More const correctness
[gromacs.git] / src / gromacs / mdlib / groupcoord.cpp
blobb1b6d48c107f9bf59b8769da96613912ca1bde3c
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
5 * Copyright (c) 2001-2008, The GROMACS development team.
6 * Copyright (c) 2012,2014,2015,2017,2018, by the GROMACS development team, led by
7 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
8 * and including many others, as listed in the AUTHORS file in the
9 * top-level source directory and at http://www.gromacs.org.
11 * GROMACS is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public License
13 * as published by the Free Software Foundation; either version 2.1
14 * of the License, or (at your option) any later version.
16 * GROMACS is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * Lesser General Public License for more details.
21 * You should have received a copy of the GNU Lesser General Public
22 * License along with GROMACS; if not, see
23 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
24 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
26 * If you want to redistribute modifications to GROMACS, please
27 * consider that scientific software is very special. Version
28 * control is crucial - bugs must be traceable. We will be happy to
29 * consider code for inclusion in the official distribution, but
30 * derived work must not be called official GROMACS. Details are found
31 * in the README & COPYING files - if they are missing, get the
32 * official version at http://www.gromacs.org.
34 * To help us fund GROMACS development, we humbly ask that you cite
35 * the research papers on the package. Check out http://www.gromacs.org.
37 #include "gmxpre.h"
39 #include "groupcoord.h"
41 #include "gromacs/domdec/ga2la.h"
42 #include "gromacs/gmxlib/network.h"
43 #include "gromacs/math/vec.h"
44 #include "gromacs/mdtypes/commrec.h"
45 #include "gromacs/pbcutil/pbc.h"
46 #include "gromacs/utility/smalloc.h"
48 #define MIN(a, b) (((a) < (b)) ? (a) : (b))
52 /* Select the indices of the group's atoms which are local and store them in
53 * anrs_loc[0..nr_loc]. The indices are saved in coll_ind[] for later reduction
54 * in communicate_group_positions()
56 void dd_make_local_group_indices(gmx_ga2la_t *ga2la,
57 const int nr, /* IN: Total number of atoms in the group */
58 int anrs[], /* IN: Global atom numbers of the groups atoms */
59 int *nr_loc, /* OUT: Number of group atoms found locally */
60 int *anrs_loc[], /* OUT: Local atom numbers of the group */
61 int *nalloc_loc, /* IN+OUT: Allocation size of anrs_loc */
62 int coll_ind[]) /* OUT (opt): Where is this position found in the collective array? */
64 int i, ii;
65 int localnr;
68 /* Loop over all the atom indices of the group to check
69 * which ones are on the local node */
70 localnr = 0;
71 for (i = 0; i < nr; i++)
73 if (ga2la_get_home(ga2la, anrs[i], &ii))
75 /* The atom with this index is a home atom */
76 if (localnr >= *nalloc_loc) /* Check whether memory suffices */
78 *nalloc_loc = over_alloc_dd(localnr+1);
79 /* We never need more memory than the number of atoms in the group */
80 *nalloc_loc = MIN(*nalloc_loc, nr);
81 srenew(*anrs_loc, *nalloc_loc);
83 /* Save the atoms index in the local atom numbers array */
84 (*anrs_loc)[localnr] = ii;
86 if (coll_ind != nullptr)
88 /* Keep track of where this local atom belongs in the collective index array.
89 * This is needed when reducing the local arrays to a collective/global array
90 * in communicate_group_positions */
91 coll_ind[localnr] = i;
94 /* add one to the local atom count */
95 localnr++;
99 /* Return the number of local atoms that were found */
100 *nr_loc = localnr;
104 static void get_shifts_group(
105 int npbcdim,
106 matrix box,
107 rvec *xcoll, /* IN: Collective set of positions [0..nr] */
108 int nr, /* IN: Total number of atoms in the group */
109 rvec *xcoll_old, /* IN: Positions from the last time step [0...nr] */
110 ivec *shifts) /* OUT: Shifts for xcoll */
112 int i, m, d;
113 rvec dx;
116 /* Get the shifts such that each atom is within closest
117 * distance to its position at the last NS time step after shifting.
118 * If we start with a whole group, and always keep track of
119 * shift changes, the group will stay whole this way */
120 for (i = 0; i < nr; i++)
122 clear_ivec(shifts[i]);
125 for (i = 0; i < nr; i++)
127 /* The distance this atom moved since the last time step */
128 /* If this is more than just a bit, it has changed its home pbc box */
129 rvec_sub(xcoll[i], xcoll_old[i], dx);
131 for (m = npbcdim-1; m >= 0; m--)
133 while (dx[m] < -0.5*box[m][m])
135 for (d = 0; d < DIM; d++)
137 dx[d] += box[m][d];
139 shifts[i][m]++;
141 while (dx[m] >= 0.5*box[m][m])
143 for (d = 0; d < DIM; d++)
145 dx[d] -= box[m][d];
147 shifts[i][m]--;
154 static void shift_positions_group(
155 matrix box,
156 rvec x[], /* The positions [0..nr] */
157 ivec *is, /* The shifts [0..nr] */
158 int nr) /* The number of positions and shifts */
160 int i, tx, ty, tz;
163 /* Loop over the group's atoms */
164 if (TRICLINIC(box))
166 for (i = 0; i < nr; i++)
168 tx = is[i][XX];
169 ty = is[i][YY];
170 tz = is[i][ZZ];
172 x[i][XX] = x[i][XX]+tx*box[XX][XX]+ty*box[YY][XX]+tz*box[ZZ][XX];
173 x[i][YY] = x[i][YY]+ty*box[YY][YY]+tz*box[ZZ][YY];
174 x[i][ZZ] = x[i][ZZ]+tz*box[ZZ][ZZ];
177 else
179 for (i = 0; i < nr; i++)
181 tx = is[i][XX];
182 ty = is[i][YY];
183 tz = is[i][ZZ];
185 x[i][XX] = x[i][XX]+tx*box[XX][XX];
186 x[i][YY] = x[i][YY]+ty*box[YY][YY];
187 x[i][ZZ] = x[i][ZZ]+tz*box[ZZ][ZZ];
193 /* Assemble the positions of the group such that every node has all of them.
194 * The atom indices are retrieved from anrs_loc[0..nr_loc]
195 * Note that coll_ind[i] = i is needed in the serial case */
196 extern void communicate_group_positions(
197 const t_commrec *cr, /* Pointer to MPI communication data */
198 rvec *xcoll, /* Collective array of positions */
199 ivec *shifts, /* Collective array of shifts for xcoll (can be NULL) */
200 ivec *extra_shifts, /* (optional) Extra shifts since last time step */
201 const gmx_bool bNS, /* (optional) NS step, the shifts have changed */
202 const rvec *x_loc, /* Local positions on this node */
203 const int nr, /* Total number of atoms in the group */
204 const int nr_loc, /* Local number of atoms in the group */
205 int *anrs_loc, /* Local atom numbers */
206 int *coll_ind, /* Collective index */
207 rvec *xcoll_old, /* (optional) Positions from the last time step,
208 used to make group whole */
209 matrix box) /* (optional) The box */
211 int i;
214 /* Zero out the groups' global position array */
215 clear_rvecs(nr, xcoll);
217 /* Put the local positions that this node has into the right place of
218 * the collective array. Note that in the serial case, coll_ind[i] = i */
219 for (i = 0; i < nr_loc; i++)
221 copy_rvec(x_loc[anrs_loc[i]], xcoll[coll_ind[i]]);
224 if (PAR(cr))
226 /* Add the arrays from all nodes together */
227 gmx_sum(nr*3, xcoll[0], cr);
229 /* Now we have all the positions of the group in the xcoll array present on all
230 * nodes.
232 * The rest of the code is for making the group whole again in case atoms changed
233 * their PBC representation / crossed a box boundary. We only do that if the
234 * shifts array is allocated. */
235 if (nullptr != shifts)
237 /* To make the group whole, start with a whole group and each
238 * step move the assembled positions at closest distance to the positions
239 * from the last step. First shift the positions with the saved shift
240 * vectors (these are 0 when this routine is called for the first time!) */
241 shift_positions_group(box, xcoll, shifts, nr);
243 /* Now check if some shifts changed since the last step.
244 * This only needs to be done when the shifts are expected to have changed,
245 * i.e. after neighbor searching */
246 if (bNS)
248 get_shifts_group(3, box, xcoll, nr, xcoll_old, extra_shifts);
250 /* Shift with the additional shifts such that we get a whole group now */
251 shift_positions_group(box, xcoll, extra_shifts, nr);
253 /* Add the shift vectors together for the next time step */
254 for (i = 0; i < nr; i++)
256 shifts[i][XX] += extra_shifts[i][XX];
257 shifts[i][YY] += extra_shifts[i][YY];
258 shifts[i][ZZ] += extra_shifts[i][ZZ];
261 /* Store current correctly-shifted positions for comparison in the next NS time step */
262 for (i = 0; i < nr; i++)
264 copy_rvec(xcoll[i], xcoll_old[i]);
271 /* Determine the (weighted) sum vector from positions x */
272 extern double get_sum_of_positions(rvec x[], real weight[], const int nat, dvec dsumvec)
274 int i;
275 rvec x_weighted;
276 double weight_sum = 0.0;
279 /* Zero out the center */
280 clear_dvec(dsumvec);
282 /* Loop over all atoms and add their weighted position vectors */
283 if (weight != nullptr)
285 for (i = 0; i < nat; i++)
287 weight_sum += weight[i];
288 svmul(weight[i], x[i], x_weighted);
289 dsumvec[XX] += x_weighted[XX];
290 dsumvec[YY] += x_weighted[YY];
291 dsumvec[ZZ] += x_weighted[ZZ];
294 else
296 for (i = 0; i < nat; i++)
298 dsumvec[XX] += x[i][XX];
299 dsumvec[YY] += x[i][YY];
300 dsumvec[ZZ] += x[i][ZZ];
303 return weight_sum;
307 /* Determine center of structure from collective positions x */
308 extern void get_center(rvec x[], real weight[], const int nr, rvec rcenter)
310 dvec dcenter;
311 double weight_sum, denom;
314 weight_sum = get_sum_of_positions(x, weight, nr, dcenter);
316 if (weight != nullptr)
318 denom = weight_sum; /* Divide by the sum of weight */
320 else
322 denom = nr; /* Divide by the number of atoms */
325 dsvmul(1.0/denom, dcenter, dcenter);
327 rcenter[XX] = dcenter[XX];
328 rcenter[YY] = dcenter[YY];
329 rcenter[ZZ] = dcenter[ZZ];
333 /* Get the center from local positions that already have the correct
334 * PBC representation */
335 extern void get_center_comm(
336 const t_commrec *cr,
337 rvec x_loc[], /* Local positions */
338 real weight_loc[], /* Local masses or other weights */
339 int nr_loc, /* Local number of atoms */
340 int nr_group, /* Total number of atoms of the group */
341 rvec center) /* Weighted center */
343 double weight_sum, denom;
344 dvec dsumvec;
345 double buf[4];
348 weight_sum = get_sum_of_positions(x_loc, weight_loc, nr_loc, dsumvec);
350 /* Add the local contributions from all nodes. Put the sum vector and the
351 * weight in a buffer array so that we get along with a single communication
352 * call. */
353 if (PAR(cr))
355 buf[0] = dsumvec[XX];
356 buf[1] = dsumvec[YY];
357 buf[2] = dsumvec[ZZ];
358 buf[3] = weight_sum;
360 /* Communicate buffer */
361 gmx_sumd(4, buf, cr);
363 dsumvec[XX] = buf[0];
364 dsumvec[YY] = buf[1];
365 dsumvec[ZZ] = buf[2];
366 weight_sum = buf[3];
369 if (weight_loc != nullptr)
371 denom = 1.0/weight_sum; /* Divide by the sum of weight to get center of mass e.g. */
373 else
375 denom = 1.0/nr_group; /* Divide by the number of atoms to get the geometrical center */
378 center[XX] = dsumvec[XX]*denom;
379 center[YY] = dsumvec[YY]*denom;
380 center[ZZ] = dsumvec[ZZ]*denom;
384 /* Translate x with transvec */
385 extern void translate_x(rvec x[], const int nr, const rvec transvec)
387 int i;
390 for (i = 0; i < nr; i++)
392 rvec_inc(x[i], transvec);
397 extern void rotate_x(rvec x[], const int nr, matrix rmat)
399 int i, j, k;
400 rvec x_old;
403 /* Apply the rotation matrix */
404 for (i = 0; i < nr; i++)
406 for (j = 0; j < 3; j++)
408 x_old[j] = x[i][j];
410 for (j = 0; j < 3; j++)
412 x[i][j] = 0;
413 for (k = 0; k < 3; k++)
415 x[i][j] += rmat[k][j]*x_old[k];