More const correctness
[gromacs.git] / src / gromacs / ewald / pme.cpp
blob844754bfb0d950c7b7a2f111e2ebff708036a194
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
5 * Copyright (c) 2001-2004, The GROMACS development team.
6 * Copyright (c) 2013,2014,2015,2016,2017,2018, by the GROMACS development team, led by
7 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
8 * and including many others, as listed in the AUTHORS file in the
9 * top-level source directory and at http://www.gromacs.org.
11 * GROMACS is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public License
13 * as published by the Free Software Foundation; either version 2.1
14 * of the License, or (at your option) any later version.
16 * GROMACS is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * Lesser General Public License for more details.
21 * You should have received a copy of the GNU Lesser General Public
22 * License along with GROMACS; if not, see
23 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
24 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
26 * If you want to redistribute modifications to GROMACS, please
27 * consider that scientific software is very special. Version
28 * control is crucial - bugs must be traceable. We will be happy to
29 * consider code for inclusion in the official distribution, but
30 * derived work must not be called official GROMACS. Details are found
31 * in the README & COPYING files - if they are missing, get the
32 * official version at http://www.gromacs.org.
34 * To help us fund GROMACS development, we humbly ask that you cite
35 * the research papers on the package. Check out http://www.gromacs.org.
37 /*! \internal \file
39 * \brief This file contains function definitions necessary for
40 * computing energies and forces for the PME long-ranged part (Coulomb
41 * and LJ).
43 * \author Erik Lindahl <erik@kth.se>
44 * \author Berk Hess <hess@kth.se>
45 * \ingroup module_ewald
47 /* IMPORTANT FOR DEVELOPERS:
49 * Triclinic pme stuff isn't entirely trivial, and we've experienced
50 * some bugs during development (many of them due to me). To avoid
51 * this in the future, please check the following things if you make
52 * changes in this file:
54 * 1. You should obtain identical (at least to the PME precision)
55 * energies, forces, and virial for
56 * a rectangular box and a triclinic one where the z (or y) axis is
57 * tilted a whole box side. For instance you could use these boxes:
59 * rectangular triclinic
60 * 2 0 0 2 0 0
61 * 0 2 0 0 2 0
62 * 0 0 6 2 2 6
64 * 2. You should check the energy conservation in a triclinic box.
66 * It might seem an overkill, but better safe than sorry.
67 * /Erik 001109
70 #include "gmxpre.h"
72 #include "pme.h"
74 #include "config.h"
76 #include <assert.h>
77 #include <stdio.h>
78 #include <stdlib.h>
79 #include <string.h>
81 #include <cmath>
83 #include <algorithm>
84 #include <list>
86 #include "gromacs/ewald/ewald-utils.h"
87 #include "gromacs/fft/parallel_3dfft.h"
88 #include "gromacs/fileio/pdbio.h"
89 #include "gromacs/gmxlib/network.h"
90 #include "gromacs/gmxlib/nrnb.h"
91 #include "gromacs/math/gmxcomplex.h"
92 #include "gromacs/math/invertmatrix.h"
93 #include "gromacs/math/units.h"
94 #include "gromacs/math/vec.h"
95 #include "gromacs/math/vectypes.h"
96 #include "gromacs/mdtypes/commrec.h"
97 #include "gromacs/mdtypes/forcerec.h"
98 #include "gromacs/mdtypes/inputrec.h"
99 #include "gromacs/mdtypes/md_enums.h"
100 #include "gromacs/pbcutil/pbc.h"
101 #include "gromacs/timing/cyclecounter.h"
102 #include "gromacs/timing/wallcycle.h"
103 #include "gromacs/timing/walltime_accounting.h"
104 #include "gromacs/utility/basedefinitions.h"
105 #include "gromacs/utility/exceptions.h"
106 #include "gromacs/utility/fatalerror.h"
107 #include "gromacs/utility/gmxmpi.h"
108 #include "gromacs/utility/gmxomp.h"
109 #include "gromacs/utility/logger.h"
110 #include "gromacs/utility/real.h"
111 #include "gromacs/utility/smalloc.h"
112 #include "gromacs/utility/stringutil.h"
113 #include "gromacs/utility/unique_cptr.h"
115 #include "calculate-spline-moduli.h"
116 #include "pme-gather.h"
117 #include "pme-gpu-internal.h"
118 #include "pme-grid.h"
119 #include "pme-internal.h"
120 #include "pme-redistribute.h"
121 #include "pme-solve.h"
122 #include "pme-spline-work.h"
123 #include "pme-spread.h"
125 bool pme_gpu_supports_input(const t_inputrec *ir, std::string *error)
127 std::list<std::string> errorReasons;
128 if (!EEL_PME(ir->coulombtype))
130 errorReasons.push_back("systems that do not use PME for electrostatics");
132 if (ir->pme_order != 4)
134 errorReasons.push_back("interpolation orders other than 4");
136 if (ir->efep != efepNO)
138 errorReasons.push_back("free energy calculations (multiple grids)");
140 if (EVDW_PME(ir->vdwtype))
142 errorReasons.push_back("Lennard-Jones PME");
144 #if GMX_DOUBLE
146 errorReasons.push_back("double precision");
148 #endif
149 #if GMX_GPU != GMX_GPU_CUDA
151 errorReasons.push_back("non-CUDA build of GROMACS");
153 #endif
154 if (ir->cutoff_scheme == ecutsGROUP)
156 errorReasons.push_back("group cutoff scheme");
158 if (EI_TPI(ir->eI))
160 errorReasons.push_back("test particle insertion");
163 bool inputSupported = errorReasons.empty();
164 if (!inputSupported && error)
166 std::string regressionTestMarker = "PME GPU does not support";
167 // this prefix is tested for in the regression tests script gmxtest.pl
168 *error = regressionTestMarker + ": " + gmx::joinStrings(errorReasons, "; ") + ".";
170 return inputSupported;
173 /*! \brief \libinternal
174 * Finds out if PME with given inputs is possible to run on GPU.
175 * This function is an internal final check, validating the whole PME structure on creation,
176 * but it still duplicates the preliminary checks from the above (externally exposed) pme_gpu_supports_input() - just in case.
178 * \param[in] pme The PME structure.
179 * \param[out] error The error message if the input is not supported on GPU.
180 * \returns True if this PME input is possible to run on GPU, false otherwise.
182 static bool pme_gpu_check_restrictions(const gmx_pme_t *pme, std::string *error)
184 std::list<std::string> errorReasons;
185 if (pme->nnodes != 1)
187 errorReasons.push_back("PME decomposition");
189 if (pme->pme_order != 4)
191 errorReasons.push_back("interpolation orders other than 4");
193 if (pme->bFEP)
195 errorReasons.push_back("free energy calculations (multiple grids)");
197 if (pme->doLJ)
199 errorReasons.push_back("Lennard-Jones PME");
201 #if GMX_DOUBLE
203 errorReasons.push_back("double precision");
205 #endif
206 #if GMX_GPU != GMX_GPU_CUDA
208 errorReasons.push_back("non-CUDA build of GROMACS");
210 #endif
212 bool inputSupported = errorReasons.empty();
213 if (!inputSupported && error)
215 std::string regressionTestMarker = "PME GPU does not support";
216 // this prefix is tested for in the regression tests script gmxtest.pl
217 *error = regressionTestMarker + ": " + gmx::joinStrings(errorReasons, "; ") + ".";
219 return inputSupported;
222 PmeRunMode pme_run_mode(const gmx_pme_t *pme)
224 GMX_ASSERT(pme != nullptr, "Expecting valid PME data pointer");
225 return pme->runMode;
228 /*! \brief Number of bytes in a cache line.
230 * Must also be a multiple of the SIMD and SIMD4 register size, to
231 * preserve alignment.
233 const int gmxCacheLineSize = 64;
235 //! Set up coordinate communication
236 static void setup_coordinate_communication(pme_atomcomm_t *atc)
238 int nslab, n, i;
239 int fw, bw;
241 nslab = atc->nslab;
243 n = 0;
244 for (i = 1; i <= nslab/2; i++)
246 fw = (atc->nodeid + i) % nslab;
247 bw = (atc->nodeid - i + nslab) % nslab;
248 if (n < nslab - 1)
250 atc->node_dest[n] = fw;
251 atc->node_src[n] = bw;
252 n++;
254 if (n < nslab - 1)
256 atc->node_dest[n] = bw;
257 atc->node_src[n] = fw;
258 n++;
263 /*! \brief Round \p n up to the next multiple of \p f */
264 static int mult_up(int n, int f)
266 return ((n + f - 1)/f)*f;
269 /*! \brief Return estimate of the load imbalance from the PME grid not being a good match for the number of PME ranks */
270 static double estimate_pme_load_imbalance(struct gmx_pme_t *pme)
272 int nma, nmi;
273 double n1, n2, n3;
275 nma = pme->nnodes_major;
276 nmi = pme->nnodes_minor;
278 n1 = mult_up(pme->nkx, nma)*mult_up(pme->nky, nmi)*pme->nkz;
279 n2 = mult_up(pme->nkx, nma)*mult_up(pme->nkz, nmi)*pme->nky;
280 n3 = mult_up(pme->nky, nma)*mult_up(pme->nkz, nmi)*pme->nkx;
282 /* pme_solve is roughly double the cost of an fft */
284 return (n1 + n2 + 3*n3)/(double)(6*pme->nkx*pme->nky*pme->nkz);
287 /*! \brief Initialize atom communication data structure */
288 static void init_atomcomm(struct gmx_pme_t *pme, pme_atomcomm_t *atc,
289 int dimind, gmx_bool bSpread)
291 int thread;
293 atc->dimind = dimind;
294 atc->nslab = 1;
295 atc->nodeid = 0;
296 atc->pd_nalloc = 0;
297 #if GMX_MPI
298 if (pme->nnodes > 1)
300 atc->mpi_comm = pme->mpi_comm_d[dimind];
301 MPI_Comm_size(atc->mpi_comm, &atc->nslab);
302 MPI_Comm_rank(atc->mpi_comm, &atc->nodeid);
304 if (debug)
306 fprintf(debug, "For PME atom communication in dimind %d: nslab %d rank %d\n", atc->dimind, atc->nslab, atc->nodeid);
308 #endif
310 atc->bSpread = bSpread;
311 atc->pme_order = pme->pme_order;
313 if (atc->nslab > 1)
315 snew(atc->node_dest, atc->nslab);
316 snew(atc->node_src, atc->nslab);
317 setup_coordinate_communication(atc);
319 snew(atc->count_thread, pme->nthread);
320 for (thread = 0; thread < pme->nthread; thread++)
322 snew(atc->count_thread[thread], atc->nslab);
324 atc->count = atc->count_thread[0];
325 snew(atc->rcount, atc->nslab);
326 snew(atc->buf_index, atc->nslab);
329 atc->nthread = pme->nthread;
330 if (atc->nthread > 1)
332 snew(atc->thread_plist, atc->nthread);
334 snew(atc->spline, atc->nthread);
335 for (thread = 0; thread < atc->nthread; thread++)
337 if (atc->nthread > 1)
339 snew(atc->thread_plist[thread].n, atc->nthread+2*gmxCacheLineSize);
340 atc->thread_plist[thread].n += gmxCacheLineSize;
345 /*! \brief Destroy an atom communication data structure and its child structs */
346 static void destroy_atomcomm(pme_atomcomm_t *atc)
348 sfree(atc->pd);
349 if (atc->nslab > 1)
351 sfree(atc->node_dest);
352 sfree(atc->node_src);
353 for (int i = 0; i < atc->nthread; i++)
355 sfree(atc->count_thread[i]);
357 sfree(atc->count_thread);
358 sfree(atc->rcount);
359 sfree(atc->buf_index);
361 sfree(atc->x);
362 sfree(atc->coefficient);
363 sfree(atc->f);
365 sfree(atc->idx);
366 sfree(atc->fractx);
368 sfree(atc->thread_idx);
369 for (int i = 0; i < atc->nthread; i++)
371 if (atc->nthread > 1)
373 int *n_ptr = atc->thread_plist[i].n - gmxCacheLineSize;
374 sfree(n_ptr);
375 sfree(atc->thread_plist[i].i);
377 sfree(atc->spline[i].ind);
378 for (int d = 0; d < ZZ; d++)
380 sfree(atc->spline[i].theta[d]);
381 sfree(atc->spline[i].dtheta[d]);
383 sfree_aligned(atc->spline[i].ptr_dtheta_z);
384 sfree_aligned(atc->spline[i].ptr_theta_z);
386 if (atc->nthread > 1)
388 sfree(atc->thread_plist);
390 sfree(atc->spline);
393 /*! \brief Initialize data structure for communication */
394 static void
395 init_overlap_comm(pme_overlap_t * ol,
396 int norder,
397 #if GMX_MPI
398 MPI_Comm comm,
399 #endif
400 int nnodes,
401 int nodeid,
402 int ndata,
403 int commplainsize)
405 gmx_bool bCont;
406 #if GMX_MPI
407 MPI_Status stat;
409 ol->mpi_comm = comm;
410 #endif
412 ol->nnodes = nnodes;
413 ol->nodeid = nodeid;
415 /* Linear translation of the PME grid won't affect reciprocal space
416 * calculations, so to optimize we only interpolate "upwards",
417 * which also means we only have to consider overlap in one direction.
418 * I.e., particles on this node might also be spread to grid indices
419 * that belong to higher nodes (modulo nnodes)
422 ol->s2g0.resize(ol->nnodes + 1);
423 ol->s2g1.resize(ol->nnodes);
424 if (debug)
426 fprintf(debug, "PME slab boundaries:");
428 for (int i = 0; i < nnodes; i++)
430 /* s2g0 the local interpolation grid start.
431 * s2g1 the local interpolation grid end.
432 * Since in calc_pidx we divide particles, and not grid lines,
433 * spatially uniform along dimension x or y, we need to round
434 * s2g0 down and s2g1 up.
436 ol->s2g0[i] = (i * ndata + 0) / nnodes;
437 ol->s2g1[i] = ((i + 1) * ndata + nnodes - 1) / nnodes + norder - 1;
439 if (debug)
441 fprintf(debug, " %3d %3d", ol->s2g0[i], ol->s2g1[i]);
444 ol->s2g0[nnodes] = ndata;
445 if (debug)
447 fprintf(debug, "\n");
450 /* Determine with how many nodes we need to communicate the grid overlap */
451 int testRankCount = 0;
454 testRankCount++;
455 bCont = FALSE;
456 for (int i = 0; i < nnodes; i++)
458 if ((i + testRankCount < nnodes && ol->s2g1[i] > ol->s2g0[i + testRankCount]) ||
459 (i + testRankCount >= nnodes && ol->s2g1[i] > ol->s2g0[i + testRankCount - nnodes] + ndata))
461 bCont = TRUE;
465 while (bCont && testRankCount < nnodes);
467 ol->comm_data.resize(testRankCount - 1);
468 ol->send_size = 0;
470 for (size_t b = 0; b < ol->comm_data.size(); b++)
472 pme_grid_comm_t *pgc = &ol->comm_data[b];
474 /* Send */
475 pgc->send_id = (ol->nodeid + (b + 1)) % ol->nnodes;
476 int fft_start = ol->s2g0[pgc->send_id];
477 int fft_end = ol->s2g0[pgc->send_id + 1];
478 if (pgc->send_id < nodeid)
480 fft_start += ndata;
481 fft_end += ndata;
483 int send_index1 = ol->s2g1[nodeid];
484 send_index1 = std::min(send_index1, fft_end);
485 pgc->send_index0 = fft_start;
486 pgc->send_nindex = std::max(0, send_index1 - pgc->send_index0);
487 ol->send_size += pgc->send_nindex;
489 /* We always start receiving to the first index of our slab */
490 pgc->recv_id = (ol->nodeid - (b + 1) + ol->nnodes) % ol->nnodes;
491 fft_start = ol->s2g0[ol->nodeid];
492 fft_end = ol->s2g0[ol->nodeid + 1];
493 int recv_index1 = ol->s2g1[pgc->recv_id];
494 if (pgc->recv_id > nodeid)
496 recv_index1 -= ndata;
498 recv_index1 = std::min(recv_index1, fft_end);
499 pgc->recv_index0 = fft_start;
500 pgc->recv_nindex = std::max(0, recv_index1 - pgc->recv_index0);
503 #if GMX_MPI
504 /* Communicate the buffer sizes to receive */
505 for (size_t b = 0; b < ol->comm_data.size(); b++)
507 MPI_Sendrecv(&ol->send_size, 1, MPI_INT, ol->comm_data[b].send_id, b,
508 &ol->comm_data[b].recv_size, 1, MPI_INT, ol->comm_data[b].recv_id, b,
509 ol->mpi_comm, &stat);
511 #endif
513 /* For non-divisible grid we need pme_order iso pme_order-1 */
514 ol->sendbuf.resize(norder * commplainsize);
515 ol->recvbuf.resize(norder * commplainsize);
518 int minimalPmeGridSize(int pmeOrder)
520 /* The actual grid size limitations are:
521 * serial: >= pme_order
522 * DD, no OpenMP: >= 2*(pme_order - 1)
523 * DD, OpenMP: >= pme_order + 1
524 * But we use the maximum for simplicity since in practice there is not
525 * much performance difference between pme_order and 2*(pme_order -1).
527 int minimalSize = 2*(pmeOrder - 1);
529 GMX_RELEASE_ASSERT(pmeOrder >= 3, "pmeOrder has to be >= 3");
530 GMX_RELEASE_ASSERT(minimalSize >= pmeOrder + 1, "The grid size should be >= pmeOrder + 1");
532 return minimalSize;
535 bool gmx_pme_check_restrictions(int pme_order,
536 int nkx, int nky, int nkz,
537 int nnodes_major,
538 bool useThreads,
539 bool errorsAreFatal)
541 if (pme_order > PME_ORDER_MAX)
543 if (!errorsAreFatal)
545 return false;
548 std::string message = gmx::formatString(
549 "pme_order (%d) is larger than the maximum allowed value (%d). Modify and recompile the code if you really need such a high order.",
550 pme_order, PME_ORDER_MAX);
551 GMX_THROW(InconsistentInputError(message));
554 const int minGridSize = minimalPmeGridSize(pme_order);
555 if (nkx < minGridSize ||
556 nky < minGridSize ||
557 nkz < minGridSize)
559 if (!errorsAreFatal)
561 return false;
563 std::string message = gmx::formatString(
564 "The PME grid sizes need to be >= 2*(pme_order-1) (%d)",
565 minGridSize);
566 GMX_THROW(InconsistentInputError(message));
569 /* Check for a limitation of the (current) sum_fftgrid_dd code.
570 * We only allow multiple communication pulses in dim 1, not in dim 0.
572 if (useThreads && (nkx < nnodes_major*pme_order &&
573 nkx != nnodes_major*(pme_order - 1)))
575 if (!errorsAreFatal)
577 return false;
579 gmx_fatal(FARGS, "The number of PME grid lines per rank along x is %g. But when using OpenMP threads, the number of grid lines per rank along x should be >= pme_order (%d) or = pmeorder-1. To resolve this issue, use fewer ranks along x (and possibly more along y and/or z) by specifying -dd manually.",
580 nkx/(double)nnodes_major, pme_order);
583 return true;
586 /*! \brief Round \p enumerator */
587 static int div_round_up(int enumerator, int denominator)
589 return (enumerator + denominator - 1)/denominator;
592 gmx_pme_t *gmx_pme_init(const t_commrec *cr,
593 int nnodes_major,
594 int nnodes_minor,
595 const t_inputrec *ir,
596 int homenr,
597 gmx_bool bFreeEnergy_q,
598 gmx_bool bFreeEnergy_lj,
599 gmx_bool bReproducible,
600 real ewaldcoeff_q,
601 real ewaldcoeff_lj,
602 int nthread,
603 PmeRunMode runMode,
604 PmeGpu *pmeGpu,
605 gmx_device_info_t *gpuInfo,
606 const gmx::MDLogger & /*mdlog*/)
608 int use_threads, sum_use_threads, i;
609 ivec ndata;
611 if (debug)
613 fprintf(debug, "Creating PME data structures.\n");
616 unique_cptr<gmx_pme_t, gmx_pme_destroy> pme(new gmx_pme_t());
618 pme->sum_qgrid_tmp = nullptr;
619 pme->sum_qgrid_dd_tmp = nullptr;
621 pme->buf_nalloc = 0;
623 pme->nnodes = 1;
624 pme->bPPnode = TRUE;
626 pme->nnodes_major = nnodes_major;
627 pme->nnodes_minor = nnodes_minor;
629 #if GMX_MPI
630 if (nnodes_major*nnodes_minor > 1)
632 pme->mpi_comm = cr->mpi_comm_mygroup;
634 MPI_Comm_rank(pme->mpi_comm, &pme->nodeid);
635 MPI_Comm_size(pme->mpi_comm, &pme->nnodes);
636 if (pme->nnodes != nnodes_major*nnodes_minor)
638 gmx_incons("PME rank count mismatch");
641 else
643 pme->mpi_comm = MPI_COMM_NULL;
645 #endif
647 if (pme->nnodes == 1)
649 #if GMX_MPI
650 pme->mpi_comm_d[0] = MPI_COMM_NULL;
651 pme->mpi_comm_d[1] = MPI_COMM_NULL;
652 #endif
653 pme->ndecompdim = 0;
654 pme->nodeid_major = 0;
655 pme->nodeid_minor = 0;
656 #if GMX_MPI
657 pme->mpi_comm_d[0] = pme->mpi_comm_d[1] = MPI_COMM_NULL;
658 #endif
660 else
662 if (nnodes_minor == 1)
664 #if GMX_MPI
665 pme->mpi_comm_d[0] = pme->mpi_comm;
666 pme->mpi_comm_d[1] = MPI_COMM_NULL;
667 #endif
668 pme->ndecompdim = 1;
669 pme->nodeid_major = pme->nodeid;
670 pme->nodeid_minor = 0;
673 else if (nnodes_major == 1)
675 #if GMX_MPI
676 pme->mpi_comm_d[0] = MPI_COMM_NULL;
677 pme->mpi_comm_d[1] = pme->mpi_comm;
678 #endif
679 pme->ndecompdim = 1;
680 pme->nodeid_major = 0;
681 pme->nodeid_minor = pme->nodeid;
683 else
685 if (pme->nnodes % nnodes_major != 0)
687 gmx_incons("For 2D PME decomposition, #PME ranks must be divisible by the number of ranks in the major dimension");
689 pme->ndecompdim = 2;
691 #if GMX_MPI
692 MPI_Comm_split(pme->mpi_comm, pme->nodeid % nnodes_minor,
693 pme->nodeid, &pme->mpi_comm_d[0]); /* My communicator along major dimension */
694 MPI_Comm_split(pme->mpi_comm, pme->nodeid/nnodes_minor,
695 pme->nodeid, &pme->mpi_comm_d[1]); /* My communicator along minor dimension */
697 MPI_Comm_rank(pme->mpi_comm_d[0], &pme->nodeid_major);
698 MPI_Comm_size(pme->mpi_comm_d[0], &pme->nnodes_major);
699 MPI_Comm_rank(pme->mpi_comm_d[1], &pme->nodeid_minor);
700 MPI_Comm_size(pme->mpi_comm_d[1], &pme->nnodes_minor);
701 #endif
703 pme->bPPnode = thisRankHasDuty(cr, DUTY_PP);
706 pme->nthread = nthread;
708 /* Check if any of the PME MPI ranks uses threads */
709 use_threads = (pme->nthread > 1 ? 1 : 0);
710 #if GMX_MPI
711 if (pme->nnodes > 1)
713 MPI_Allreduce(&use_threads, &sum_use_threads, 1, MPI_INT,
714 MPI_SUM, pme->mpi_comm);
716 else
717 #endif
719 sum_use_threads = use_threads;
721 pme->bUseThreads = (sum_use_threads > 0);
723 if (ir->ePBC == epbcSCREW)
725 gmx_fatal(FARGS, "pme does not (yet) work with pbc = screw");
728 /* NOTE:
729 * It is likely that the current gmx_pme_do() routine supports calculating
730 * only Coulomb or LJ while gmx_pme_init() configures for both,
731 * but that has never been tested.
732 * It is likely that the current gmx_pme_do() routine supports calculating,
733 * not calculating free-energy for Coulomb and/or LJ while gmx_pme_init()
734 * configures with free-energy, but that has never been tested.
736 pme->doCoulomb = EEL_PME(ir->coulombtype);
737 pme->doLJ = EVDW_PME(ir->vdwtype);
738 pme->bFEP_q = ((ir->efep != efepNO) && bFreeEnergy_q);
739 pme->bFEP_lj = ((ir->efep != efepNO) && bFreeEnergy_lj);
740 pme->bFEP = (pme->bFEP_q || pme->bFEP_lj);
741 pme->nkx = ir->nkx;
742 pme->nky = ir->nky;
743 pme->nkz = ir->nkz;
744 pme->bP3M = (ir->coulombtype == eelP3M_AD || getenv("GMX_PME_P3M") != nullptr);
745 pme->pme_order = ir->pme_order;
746 pme->ewaldcoeff_q = ewaldcoeff_q;
747 pme->ewaldcoeff_lj = ewaldcoeff_lj;
749 /* Always constant electrostatics coefficients */
750 pme->epsilon_r = ir->epsilon_r;
752 /* Always constant LJ coefficients */
753 pme->ljpme_combination_rule = ir->ljpme_combination_rule;
755 // The box requires scaling with nwalls = 2, we store that condition as well
756 // as the scaling factor
757 delete pme->boxScaler;
758 pme->boxScaler = new EwaldBoxZScaler(*ir);
760 /* If we violate restrictions, generate a fatal error here */
761 gmx_pme_check_restrictions(pme->pme_order,
762 pme->nkx, pme->nky, pme->nkz,
763 pme->nnodes_major,
764 pme->bUseThreads,
765 true);
767 if (pme->nnodes > 1)
769 double imbal;
771 #if GMX_MPI
772 MPI_Type_contiguous(DIM, GMX_MPI_REAL, &(pme->rvec_mpi));
773 MPI_Type_commit(&(pme->rvec_mpi));
774 #endif
776 /* Note that the coefficient spreading and force gathering, which usually
777 * takes about the same amount of time as FFT+solve_pme,
778 * is always fully load balanced
779 * (unless the coefficient distribution is inhomogeneous).
782 imbal = estimate_pme_load_imbalance(pme.get());
783 if (imbal >= 1.2 && pme->nodeid_major == 0 && pme->nodeid_minor == 0)
785 fprintf(stderr,
786 "\n"
787 "NOTE: The load imbalance in PME FFT and solve is %d%%.\n"
788 " For optimal PME load balancing\n"
789 " PME grid_x (%d) and grid_y (%d) should be divisible by #PME_ranks_x (%d)\n"
790 " and PME grid_y (%d) and grid_z (%d) should be divisible by #PME_ranks_y (%d)\n"
791 "\n",
792 (int)((imbal-1)*100 + 0.5),
793 pme->nkx, pme->nky, pme->nnodes_major,
794 pme->nky, pme->nkz, pme->nnodes_minor);
798 /* For non-divisible grid we need pme_order iso pme_order-1 */
799 /* In sum_qgrid_dd x overlap is copied in place: take padding into account.
800 * y is always copied through a buffer: we don't need padding in z,
801 * but we do need the overlap in x because of the communication order.
803 init_overlap_comm(&pme->overlap[0], pme->pme_order,
804 #if GMX_MPI
805 pme->mpi_comm_d[0],
806 #endif
807 pme->nnodes_major, pme->nodeid_major,
808 pme->nkx,
809 (div_round_up(pme->nky, pme->nnodes_minor)+pme->pme_order)*(pme->nkz+pme->pme_order-1));
811 /* Along overlap dim 1 we can send in multiple pulses in sum_fftgrid_dd.
812 * We do this with an offset buffer of equal size, so we need to allocate
813 * extra for the offset. That's what the (+1)*pme->nkz is for.
815 init_overlap_comm(&pme->overlap[1], pme->pme_order,
816 #if GMX_MPI
817 pme->mpi_comm_d[1],
818 #endif
819 pme->nnodes_minor, pme->nodeid_minor,
820 pme->nky,
821 (div_round_up(pme->nkx, pme->nnodes_major)+pme->pme_order+1)*pme->nkz);
823 /* Double-check for a limitation of the (current) sum_fftgrid_dd code.
824 * Note that gmx_pme_check_restrictions checked for this already.
826 if (pme->bUseThreads && (pme->overlap[0].comm_data.size() > 1))
828 gmx_incons("More than one communication pulse required for grid overlap communication along the major dimension while using threads");
831 snew(pme->bsp_mod[XX], pme->nkx);
832 snew(pme->bsp_mod[YY], pme->nky);
833 snew(pme->bsp_mod[ZZ], pme->nkz);
835 pme->gpu = pmeGpu; /* Carrying over the single GPU structure */
836 pme->runMode = runMode;
838 /* The required size of the interpolation grid, including overlap.
839 * The allocated size (pmegrid_n?) might be slightly larger.
841 pme->pmegrid_nx = pme->overlap[0].s2g1[pme->nodeid_major] -
842 pme->overlap[0].s2g0[pme->nodeid_major];
843 pme->pmegrid_ny = pme->overlap[1].s2g1[pme->nodeid_minor] -
844 pme->overlap[1].s2g0[pme->nodeid_minor];
845 pme->pmegrid_nz_base = pme->nkz;
846 pme->pmegrid_nz = pme->pmegrid_nz_base + pme->pme_order - 1;
847 set_grid_alignment(&pme->pmegrid_nz, pme->pme_order);
848 pme->pmegrid_start_ix = pme->overlap[0].s2g0[pme->nodeid_major];
849 pme->pmegrid_start_iy = pme->overlap[1].s2g0[pme->nodeid_minor];
850 pme->pmegrid_start_iz = 0;
852 make_gridindex_to_localindex(pme->nkx,
853 pme->pmegrid_start_ix,
854 pme->pmegrid_nx - (pme->pme_order-1),
855 &pme->nnx, &pme->fshx);
856 make_gridindex_to_localindex(pme->nky,
857 pme->pmegrid_start_iy,
858 pme->pmegrid_ny - (pme->pme_order-1),
859 &pme->nny, &pme->fshy);
860 make_gridindex_to_localindex(pme->nkz,
861 pme->pmegrid_start_iz,
862 pme->pmegrid_nz_base,
863 &pme->nnz, &pme->fshz);
865 pme->spline_work = make_pme_spline_work(pme->pme_order);
867 ndata[0] = pme->nkx;
868 ndata[1] = pme->nky;
869 ndata[2] = pme->nkz;
870 /* It doesn't matter if we allocate too many grids here,
871 * we only allocate and use the ones we need.
873 if (pme->doLJ)
875 pme->ngrids = ((ir->ljpme_combination_rule == eljpmeLB) ? DO_Q_AND_LJ_LB : DO_Q_AND_LJ);
877 else
879 pme->ngrids = DO_Q;
881 snew(pme->fftgrid, pme->ngrids);
882 snew(pme->cfftgrid, pme->ngrids);
883 snew(pme->pfft_setup, pme->ngrids);
885 for (i = 0; i < pme->ngrids; ++i)
887 if ((i < DO_Q && pme->doCoulomb && (i == 0 ||
888 bFreeEnergy_q)) ||
889 (i >= DO_Q && pme->doLJ && (i == 2 ||
890 bFreeEnergy_lj ||
891 ir->ljpme_combination_rule == eljpmeLB)))
893 pmegrids_init(&pme->pmegrid[i],
894 pme->pmegrid_nx, pme->pmegrid_ny, pme->pmegrid_nz,
895 pme->pmegrid_nz_base,
896 pme->pme_order,
897 pme->bUseThreads,
898 pme->nthread,
899 pme->overlap[0].s2g1[pme->nodeid_major]-pme->overlap[0].s2g0[pme->nodeid_major+1],
900 pme->overlap[1].s2g1[pme->nodeid_minor]-pme->overlap[1].s2g0[pme->nodeid_minor+1]);
901 /* This routine will allocate the grid data to fit the FFTs */
902 const auto allocateRealGridForGpu = (pme->runMode == PmeRunMode::Mixed) ? gmx::PinningPolicy::CanBePinned : gmx::PinningPolicy::CannotBePinned;
903 gmx_parallel_3dfft_init(&pme->pfft_setup[i], ndata,
904 &pme->fftgrid[i], &pme->cfftgrid[i],
905 pme->mpi_comm_d,
906 bReproducible, pme->nthread, allocateRealGridForGpu);
911 if (!pme->bP3M)
913 /* Use plain SPME B-spline interpolation */
914 make_bspline_moduli(pme->bsp_mod, pme->nkx, pme->nky, pme->nkz, pme->pme_order);
916 else
918 /* Use the P3M grid-optimized influence function */
919 make_p3m_bspline_moduli(pme->bsp_mod, pme->nkx, pme->nky, pme->nkz, pme->pme_order);
922 /* Use atc[0] for spreading */
923 init_atomcomm(pme.get(), &pme->atc[0], nnodes_major > 1 ? 0 : 1, TRUE);
924 if (pme->ndecompdim >= 2)
926 init_atomcomm(pme.get(), &pme->atc[1], 1, FALSE);
929 if (pme->nnodes == 1)
931 pme->atc[0].n = homenr;
932 pme_realloc_atomcomm_things(&pme->atc[0]);
935 pme->lb_buf1 = nullptr;
936 pme->lb_buf2 = nullptr;
937 pme->lb_buf_nalloc = 0;
939 if (pme_gpu_active(pme.get()))
941 if (!pme->gpu)
943 // Initial check of validity of the data
944 std::string errorString;
945 bool canRunOnGpu = pme_gpu_check_restrictions(pme.get(), &errorString);
946 if (!canRunOnGpu)
948 GMX_THROW(gmx::NotImplementedError(errorString));
952 pme_gpu_reinit(pme.get(), gpuInfo);
955 pme_init_all_work(&pme->solve_work, pme->nthread, pme->nkx);
957 // no exception was thrown during the init, so we hand over the PME structure handle
958 return pme.release();
961 void gmx_pme_reinit(struct gmx_pme_t **pmedata,
962 const t_commrec *cr,
963 struct gmx_pme_t * pme_src,
964 const t_inputrec * ir,
965 const ivec grid_size,
966 real ewaldcoeff_q,
967 real ewaldcoeff_lj)
969 int homenr;
971 // Create a copy of t_inputrec fields that are used in gmx_pme_init().
972 // TODO: This would be better as just copying a sub-structure that contains
973 // all the PME parameters and nothing else.
974 t_inputrec irc;
975 irc.ePBC = ir->ePBC;
976 irc.coulombtype = ir->coulombtype;
977 irc.vdwtype = ir->vdwtype;
978 irc.efep = ir->efep;
979 irc.pme_order = ir->pme_order;
980 irc.epsilon_r = ir->epsilon_r;
981 irc.ljpme_combination_rule = ir->ljpme_combination_rule;
982 irc.nkx = grid_size[XX];
983 irc.nky = grid_size[YY];
984 irc.nkz = grid_size[ZZ];
986 if (pme_src->nnodes == 1)
988 homenr = pme_src->atc[0].n;
990 else
992 homenr = -1;
997 const gmx::MDLogger dummyLogger;
998 // This is reinit which is currently only changing grid size/coefficients,
999 // so we don't expect the actual logging.
1000 // TODO: when PME is an object, it should take reference to mdlog on construction and save it.
1001 GMX_ASSERT(pmedata, "Invalid PME pointer");
1002 *pmedata = gmx_pme_init(cr, pme_src->nnodes_major, pme_src->nnodes_minor,
1003 &irc, homenr, pme_src->bFEP_q, pme_src->bFEP_lj, FALSE, ewaldcoeff_q, ewaldcoeff_lj,
1004 pme_src->nthread, pme_src->runMode, pme_src->gpu, nullptr, dummyLogger);
1005 //TODO this is mostly passing around current values
1007 GMX_CATCH_ALL_AND_EXIT_WITH_FATAL_ERROR;
1009 /* We can easily reuse the allocated pme grids in pme_src */
1010 reuse_pmegrids(&pme_src->pmegrid[PME_GRID_QA], &(*pmedata)->pmegrid[PME_GRID_QA]);
1011 /* We would like to reuse the fft grids, but that's harder */
1014 void gmx_pme_calc_energy(struct gmx_pme_t *pme, int n, rvec *x, real *q, real *V)
1016 pme_atomcomm_t *atc;
1017 pmegrids_t *grid;
1019 if (pme->nnodes > 1)
1021 gmx_incons("gmx_pme_calc_energy called in parallel");
1023 if (pme->bFEP_q > 1)
1025 gmx_incons("gmx_pme_calc_energy with free energy");
1028 atc = &pme->atc_energy;
1029 atc->nthread = 1;
1030 if (atc->spline == nullptr)
1032 snew(atc->spline, atc->nthread);
1034 atc->nslab = 1;
1035 atc->bSpread = TRUE;
1036 atc->pme_order = pme->pme_order;
1037 atc->n = n;
1038 pme_realloc_atomcomm_things(atc);
1039 atc->x = x;
1040 atc->coefficient = q;
1042 /* We only use the A-charges grid */
1043 grid = &pme->pmegrid[PME_GRID_QA];
1045 /* Only calculate the spline coefficients, don't actually spread */
1046 spread_on_grid(pme, atc, nullptr, TRUE, FALSE, pme->fftgrid[PME_GRID_QA], FALSE, PME_GRID_QA);
1048 *V = gather_energy_bsplines(pme, grid->grid.grid, atc);
1051 /*! \brief Calculate initial Lorentz-Berthelot coefficients for LJ-PME */
1052 static void
1053 calc_initial_lb_coeffs(struct gmx_pme_t *pme, real *local_c6, real *local_sigma)
1055 int i;
1056 for (i = 0; i < pme->atc[0].n; ++i)
1058 real sigma4;
1059 sigma4 = local_sigma[i];
1060 sigma4 = sigma4*sigma4;
1061 sigma4 = sigma4*sigma4;
1062 pme->atc[0].coefficient[i] = local_c6[i] / sigma4;
1066 /*! \brief Calculate next Lorentz-Berthelot coefficients for LJ-PME */
1067 static void
1068 calc_next_lb_coeffs(struct gmx_pme_t *pme, real *local_sigma)
1070 int i;
1072 for (i = 0; i < pme->atc[0].n; ++i)
1074 pme->atc[0].coefficient[i] *= local_sigma[i];
1078 int gmx_pme_do(struct gmx_pme_t *pme,
1079 int start, int homenr,
1080 rvec x[], rvec f[],
1081 real chargeA[], real chargeB[],
1082 real c6A[], real c6B[],
1083 real sigmaA[], real sigmaB[],
1084 matrix box, const t_commrec *cr,
1085 int maxshift_x, int maxshift_y,
1086 t_nrnb *nrnb, gmx_wallcycle *wcycle,
1087 matrix vir_q, matrix vir_lj,
1088 real *energy_q, real *energy_lj,
1089 real lambda_q, real lambda_lj,
1090 real *dvdlambda_q, real *dvdlambda_lj,
1091 int flags)
1093 GMX_ASSERT(pme->runMode == PmeRunMode::CPU, "gmx_pme_do should not be called on the GPU PME run.");
1095 int d, i, j, npme, grid_index, max_grid_index;
1096 int n_d;
1097 pme_atomcomm_t *atc = nullptr;
1098 pmegrids_t *pmegrid = nullptr;
1099 real *grid = nullptr;
1100 rvec *f_d;
1101 real *coefficient = nullptr;
1102 real energy_AB[4];
1103 matrix vir_AB[4];
1104 real scale, lambda;
1105 gmx_bool bClearF;
1106 gmx_parallel_3dfft_t pfft_setup;
1107 real * fftgrid;
1108 t_complex * cfftgrid;
1109 int thread;
1110 gmx_bool bFirst, bDoSplines;
1111 int fep_state;
1112 int fep_states_lj = pme->bFEP_lj ? 2 : 1;
1113 const gmx_bool bCalcEnerVir = flags & GMX_PME_CALC_ENER_VIR;
1114 const gmx_bool bBackFFT = flags & (GMX_PME_CALC_F | GMX_PME_CALC_POT);
1115 const gmx_bool bCalcF = flags & GMX_PME_CALC_F;
1117 assert(pme->nnodes > 0);
1118 assert(pme->nnodes == 1 || pme->ndecompdim > 0);
1120 if (pme->nnodes > 1)
1122 atc = &pme->atc[0];
1123 atc->npd = homenr;
1124 if (atc->npd > atc->pd_nalloc)
1126 atc->pd_nalloc = over_alloc_dd(atc->npd);
1127 srenew(atc->pd, atc->pd_nalloc);
1129 for (d = pme->ndecompdim-1; d >= 0; d--)
1131 atc = &pme->atc[d];
1132 atc->maxshift = (atc->dimind == 0 ? maxshift_x : maxshift_y);
1135 else
1137 atc = &pme->atc[0];
1138 /* This could be necessary for TPI */
1139 pme->atc[0].n = homenr;
1140 if (DOMAINDECOMP(cr))
1142 pme_realloc_atomcomm_things(atc);
1144 atc->x = x;
1145 atc->f = f;
1148 matrix scaledBox;
1149 pme->boxScaler->scaleBox(box, scaledBox);
1151 gmx::invertBoxMatrix(scaledBox, pme->recipbox);
1152 bFirst = TRUE;
1154 /* For simplicity, we construct the splines for all particles if
1155 * more than one PME calculations is needed. Some optimization
1156 * could be done by keeping track of which atoms have splines
1157 * constructed, and construct new splines on each pass for atoms
1158 * that don't yet have them.
1161 bDoSplines = pme->bFEP || (pme->doCoulomb && pme->doLJ);
1163 /* We need a maximum of four separate PME calculations:
1164 * grid_index=0: Coulomb PME with charges from state A
1165 * grid_index=1: Coulomb PME with charges from state B
1166 * grid_index=2: LJ PME with C6 from state A
1167 * grid_index=3: LJ PME with C6 from state B
1168 * For Lorentz-Berthelot combination rules, a separate loop is used to
1169 * calculate all the terms
1172 /* If we are doing LJ-PME with LB, we only do Q here */
1173 max_grid_index = (pme->ljpme_combination_rule == eljpmeLB) ? DO_Q : DO_Q_AND_LJ;
1175 for (grid_index = 0; grid_index < max_grid_index; ++grid_index)
1177 /* Check if we should do calculations at this grid_index
1178 * If grid_index is odd we should be doing FEP
1179 * If grid_index < 2 we should be doing electrostatic PME
1180 * If grid_index >= 2 we should be doing LJ-PME
1182 if ((grid_index < DO_Q && (!pme->doCoulomb ||
1183 (grid_index == 1 && !pme->bFEP_q))) ||
1184 (grid_index >= DO_Q && (!pme->doLJ ||
1185 (grid_index == 3 && !pme->bFEP_lj))))
1187 continue;
1189 /* Unpack structure */
1190 pmegrid = &pme->pmegrid[grid_index];
1191 fftgrid = pme->fftgrid[grid_index];
1192 cfftgrid = pme->cfftgrid[grid_index];
1193 pfft_setup = pme->pfft_setup[grid_index];
1194 switch (grid_index)
1196 case 0: coefficient = chargeA + start; break;
1197 case 1: coefficient = chargeB + start; break;
1198 case 2: coefficient = c6A + start; break;
1199 case 3: coefficient = c6B + start; break;
1202 grid = pmegrid->grid.grid;
1204 if (debug)
1206 fprintf(debug, "PME: number of ranks = %d, rank = %d\n",
1207 cr->nnodes, cr->nodeid);
1208 fprintf(debug, "Grid = %p\n", (void*)grid);
1209 if (grid == nullptr)
1211 gmx_fatal(FARGS, "No grid!");
1215 if (pme->nnodes == 1)
1217 atc->coefficient = coefficient;
1219 else
1221 wallcycle_start(wcycle, ewcPME_REDISTXF);
1222 do_redist_pos_coeffs(pme, cr, start, homenr, bFirst, x, coefficient);
1224 wallcycle_stop(wcycle, ewcPME_REDISTXF);
1227 if (debug)
1229 fprintf(debug, "Rank= %6d, pme local particles=%6d\n",
1230 cr->nodeid, atc->n);
1233 if (flags & GMX_PME_SPREAD)
1235 wallcycle_start(wcycle, ewcPME_SPREAD);
1237 /* Spread the coefficients on a grid */
1238 spread_on_grid(pme, &pme->atc[0], pmegrid, bFirst, TRUE, fftgrid, bDoSplines, grid_index);
1240 if (bFirst)
1242 inc_nrnb(nrnb, eNR_WEIGHTS, DIM*atc->n);
1244 inc_nrnb(nrnb, eNR_SPREADBSP,
1245 pme->pme_order*pme->pme_order*pme->pme_order*atc->n);
1247 if (!pme->bUseThreads)
1249 wrap_periodic_pmegrid(pme, grid);
1251 /* sum contributions to local grid from other nodes */
1252 #if GMX_MPI
1253 if (pme->nnodes > 1)
1255 gmx_sum_qgrid_dd(pme, grid, GMX_SUM_GRID_FORWARD);
1257 #endif
1259 copy_pmegrid_to_fftgrid(pme, grid, fftgrid, grid_index);
1262 wallcycle_stop(wcycle, ewcPME_SPREAD);
1264 /* TODO If the OpenMP and single-threaded implementations
1265 converge, then spread_on_grid() and
1266 copy_pmegrid_to_fftgrid() will perhaps live in the same
1267 source file.
1271 /* Here we start a large thread parallel region */
1272 #pragma omp parallel num_threads(pme->nthread) private(thread)
1276 thread = gmx_omp_get_thread_num();
1277 if (flags & GMX_PME_SOLVE)
1279 int loop_count;
1281 /* do 3d-fft */
1282 if (thread == 0)
1284 wallcycle_start(wcycle, ewcPME_FFT);
1286 gmx_parallel_3dfft_execute(pfft_setup, GMX_FFT_REAL_TO_COMPLEX,
1287 thread, wcycle);
1288 if (thread == 0)
1290 wallcycle_stop(wcycle, ewcPME_FFT);
1293 /* solve in k-space for our local cells */
1294 if (thread == 0)
1296 wallcycle_start(wcycle, (grid_index < DO_Q ? ewcPME_SOLVE : ewcLJPME));
1298 if (grid_index < DO_Q)
1300 loop_count =
1301 solve_pme_yzx(pme, cfftgrid,
1302 scaledBox[XX][XX]*scaledBox[YY][YY]*scaledBox[ZZ][ZZ],
1303 bCalcEnerVir,
1304 pme->nthread, thread);
1306 else
1308 loop_count =
1309 solve_pme_lj_yzx(pme, &cfftgrid, FALSE,
1310 scaledBox[XX][XX]*scaledBox[YY][YY]*scaledBox[ZZ][ZZ],
1311 bCalcEnerVir,
1312 pme->nthread, thread);
1315 if (thread == 0)
1317 wallcycle_stop(wcycle, (grid_index < DO_Q ? ewcPME_SOLVE : ewcLJPME));
1318 inc_nrnb(nrnb, eNR_SOLVEPME, loop_count);
1322 if (bBackFFT)
1324 /* do 3d-invfft */
1325 if (thread == 0)
1327 wallcycle_start(wcycle, ewcPME_FFT);
1329 gmx_parallel_3dfft_execute(pfft_setup, GMX_FFT_COMPLEX_TO_REAL,
1330 thread, wcycle);
1331 if (thread == 0)
1333 wallcycle_stop(wcycle, ewcPME_FFT);
1336 if (pme->nodeid == 0)
1338 real ntot = pme->nkx*pme->nky*pme->nkz;
1339 npme = static_cast<int>(ntot*std::log(ntot)/std::log(2.0));
1340 inc_nrnb(nrnb, eNR_FFT, 2*npme);
1343 /* Note: this wallcycle region is closed below
1344 outside an OpenMP region, so take care if
1345 refactoring code here. */
1346 wallcycle_start(wcycle, ewcPME_GATHER);
1349 copy_fftgrid_to_pmegrid(pme, fftgrid, grid, grid_index, pme->nthread, thread);
1351 } GMX_CATCH_ALL_AND_EXIT_WITH_FATAL_ERROR;
1353 /* End of thread parallel section.
1354 * With MPI we have to synchronize here before gmx_sum_qgrid_dd.
1357 if (bBackFFT)
1359 /* distribute local grid to all nodes */
1360 #if GMX_MPI
1361 if (pme->nnodes > 1)
1363 gmx_sum_qgrid_dd(pme, grid, GMX_SUM_GRID_BACKWARD);
1365 #endif
1367 unwrap_periodic_pmegrid(pme, grid);
1370 if (bCalcF)
1372 /* interpolate forces for our local atoms */
1375 /* If we are running without parallelization,
1376 * atc->f is the actual force array, not a buffer,
1377 * therefore we should not clear it.
1379 lambda = grid_index < DO_Q ? lambda_q : lambda_lj;
1380 bClearF = (bFirst && PAR(cr));
1381 #pragma omp parallel for num_threads(pme->nthread) schedule(static)
1382 for (thread = 0; thread < pme->nthread; thread++)
1386 gather_f_bsplines(pme, grid, bClearF, atc,
1387 &atc->spline[thread],
1388 pme->bFEP ? (grid_index % 2 == 0 ? 1.0-lambda : lambda) : 1.0);
1390 GMX_CATCH_ALL_AND_EXIT_WITH_FATAL_ERROR;
1394 inc_nrnb(nrnb, eNR_GATHERFBSP,
1395 pme->pme_order*pme->pme_order*pme->pme_order*pme->atc[0].n);
1396 /* Note: this wallcycle region is opened above inside an OpenMP
1397 region, so take care if refactoring code here. */
1398 wallcycle_stop(wcycle, ewcPME_GATHER);
1401 if (bCalcEnerVir)
1403 /* This should only be called on the master thread
1404 * and after the threads have synchronized.
1406 if (grid_index < 2)
1408 get_pme_ener_vir_q(pme->solve_work, pme->nthread, &energy_AB[grid_index], vir_AB[grid_index]);
1410 else
1412 get_pme_ener_vir_lj(pme->solve_work, pme->nthread, &energy_AB[grid_index], vir_AB[grid_index]);
1415 bFirst = FALSE;
1416 } /* of grid_index-loop */
1418 /* For Lorentz-Berthelot combination rules in LJ-PME, we need to calculate
1419 * seven terms. */
1421 if (pme->doLJ && pme->ljpme_combination_rule == eljpmeLB)
1423 /* Loop over A- and B-state if we are doing FEP */
1424 for (fep_state = 0; fep_state < fep_states_lj; ++fep_state)
1426 real *local_c6 = nullptr, *local_sigma = nullptr, *RedistC6 = nullptr, *RedistSigma = nullptr;
1427 if (pme->nnodes == 1)
1429 if (pme->lb_buf1 == nullptr)
1431 pme->lb_buf_nalloc = pme->atc[0].n;
1432 snew(pme->lb_buf1, pme->lb_buf_nalloc);
1434 pme->atc[0].coefficient = pme->lb_buf1;
1435 switch (fep_state)
1437 case 0:
1438 local_c6 = c6A;
1439 local_sigma = sigmaA;
1440 break;
1441 case 1:
1442 local_c6 = c6B;
1443 local_sigma = sigmaB;
1444 break;
1445 default:
1446 gmx_incons("Trying to access wrong FEP-state in LJ-PME routine");
1449 else
1451 atc = &pme->atc[0];
1452 switch (fep_state)
1454 case 0:
1455 RedistC6 = c6A;
1456 RedistSigma = sigmaA;
1457 break;
1458 case 1:
1459 RedistC6 = c6B;
1460 RedistSigma = sigmaB;
1461 break;
1462 default:
1463 gmx_incons("Trying to access wrong FEP-state in LJ-PME routine");
1465 wallcycle_start(wcycle, ewcPME_REDISTXF);
1467 do_redist_pos_coeffs(pme, cr, start, homenr, bFirst, x, RedistC6);
1468 if (pme->lb_buf_nalloc < atc->n)
1470 pme->lb_buf_nalloc = atc->nalloc;
1471 srenew(pme->lb_buf1, pme->lb_buf_nalloc);
1472 srenew(pme->lb_buf2, pme->lb_buf_nalloc);
1474 local_c6 = pme->lb_buf1;
1475 for (i = 0; i < atc->n; ++i)
1477 local_c6[i] = atc->coefficient[i];
1480 do_redist_pos_coeffs(pme, cr, start, homenr, FALSE, x, RedistSigma);
1481 local_sigma = pme->lb_buf2;
1482 for (i = 0; i < atc->n; ++i)
1484 local_sigma[i] = atc->coefficient[i];
1487 wallcycle_stop(wcycle, ewcPME_REDISTXF);
1489 calc_initial_lb_coeffs(pme, local_c6, local_sigma);
1491 /*Seven terms in LJ-PME with LB, grid_index < 2 reserved for electrostatics*/
1492 for (grid_index = 2; grid_index < 9; ++grid_index)
1494 /* Unpack structure */
1495 pmegrid = &pme->pmegrid[grid_index];
1496 fftgrid = pme->fftgrid[grid_index];
1497 pfft_setup = pme->pfft_setup[grid_index];
1498 calc_next_lb_coeffs(pme, local_sigma);
1499 grid = pmegrid->grid.grid;
1501 if (flags & GMX_PME_SPREAD)
1503 wallcycle_start(wcycle, ewcPME_SPREAD);
1504 /* Spread the c6 on a grid */
1505 spread_on_grid(pme, &pme->atc[0], pmegrid, bFirst, TRUE, fftgrid, bDoSplines, grid_index);
1507 if (bFirst)
1509 inc_nrnb(nrnb, eNR_WEIGHTS, DIM*atc->n);
1512 inc_nrnb(nrnb, eNR_SPREADBSP,
1513 pme->pme_order*pme->pme_order*pme->pme_order*atc->n);
1514 if (pme->nthread == 1)
1516 wrap_periodic_pmegrid(pme, grid);
1517 /* sum contributions to local grid from other nodes */
1518 #if GMX_MPI
1519 if (pme->nnodes > 1)
1521 gmx_sum_qgrid_dd(pme, grid, GMX_SUM_GRID_FORWARD);
1523 #endif
1524 copy_pmegrid_to_fftgrid(pme, grid, fftgrid, grid_index);
1526 wallcycle_stop(wcycle, ewcPME_SPREAD);
1528 /*Here we start a large thread parallel region*/
1529 #pragma omp parallel num_threads(pme->nthread) private(thread)
1533 thread = gmx_omp_get_thread_num();
1534 if (flags & GMX_PME_SOLVE)
1536 /* do 3d-fft */
1537 if (thread == 0)
1539 wallcycle_start(wcycle, ewcPME_FFT);
1542 gmx_parallel_3dfft_execute(pfft_setup, GMX_FFT_REAL_TO_COMPLEX,
1543 thread, wcycle);
1544 if (thread == 0)
1546 wallcycle_stop(wcycle, ewcPME_FFT);
1550 GMX_CATCH_ALL_AND_EXIT_WITH_FATAL_ERROR;
1552 bFirst = FALSE;
1554 if (flags & GMX_PME_SOLVE)
1556 /* solve in k-space for our local cells */
1557 #pragma omp parallel num_threads(pme->nthread) private(thread)
1561 int loop_count;
1562 thread = gmx_omp_get_thread_num();
1563 if (thread == 0)
1565 wallcycle_start(wcycle, ewcLJPME);
1568 loop_count =
1569 solve_pme_lj_yzx(pme, &pme->cfftgrid[2], TRUE,
1570 scaledBox[XX][XX]*scaledBox[YY][YY]*scaledBox[ZZ][ZZ],
1571 bCalcEnerVir,
1572 pme->nthread, thread);
1573 if (thread == 0)
1575 wallcycle_stop(wcycle, ewcLJPME);
1576 inc_nrnb(nrnb, eNR_SOLVEPME, loop_count);
1579 GMX_CATCH_ALL_AND_EXIT_WITH_FATAL_ERROR;
1583 if (bCalcEnerVir)
1585 /* This should only be called on the master thread and
1586 * after the threads have synchronized.
1588 get_pme_ener_vir_lj(pme->solve_work, pme->nthread, &energy_AB[2+fep_state], vir_AB[2+fep_state]);
1591 if (bBackFFT)
1593 bFirst = !pme->doCoulomb;
1594 calc_initial_lb_coeffs(pme, local_c6, local_sigma);
1595 for (grid_index = 8; grid_index >= 2; --grid_index)
1597 /* Unpack structure */
1598 pmegrid = &pme->pmegrid[grid_index];
1599 fftgrid = pme->fftgrid[grid_index];
1600 pfft_setup = pme->pfft_setup[grid_index];
1601 grid = pmegrid->grid.grid;
1602 calc_next_lb_coeffs(pme, local_sigma);
1603 #pragma omp parallel num_threads(pme->nthread) private(thread)
1607 thread = gmx_omp_get_thread_num();
1608 /* do 3d-invfft */
1609 if (thread == 0)
1611 wallcycle_start(wcycle, ewcPME_FFT);
1614 gmx_parallel_3dfft_execute(pfft_setup, GMX_FFT_COMPLEX_TO_REAL,
1615 thread, wcycle);
1616 if (thread == 0)
1618 wallcycle_stop(wcycle, ewcPME_FFT);
1621 if (pme->nodeid == 0)
1623 real ntot = pme->nkx*pme->nky*pme->nkz;
1624 npme = static_cast<int>(ntot*std::log(ntot)/std::log(2.0));
1625 inc_nrnb(nrnb, eNR_FFT, 2*npme);
1627 wallcycle_start(wcycle, ewcPME_GATHER);
1630 copy_fftgrid_to_pmegrid(pme, fftgrid, grid, grid_index, pme->nthread, thread);
1632 GMX_CATCH_ALL_AND_EXIT_WITH_FATAL_ERROR;
1633 } /*#pragma omp parallel*/
1635 /* distribute local grid to all nodes */
1636 #if GMX_MPI
1637 if (pme->nnodes > 1)
1639 gmx_sum_qgrid_dd(pme, grid, GMX_SUM_GRID_BACKWARD);
1641 #endif
1643 unwrap_periodic_pmegrid(pme, grid);
1645 if (bCalcF)
1647 /* interpolate forces for our local atoms */
1648 bClearF = (bFirst && PAR(cr));
1649 scale = pme->bFEP ? (fep_state < 1 ? 1.0-lambda_lj : lambda_lj) : 1.0;
1650 scale *= lb_scale_factor[grid_index-2];
1652 #pragma omp parallel for num_threads(pme->nthread) schedule(static)
1653 for (thread = 0; thread < pme->nthread; thread++)
1657 gather_f_bsplines(pme, grid, bClearF, &pme->atc[0],
1658 &pme->atc[0].spline[thread],
1659 scale);
1661 GMX_CATCH_ALL_AND_EXIT_WITH_FATAL_ERROR;
1665 inc_nrnb(nrnb, eNR_GATHERFBSP,
1666 pme->pme_order*pme->pme_order*pme->pme_order*pme->atc[0].n);
1668 wallcycle_stop(wcycle, ewcPME_GATHER);
1670 bFirst = FALSE;
1671 } /* for (grid_index = 8; grid_index >= 2; --grid_index) */
1672 } /* if (bCalcF) */
1673 } /* for (fep_state = 0; fep_state < fep_states_lj; ++fep_state) */
1674 } /* if ((flags & GMX_PME_DO_LJ) && pme->ljpme_combination_rule == eljpmeLB) */
1676 if (bCalcF && pme->nnodes > 1)
1678 wallcycle_start(wcycle, ewcPME_REDISTXF);
1679 for (d = 0; d < pme->ndecompdim; d++)
1681 atc = &pme->atc[d];
1682 if (d == pme->ndecompdim - 1)
1684 n_d = homenr;
1685 f_d = f + start;
1687 else
1689 n_d = pme->atc[d+1].n;
1690 f_d = pme->atc[d+1].f;
1692 if (DOMAINDECOMP(cr))
1694 dd_pmeredist_f(pme, atc, n_d, f_d,
1695 d == pme->ndecompdim-1 && pme->bPPnode);
1699 wallcycle_stop(wcycle, ewcPME_REDISTXF);
1702 if (bCalcEnerVir)
1704 if (pme->doCoulomb)
1706 if (!pme->bFEP_q)
1708 *energy_q = energy_AB[0];
1709 m_add(vir_q, vir_AB[0], vir_q);
1711 else
1713 *energy_q = (1.0-lambda_q)*energy_AB[0] + lambda_q*energy_AB[1];
1714 *dvdlambda_q += energy_AB[1] - energy_AB[0];
1715 for (i = 0; i < DIM; i++)
1717 for (j = 0; j < DIM; j++)
1719 vir_q[i][j] += (1.0-lambda_q)*vir_AB[0][i][j] +
1720 lambda_q*vir_AB[1][i][j];
1724 if (debug)
1726 fprintf(debug, "Electrostatic PME mesh energy: %g\n", *energy_q);
1729 else
1731 *energy_q = 0;
1734 if (pme->doLJ)
1736 if (!pme->bFEP_lj)
1738 *energy_lj = energy_AB[2];
1739 m_add(vir_lj, vir_AB[2], vir_lj);
1741 else
1743 *energy_lj = (1.0-lambda_lj)*energy_AB[2] + lambda_lj*energy_AB[3];
1744 *dvdlambda_lj += energy_AB[3] - energy_AB[2];
1745 for (i = 0; i < DIM; i++)
1747 for (j = 0; j < DIM; j++)
1749 vir_lj[i][j] += (1.0-lambda_lj)*vir_AB[2][i][j] + lambda_lj*vir_AB[3][i][j];
1753 if (debug)
1755 fprintf(debug, "Lennard-Jones PME mesh energy: %g\n", *energy_lj);
1758 else
1760 *energy_lj = 0;
1763 return 0;
1766 void gmx_pme_destroy(gmx_pme_t *pme)
1768 if (!pme)
1770 return;
1773 delete pme->boxScaler;
1775 sfree(pme->nnx);
1776 sfree(pme->nny);
1777 sfree(pme->nnz);
1778 sfree(pme->fshx);
1779 sfree(pme->fshy);
1780 sfree(pme->fshz);
1782 for (int i = 0; i < pme->ngrids; ++i)
1784 pmegrids_destroy(&pme->pmegrid[i]);
1786 if (pme->pfft_setup)
1788 for (int i = 0; i < pme->ngrids; ++i)
1790 gmx_parallel_3dfft_destroy(pme->pfft_setup[i]);
1793 sfree(pme->fftgrid);
1794 sfree(pme->cfftgrid);
1795 sfree(pme->pfft_setup);
1797 for (int i = 0; i < std::max(1, pme->ndecompdim); i++) //pme->atc[0] is always allocated
1799 destroy_atomcomm(&pme->atc[i]);
1802 for (int i = 0; i < DIM; i++)
1804 sfree(pme->bsp_mod[i]);
1807 sfree(pme->lb_buf1);
1808 sfree(pme->lb_buf2);
1810 sfree(pme->bufv);
1811 sfree(pme->bufr);
1813 if (pme->solve_work)
1815 pme_free_all_work(&pme->solve_work, pme->nthread);
1818 sfree(pme->sum_qgrid_tmp);
1819 sfree(pme->sum_qgrid_dd_tmp);
1821 destroy_pme_spline_work(pme->spline_work);
1823 if (pme_gpu_active(pme) && pme->gpu)
1825 pme_gpu_destroy(pme->gpu);
1828 delete pme;
1831 void gmx_pme_reinit_atoms(const gmx_pme_t *pme, const int nAtoms, const real *charges)
1833 if (pme_gpu_active(pme))
1835 pme_gpu_reinit_atoms(pme->gpu, nAtoms, charges);
1837 // TODO: handle the CPU case here; handle the whole t_mdatoms