324 gmx_pme_reinit_atoms(fr->pmedata, a_tp0, nullptr);
327 /* With reacion-field we have distance dependent potentials
328 * between excluded atoms, we need to add these separately
329 * for the inserted molecule.
331 real rfExclusionEnergy = 0;
332 if (EEL_RF(fr->ic->eeltype))
334 rfExclusionEnergy = reactionFieldExclusionCorrection(x, *mdatoms, *fr->ic, a_tp0);
335 if (debug)
337 fprintf(debug, "RF exclusion correction for inserted molecule: %f kJ/mol\n", rfExclusionEnergy);
341 snew(x_mol, a_tp1 - a_tp0);
343 bDispCorr = (inputrec->eDispCorr != edispcNO);
344 bCharge = FALSE;
345 for (i = a_tp0; i < a_tp1; i++)
347 /* Copy the coordinates of the molecule to be insterted */
348 copy_rvec(x[i], x_mol[i - a_tp0]);
349 /* Check if we need to print electrostatic energies */
350 bCharge |= (mdatoms->chargeA[i] != 0
351 || ((mdatoms->chargeB != nullptr) && mdatoms->chargeB[i] != 0));
353 bRFExcl = (bCharge && EEL_RF(fr->ic->eeltype));
355 // Calculate the center of geometry of the molecule to insert
356 rvec cog = { 0, 0, 0 };
357 for (int a = a_tp0; a < a_tp1; a++)
359 rvec_inc(cog, x[a]);
361 svmul(1.0_real / (a_tp1 - a_tp0), cog, cog);
362 real molRadius = 0;
363 for (int a = a_tp0; a < a_tp1; a++)
365 molRadius = std::max(molRadius, distance2(x[a], cog));
367 molRadius = std::sqrt(molRadius);
369 const real maxCutoff = std::max(inputrec->rvdw, inputrec->rcoulomb);
370 if (bCavity)
372 if (norm(cog) > 0.5 * maxCutoff && fplog)
374 fprintf(fplog, "WARNING: Your TPI molecule is not centered at 0,0,0\n");
375 fprintf(stderr, "WARNING: Your TPI molecule is not centered at 0,0,0\n");
378 else
380 /* Center the molecule to be inserted at zero */
381 for (i = 0; i < a_tp1 - a_tp0; i++)
383 rvec_dec(x_mol[i], cog);
387 if (fplog)
389 fprintf(fplog, "\nWill insert %d atoms %s partial charges\n", a_tp1 - a_tp0,
390 bCharge ? "with" : "without");
392 fprintf(fplog, "\nWill insert %" PRId64 " times in each frame of %s\n", nsteps,
393 opt2fn("-rerun", nfile, fnm));
396 if (!bCavity)
398 if (inputrec->nstlist > 1)
401 /* With the same pair list we insert in a sphere of radius rtpi in different orientations */
402 if (drmax == 0 && a_tp1 - a_tp0 == 1)
404 gmx_fatal(FARGS,
405 "Re-using the neighborlist %d times for insertions of a single atom in a "
406 "sphere of radius %f does not make sense",
407 inputrec->nstlist, drmax);
409 if (fplog)
411 fprintf(fplog,
412 "Will use the same neighborlist for %d insertions in a sphere of radius "
413 "%f\n",
414 inputrec->nstlist, drmax);
418 else
420 if (fplog)
422 fprintf(fplog,
423 "Will insert randomly in a sphere of radius %f around the center of the "
424 "cavity\n",
425 drmax);
429 /* With the same pair list we insert in a sphere of radius rtpi
430 * in different orientations. We generate the pairlist with all
431 * inserted atoms located in the center of the sphere, so we need
432 * a buffer of size of the sphere and molecule radius.
434 inputrec->rlist = maxCutoff + 2 * inputrec->rtpi + 2 * molRadius;
435 fr->rlist = inputrec->rlist;
436 fr->nbv->changePairlistRadii(inputrec->rlist, inputrec->rlist);
438 ngid = groups->groups[SimulationAtomGroupType::EnergyOutput].size();
439 gid_tp = GET_CGINFO_GID(fr->cginfo[a_tp0]);
440 for (int a = a_tp0 + 1; a < a_tp1; a++)
442 if (GET_CGINFO_GID(fr->cginfo[a]) != gid_tp)
444 fprintf(fplog,
445 "NOTE: Atoms in the molecule to insert belong to different energy groups.\n"
446 " Only contributions to the group of the first atom will be reported.\n");
447 break;
450 nener = 1 + ngid;
451 if (bDispCorr)
453 nener += 1;
455 if (bCharge)
457 nener += ngid;
458 if (bRFExcl)
460 nener += 1;
462 if (EEL_FULL(fr->ic->eeltype))
464 nener += 1;
467 snew(sum_UgembU, nener);
469 /* Copy the random seed set by the user */
470 seed = inputrec->ld_seed;
472 gmx::ThreeFry2x64<16> rng(
473 seed, gmx::RandomDomain::TestParticleInsertion); // 16 bits internal counter => 2^16 * 2 = 131072 values per stream
474 gmx::UniformRealDistribution<real> dist;
476 if (MASTER(cr))
478 fp_tpi = xvgropen(opt2fn("-tpi", nfile, fnm), "TPI energies", "Time (ps)",
479 "(kJ mol\\S-1\\N) / (nm\\S3\\N)", oenv);
480 xvgr_subtitle(fp_tpi, "f. are averages over one frame", oenv);
481 snew(leg, 4 + nener);
482 e = 0;
483 sprintf(str, "-kT log(<Ve\\S-\\betaU\\N>/<V>)");
484 leg[e++] = gmx_strdup(str);
485 sprintf(str, "f. -kT log<e\\S-\\betaU\\N>");
486 leg[e++] = gmx_strdup(str);
487 sprintf(str, "f. <e\\S-\\betaU\\N>");
488 leg[e++] = gmx_strdup(str);
489 sprintf(str, "f. V");
490 leg[e++] = gmx_strdup(str);
491 sprintf(str, "f. <Ue\\S-\\betaU\\N>");
492 leg[e++] = gmx_strdup(str);
493 for (i = 0; i < ngid; i++)
495 sprintf(str, "f. <U\\sVdW %s\\Ne\\S-\\betaU\\N>",
496 *(groups->groupNames[groups->groups[SimulationAtomGroupType::EnergyOutput][i]]));
497 leg[e++] = gmx_strdup(str);
499 if (bDispCorr)
501 sprintf(str, "f. <U\\sdisp c\\Ne\\S-\\betaU\\N>");
502 leg[e++] = gmx_strdup(str);
504 if (bCharge)
506 for (i = 0; i < ngid; i++)
508 sprintf(str, "f. <U\\sCoul %s\\Ne\\S-\\betaU\\N>",
509 *(groups->groupNames[groups->groups[SimulationAtomGroupType::EnergyOutput][i]]));
510 leg[e++] = gmx_strdup(str);
512 if (bRFExcl)
514 sprintf(str, "f. <U\\sRF excl\\Ne\\S-\\betaU\\N>");
515 leg[e++] = gmx_strdup(str);
517 if (EEL_FULL(fr->ic->eeltype))
519 sprintf(str, "f. <U\\sCoul recip\\Ne\\S-\\betaU\\N>");
520 leg[e++] = gmx_strdup(str);
523 xvgr_legend(fp_tpi, 4 + nener, leg, oenv);
524 for (i = 0; i < 4 + nener; i++)
526 sfree(leg[i]);
528 sfree(leg);
530 clear_rvec(x_init);
531 V_all = 0;
532 VembU_all = 0;
534 invbinw = 10;
535 nbin = 10;
536 snew(bin, nbin);
538 /* Avoid frame step numbers <= -1 */
539 frame_step_prev = -1;
541 bNotLastFrame = read_first_frame(oenv, &status, opt2fn("-rerun", nfile, fnm), &rerun_fr, TRX_NEED_X);
542 frame = 0;
544 if (rerun_fr.natoms - (bCavity ? nat_cavity : 0) != mdatoms->nr - (a_tp1 - a_tp0))
546 gmx_fatal(FARGS,
547 "Number of atoms in trajectory (%d)%s "
548 "is not equal the number in the run input file (%d) "
549 "minus the number of atoms to insert (%d)\n",
550 rerun_fr.natoms, bCavity ? " minus one" : "", mdatoms->nr, a_tp1 - a_tp0);
553 refvolshift = log(det(rerun_fr.box));
555 switch (inputrec->eI)
557 case eiTPI: stepblocksize = inputrec->nstlist; break;
558 case eiTPIC: stepblocksize = 1; break;
559 default: gmx_fatal(FARGS, "Unknown integrator %s", ei_names[inputrec->eI]);
562 while (bNotLastFrame)
564 frame_step = rerun_fr.step;
565 if (frame_step <= frame_step_prev)
567 /* We don't have step number in the trajectory file,
568 * or we have constant or decreasing step numbers.
569 * Ensure we have increasing step numbers, since we use
570 * the step numbers as a counter for random numbers.
572 frame_step = frame_step_prev + 1;
574 frame_step_prev = frame_step;
576 lambda = rerun_fr.lambda;
577 t = rerun_fr.time;
579 sum_embU = 0;
580 for (e = 0; e < nener; e++)
582 sum_UgembU[e] = 0;
585 /* Copy the coordinates from the input trajectory */
586 auto x = makeArrayRef(state_global->x);
587 for (i = 0; i < rerun_fr.natoms; i++)
589 copy_rvec(rerun_fr.x[i], x[i]);
591 copy_mat(rerun_fr.box, state_global->box);
592 const matrix& box = state_global->box;
594 V = det(box);
595 logV = log(V);
597 bStateChanged = TRUE;
598 bNS = TRUE;
600 put_atoms_in_box(fr->pbcType, box, x);
602 /* Put all atoms except for the inserted ones on the grid */
603 rvec vzero = { 0, 0, 0 };
604 rvec boxDiagonal = { box[XX][XX], box[YY][YY], box[ZZ][ZZ] };
605 nbnxn_put_on_grid(fr->nbv.get(), box, 0, vzero, boxDiagonal, nullptr, { 0, a_tp0 }, -1,
606 fr->cginfo, x, 0, nullptr);
608 step = cr->nodeid * stepblocksize;
609 while (step < nsteps)
611 /* Restart random engine using the frame and insertion step
612 * as counters.
613 * Note that we need to draw several random values per iteration,
614 * but by using the internal subcounter functionality of ThreeFry2x64
615 * we can draw 131072 unique 64-bit values before exhausting
616 * the stream. This is a huge margin, and if something still goes
617 * wrong you will get an exception when the stream is exhausted.
619 rng.restart(frame_step, step);
620 dist.reset(); // erase any memory in the distribution
622 if (!bCavity)
624 /* Random insertion in the whole volume */
625 bNS = (step % inputrec->nstlist == 0);
626 if (bNS)
628 /* Generate a random position in the box */
629 for (d = 0; d < DIM; d++)
631 x_init[d] = dist(rng) * state_global->box[d][d];
635 else
637 /* Random insertion around a cavity location
638 * given by the last coordinate of the trajectory.
640 if (step == 0)
642 if (nat_cavity == 1)
644 /* Copy the location of the cavity */
645 copy_rvec(rerun_fr.x[rerun_fr.natoms - 1], x_init);
647 else
649 /* Determine the center of mass of the last molecule */
650 clear_rvec(x_init);
651 mass_tot = 0;
652 for (i = 0; i < nat_cavity; i++)
654 for (d = 0; d < DIM; d++)
656 x_init[d] += mass_cavity[i]
657 * rerun_fr.x[rerun_fr.natoms - nat_cavity + i][d];
659 mass_tot += mass_cavity[i];
661 for (d = 0; d < DIM; d++)
663 x_init[d] /= mass_tot;
669 if (bNS)
671 for (int a = a_tp0; a < a_tp1; a++)
673 x[a] = x_init;
676 /* Put the inserted molecule on it's own search grid */
677 nbnxn_put_on_grid(fr->nbv.get(), box, 1, x_init, x_init, nullptr, { a_tp0, a_tp1 },
678 -1, fr->cginfo, x, 0, nullptr);
680 /* TODO: Avoid updating all atoms at every bNS step */
681 fr->nbv->setAtomProperties(*mdatoms, fr->cginfo);
683 fr->nbv->constructPairlist(InteractionLocality::Local, top.excls, step, nrnb);
685 bNS = FALSE;
688 /* Add random displacement uniformly distributed in a sphere
689 * of radius rtpi. We don't need to do this is we generate
690 * a new center location every step.
692 rvec x_tp;
693 if (bCavity || inputrec->nstlist > 1)
695 /* Generate coordinates within |dx|=drmax of x_init */
698 for (d = 0; d < DIM; d++)
700 dx[d] = (2 * dist(rng) - 1) * drmax;
702 } while (norm2(dx) > drmax * drmax);
703 rvec_add(x_init, dx, x_tp);
705 else
707 copy_rvec(x_init, x_tp);
710 if (a_tp1 - a_tp0 == 1)
712 /* Insert a single atom, just copy the insertion location */
713 copy_rvec(x_tp, x[a_tp0]);
715 else
717 /* Copy the coordinates from the top file */
718 for (i = a_tp0; i < a_tp1; i++)
720 copy_rvec(x_mol[i - a_tp0], x[i]);
722 /* Rotate the molecule randomly */
723 real angleX = 2 * M_PI * dist(rng);
724 real angleY = 2 * M_PI * dist(rng);
725 real angleZ = 2 * M_PI * dist(rng);
726 rotate_conf(a_tp1 - a_tp0, state_global->x.rvec_array() + a_tp0, nullptr, angleX,
727 angleY, angleZ);
728 /* Shift to the insertion location */
729 for (i = a_tp0; i < a_tp1; i++)
731 rvec_inc(x[i], x_tp);
735 /* Note: NonLocal refers to the inserted molecule */
736 fr->nbv->convertCoordinates(AtomLocality::NonLocal, false, x);
738 /* Clear some matrix variables */
739 clear_mat(force_vir);
740 clear_mat(shake_vir);
741 clear_mat(vir);
742 clear_mat(pres);
744 /* Calc energy (no forces) on new positions.
745 * Since we only need the intermolecular energy
746 * and the RF exclusion terms of the inserted molecule occur
747 * within a single charge group we can pass NULL for the graph.
748 * This also avoids shifts that would move charge groups
749 * out of the box. */
750 /* Make do_force do a single node force calculation */
751 cr->nnodes = 1;
753 // TPI might place a particle so close that the potential
754 // is infinite. Since this is intended to happen, we
755 // temporarily suppress any exceptions that the processor
756 // might raise, then restore the old behaviour.
757 std::fenv_t floatingPointEnvironment;
758 std::feholdexcept(&floatingPointEnvironment);
759 do_force(fplog, cr, ms, inputrec, nullptr, nullptr, imdSession, pull_work, step, nrnb,
760 wcycle, &top, state_global->box, state_global->x.arrayRefWithPadding(),
761 &state_global->hist, f.arrayRefWithPadding(), force_vir, mdatoms, enerd, fcd,
762 state_global->lambda, nullptr, fr, runScheduleWork, nullptr, mu_tot, t, nullptr,
763 GMX_FORCE_NONBONDED | GMX_FORCE_ENERGY | (bStateChanged ? GMX_FORCE_STATECHANGED : 0),
764 DDBalanceRegionHandler(nullptr));
765 std::feclearexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW);
766 std::feupdateenv(&floatingPointEnvironment);
768 cr->nnodes = nnodes;
769 bStateChanged = FALSE;
771 if (fr->dispersionCorrection)
773 /* Calculate long range corrections to pressure and energy */
774 const DispersionCorrection::Correction correction =
775 fr->dispersionCorrection->calculate(state_global->box, lambda);
776 /* figure out how to rearrange the next 4 lines MRS 8/4/2009 */
777 enerd->term[F_DISPCORR] = correction.energy;
778 enerd->term[F_EPOT] += correction.energy;
779 enerd->term[F_PRES] += correction.pressure;
780 enerd->term[F_DVDL] += correction.dvdl;
782 else
784 enerd->term[F_DISPCORR] = 0;
786 if (EEL_RF(fr->ic->eeltype))
788 enerd->term[F_EPOT] += rfExclusionEnergy;
791 epot = enerd->term[F_EPOT];
792 bEnergyOutOfBounds = FALSE;
794 /* If the compiler doesn't optimize this check away
795 * we catch the NAN energies.
796 * The epot>GMX_REAL_MAX check catches inf values,
797 * which should nicely result in embU=0 through the exp below,
798 * but it does not hurt to check anyhow.
800 /* Non-bonded Interaction usually diverge at r=0.
801 * With tabulated interaction functions the first few entries
802 * should be capped in a consistent fashion between
803 * repulsion, dispersion and Coulomb to avoid accidental
804 * negative values in the total energy.
805 * The table generation code in tables.c does this.
806 * With user tbales the user should take care of this.
808 if (epot != epot || epot > GMX_REAL_MAX)
810 bEnergyOutOfBounds = TRUE;
812 if (bEnergyOutOfBounds)
814 if (debug)
816 fprintf(debug,
817 "\n time %.3f, step %d: non-finite energy %f, using exp(-bU)=0\n", t,
818 static_cast<int>(step), epot);
820 embU = 0;
822 else
824 // Exponent argument is fine in SP range, but output can be in DP range
825 embU = exp(static_cast<double>(-beta * epot));
826 sum_embU += embU;
827 /* Determine the weighted energy contributions of each energy group */
828 e = 0;
829 sum_UgembU[e++] += epot * embU;
830 if (fr->bBHAM)
832 for (i = 0; i < ngid; i++)
834 sum_UgembU[e++] += enerd->grpp.ener[egBHAMSR][GID(i, gid_tp, ngid)] * embU;
837 else
839 for (i = 0; i < ngid; i++)
841 sum_UgembU[e++] += enerd->grpp.ener[egLJSR][GID(i, gid_tp, ngid)] * embU;
844 if (bDispCorr)
846 sum_UgembU[e++] += enerd->term[F_DISPCORR] * embU;
848 if (bCharge)
850 for (i = 0; i < ngid; i++)
852 sum_UgembU[e++] += enerd->grpp.ener[egCOULSR][GID(i, gid_tp, ngid)] * embU;
854 if (bRFExcl)
856 sum_UgembU[e++] += rfExclusionEnergy * embU;
858 if (EEL_FULL(fr->ic->eeltype))
860 sum_UgembU[e++] += enerd->term[F_COUL_RECIP] * embU;
865 if (embU == 0 || beta * epot > bU_bin_limit)
867 bin[0]++;
869 else
871 i = gmx::roundToInt((bU_logV_bin_limit - (beta * epot - logV + refvolshift)) * invbinw);
872 if (i < 0)
874 i = 0;
876 if (i >= nbin)
878 realloc_bins(&bin, &nbin, i + 10);
880 bin[i]++;
883 if (debug)
885 fprintf(debug, "TPI %7d %12.5e %12.5f %12.5f %12.5f\n", static_cast<int>(step),
886 epot, x_tp[XX], x_tp[YY], x_tp[ZZ]);
889 if (dump_pdb && epot <= dump_ener)
891 sprintf(str, "t%g_step%d.pdb", t, static_cast<int>(step));
892 sprintf(str2, "t: %f step %d ener: %f", t, static_cast<int>(step), epot);
893 write_sto_conf_mtop(str, str2, top_global, state_global->x.rvec_array(),
894 state_global->v.rvec_array(), inputrec->pbcType, state_global->box);
897 step++;
898 if ((step / stepblocksize) % cr->nnodes != cr->nodeid)
900 /* Skip all steps assigned to the other MPI ranks */
901 step += (cr->nnodes - 1) * stepblocksize;
905 if (PAR(cr))
907 /* When running in parallel sum the energies over the processes */
908 gmx_sumd(1, &sum_embU, cr);
909 gmx_sumd(nener, sum_UgembU, cr);
912 frame++;
913 V_all += V;
914 VembU_all += V * sum_embU / nsteps;
916 if (fp_tpi)
918 if (mdrunOptions.verbose || frame % 10 == 0 || frame < 10)
920 fprintf(stderr, "mu %10.3e <mu> %10.3e\n", -log(sum_embU / nsteps) / beta,
921 -log(VembU_all / V_all) / beta);
924 fprintf(fp_tpi, "%10.3f %12.5e %12.5e %12.5e %12.5e", t,
925 VembU_all == 0 ? 20 / beta : -log(VembU_all / V_all) / beta,
926 sum_embU == 0 ? 20 / beta : -log(sum_embU / nsteps) / beta, sum_embU / nsteps, V);
927 for (e = 0; e < nener; e++)
929 fprintf(fp_tpi, " %12.5e", sum_UgembU[e] / nsteps);
931 fprintf(fp_tpi, "\n");
932 fflush(fp_tpi);
935 bNotLastFrame = read_next_frame(oenv, status, &rerun_fr);
936 } /* End of the loop */
937 walltime_accounting_end_time(walltime_accounting);
939 close_trx(status);
941 if (fp_tpi != nullptr)
943 xvgrclose(fp_tpi);
946 if (fplog != nullptr)
948 fprintf(fplog, "\n");
949 fprintf(fplog, " <V> = %12.5e nm^3\n", V_all / frame);
950 const double mu = -log(VembU_all / V_all) / beta;
951 fprintf(fplog, " <mu> = %12.5e kJ/mol\n", mu);
953 if (!std::isfinite(mu))
955 fprintf(fplog,
956 "\nThe computed chemical potential is not finite - consider increasing the "
957 "number of steps and/or the number of frames to insert into.\n");
961 /* Write the Boltzmann factor histogram */
962 if (PAR(cr))
964 /* When running in parallel sum the bins over the processes */
965 i = nbin;
966 global_max(cr, &i);
967 realloc_bins(&bin, &nbin, i);
968 gmx_sumd(nbin, bin, cr);
970 if (MASTER(cr))
972 fp_tpi = xvgropen(opt2fn("-tpid", nfile, fnm), "TPI energy distribution",
973 "\\betaU - log(V/<V>)", "count", oenv);
974 sprintf(str, "number \\betaU > %g: %9.3e", bU_bin_limit, bin[0]);
975 xvgr_subtitle(fp_tpi, str, oenv);
976 xvgr_legend(fp_tpi, 2, tpid_leg, oenv);
977 for (i = nbin - 1; i > 0; i--)
979 bUlogV = -i / invbinw + bU_logV_bin_limit - refvolshift + log(V_all / frame);
980 fprintf(fp_tpi, "%6.2f %10d %12.5e\n", bUlogV, roundToInt(bin[i]),
981 bin[i] * exp(-bUlogV) * V_all / VembU_all);
983 xvgrclose(fp_tpi);
985 sfree(bin);
987 sfree(sum_UgembU);
989 walltime_accounting_set_nsteps_done(walltime_accounting, frame * inputrec->nsteps);
992 } // namespace gmx