Fix pairlist bug
[gromacs.git] / src / gromacs / nbnxm / pairlist.cpp
blob43ed81cd32137f1c8d9c3fa6ab33d6a6cb216c49
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 2012,2013,2014,2015,2016,2017,2018,2019, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
36 #include "gmxpre.h"
38 #include "pairlist.h"
40 #include "config.h"
42 #include <cassert>
43 #include <cmath>
44 #include <cstring>
46 #include <algorithm>
48 #include "gromacs/domdec/domdec_struct.h"
49 #include "gromacs/gmxlib/nrnb.h"
50 #include "gromacs/math/functions.h"
51 #include "gromacs/math/utilities.h"
52 #include "gromacs/math/vec.h"
53 #include "gromacs/mdlib/gmx_omp_nthreads.h"
54 #include "gromacs/mdtypes/group.h"
55 #include "gromacs/mdtypes/md_enums.h"
56 #include "gromacs/nbnxm/atomdata.h"
57 #include "gromacs/nbnxm/gpu_data_mgmt.h"
58 #include "gromacs/nbnxm/nbnxm_geometry.h"
59 #include "gromacs/nbnxm/nbnxm_simd.h"
60 #include "gromacs/pbcutil/ishift.h"
61 #include "gromacs/pbcutil/pbc.h"
62 #include "gromacs/simd/simd.h"
63 #include "gromacs/simd/vector_operations.h"
64 #include "gromacs/topology/block.h"
65 #include "gromacs/utility/exceptions.h"
66 #include "gromacs/utility/fatalerror.h"
67 #include "gromacs/utility/gmxomp.h"
68 #include "gromacs/utility/smalloc.h"
70 #include "boundingboxes.h"
71 #include "clusterdistancekerneltype.h"
72 #include "gridset.h"
73 #include "pairlistset.h"
74 #include "pairlistsets.h"
75 #include "pairlistwork.h"
76 #include "pairsearch.h"
78 using namespace gmx; // TODO: Remove when this file is moved into gmx namespace
80 using BoundingBox = Nbnxm::BoundingBox; // TODO: Remove when refactoring this file
81 using BoundingBox1D = Nbnxm::BoundingBox1D; // TODO: Remove when refactoring this file
83 using Grid = Nbnxm::Grid; // TODO: Remove when refactoring this file
85 // Convience alias for partial Nbnxn namespace usage
86 using InteractionLocality = Nbnxm::InteractionLocality;
88 /* We shift the i-particles backward for PBC.
89 * This leads to more conditionals than shifting forward.
90 * We do this to get more balanced pair lists.
92 constexpr bool c_pbcShiftBackward = true;
94 /* Layout for the nonbonded NxN pair lists */
95 enum class NbnxnLayout
97 NoSimd4x4, // i-cluster size 4, j-cluster size 4
98 Simd4xN, // i-cluster size 4, j-cluster size SIMD width
99 Simd2xNN, // i-cluster size 4, j-cluster size half SIMD width
100 Gpu8x8x8 // i-cluster size 8, j-cluster size 8 + super-clustering
103 #if GMX_SIMD
104 /* Returns the j-cluster size */
105 template <NbnxnLayout layout>
106 static constexpr int jClusterSize()
108 static_assert(layout == NbnxnLayout::NoSimd4x4 || layout == NbnxnLayout::Simd4xN || layout == NbnxnLayout::Simd2xNN, "Currently jClusterSize only supports CPU layouts");
110 return layout == NbnxnLayout::Simd4xN ? GMX_SIMD_REAL_WIDTH : (layout == NbnxnLayout::Simd2xNN ? GMX_SIMD_REAL_WIDTH/2 : c_nbnxnCpuIClusterSize);
113 /*! \brief Returns the j-cluster index given the i-cluster index.
115 * \tparam jClusterSize The number of atoms in a j-cluster
116 * \tparam jSubClusterIndex The j-sub-cluster index (0/1), used when size(j-cluster) < size(i-cluster)
117 * \param[in] ci The i-cluster index
119 template <int jClusterSize, int jSubClusterIndex>
120 static inline int cjFromCi(int ci)
122 static_assert(jClusterSize == c_nbnxnCpuIClusterSize/2 || jClusterSize == c_nbnxnCpuIClusterSize || jClusterSize == c_nbnxnCpuIClusterSize*2, "Only j-cluster sizes 2, 4 and 8 are currently implemented");
124 static_assert(jSubClusterIndex == 0 || jSubClusterIndex == 1,
125 "Only sub-cluster indices 0 and 1 are supported");
127 if (jClusterSize == c_nbnxnCpuIClusterSize/2)
129 if (jSubClusterIndex == 0)
131 return ci << 1;
133 else
135 return ((ci + 1) << 1) - 1;
138 else if (jClusterSize == c_nbnxnCpuIClusterSize)
140 return ci;
142 else
144 return ci >> 1;
148 /*! \brief Returns the j-cluster index given the i-cluster index.
150 * \tparam layout The pair-list layout
151 * \tparam jSubClusterIndex The j-sub-cluster index (0/1), used when size(j-cluster) < size(i-cluster)
152 * \param[in] ci The i-cluster index
154 template <NbnxnLayout layout, int jSubClusterIndex>
155 static inline int cjFromCi(int ci)
157 constexpr int clusterSize = jClusterSize<layout>();
159 return cjFromCi<clusterSize, jSubClusterIndex>(ci);
162 /* Returns the nbnxn coordinate data index given the i-cluster index */
163 template <NbnxnLayout layout>
164 static inline int xIndexFromCi(int ci)
166 constexpr int clusterSize = jClusterSize<layout>();
168 static_assert(clusterSize == c_nbnxnCpuIClusterSize/2 || clusterSize == c_nbnxnCpuIClusterSize || clusterSize == c_nbnxnCpuIClusterSize*2, "Only j-cluster sizes 2, 4 and 8 are currently implemented");
170 if (clusterSize <= c_nbnxnCpuIClusterSize)
172 /* Coordinates are stored packed in groups of 4 */
173 return ci*STRIDE_P4;
175 else
177 /* Coordinates packed in 8, i-cluster size is half the packing width */
178 return (ci >> 1)*STRIDE_P8 + (ci & 1)*(c_packX8 >> 1);
182 /* Returns the nbnxn coordinate data index given the j-cluster index */
183 template <NbnxnLayout layout>
184 static inline int xIndexFromCj(int cj)
186 constexpr int clusterSize = jClusterSize<layout>();
188 static_assert(clusterSize == c_nbnxnCpuIClusterSize/2 || clusterSize == c_nbnxnCpuIClusterSize || clusterSize == c_nbnxnCpuIClusterSize*2, "Only j-cluster sizes 2, 4 and 8 are currently implemented");
190 if (clusterSize == c_nbnxnCpuIClusterSize/2)
192 /* Coordinates are stored packed in groups of 4 */
193 return (cj >> 1)*STRIDE_P4 + (cj & 1)*(c_packX4 >> 1);
195 else if (clusterSize == c_nbnxnCpuIClusterSize)
197 /* Coordinates are stored packed in groups of 4 */
198 return cj*STRIDE_P4;
200 else
202 /* Coordinates are stored packed in groups of 8 */
203 return cj*STRIDE_P8;
206 #endif //GMX_SIMD
209 void nbnxn_init_pairlist_fep(t_nblist *nl)
211 nl->type = GMX_NBLIST_INTERACTION_FREE_ENERGY;
212 nl->igeometry = GMX_NBLIST_GEOMETRY_PARTICLE_PARTICLE;
213 /* The interaction functions are set in the free energy kernel fuction */
214 nl->ivdw = -1;
215 nl->ivdwmod = -1;
216 nl->ielec = -1;
217 nl->ielecmod = -1;
219 nl->maxnri = 0;
220 nl->maxnrj = 0;
221 nl->nri = 0;
222 nl->nrj = 0;
223 nl->iinr = nullptr;
224 nl->gid = nullptr;
225 nl->shift = nullptr;
226 nl->jindex = nullptr;
227 nl->jjnr = nullptr;
228 nl->excl_fep = nullptr;
232 static void init_buffer_flags(nbnxn_buffer_flags_t *flags,
233 int natoms)
235 flags->nflag = (natoms + NBNXN_BUFFERFLAG_SIZE - 1)/NBNXN_BUFFERFLAG_SIZE;
236 if (flags->nflag > flags->flag_nalloc)
238 flags->flag_nalloc = over_alloc_large(flags->nflag);
239 srenew(flags->flag, flags->flag_nalloc);
241 for (int b = 0; b < flags->nflag; b++)
243 bitmask_clear(&(flags->flag[b]));
247 /* Returns the pair-list cutoff between a bounding box and a grid cell given an atom-to-atom pair-list cutoff
249 * Given a cutoff distance between atoms, this functions returns the cutoff
250 * distance2 between a bounding box of a group of atoms and a grid cell.
251 * Since atoms can be geometrically outside of the cell they have been
252 * assigned to (when atom groups instead of individual atoms are assigned
253 * to cells), this distance returned can be larger than the input.
255 static real
256 listRangeForBoundingBoxToGridCell(real rlist,
257 const Grid::Dimensions &gridDims)
259 return rlist + gridDims.maxAtomGroupRadius;
262 /* Returns the pair-list cutoff between a grid cells given an atom-to-atom pair-list cutoff
264 * Given a cutoff distance between atoms, this functions returns the cutoff
265 * distance2 between two grid cells.
266 * Since atoms can be geometrically outside of the cell they have been
267 * assigned to (when atom groups instead of individual atoms are assigned
268 * to cells), this distance returned can be larger than the input.
270 static real
271 listRangeForGridCellToGridCell(real rlist,
272 const Grid::Dimensions &iGridDims,
273 const Grid::Dimensions &jGridDims)
275 return rlist + iGridDims.maxAtomGroupRadius + jGridDims.maxAtomGroupRadius;
278 /* Determines the cell range along one dimension that
279 * the bounding box b0 - b1 sees.
281 template<int dim>
282 static void get_cell_range(real b0, real b1,
283 const Grid::Dimensions &jGridDims,
284 real d2, real rlist, int *cf, int *cl)
286 real listRangeBBToCell2 = gmx::square(listRangeForBoundingBoxToGridCell(rlist, jGridDims));
287 real distanceInCells = (b0 - jGridDims.lowerCorner[dim])*jGridDims.invCellSize[dim];
288 *cf = std::max(static_cast<int>(distanceInCells), 0);
290 while (*cf > 0 &&
291 d2 + gmx::square((b0 - jGridDims.lowerCorner[dim]) - (*cf - 1 + 1)*jGridDims.cellSize[dim]) < listRangeBBToCell2)
293 (*cf)--;
296 *cl = std::min(static_cast<int>((b1 - jGridDims.lowerCorner[dim])*jGridDims.invCellSize[dim]), jGridDims.numCells[dim] - 1);
297 while (*cl < jGridDims.numCells[dim] - 1 &&
298 d2 + gmx::square((*cl + 1)*jGridDims.cellSize[dim] - (b1 - jGridDims.lowerCorner[dim])) < listRangeBBToCell2)
300 (*cl)++;
304 /* Reference code calculating the distance^2 between two bounding boxes */
306 static float box_dist2(float bx0, float bx1, float by0,
307 float by1, float bz0, float bz1,
308 const BoundingBox *bb)
310 float d2;
311 float dl, dh, dm, dm0;
313 d2 = 0;
315 dl = bx0 - bb->upper.x;
316 dh = bb->lower.x - bx1;
317 dm = std::max(dl, dh);
318 dm0 = std::max(dm, 0.0f);
319 d2 += dm0*dm0;
321 dl = by0 - bb->upper.y;
322 dh = bb->lower.y - by1;
323 dm = std::max(dl, dh);
324 dm0 = std::max(dm, 0.0f);
325 d2 += dm0*dm0;
327 dl = bz0 - bb->upper.z;
328 dh = bb->lower.z - bz1;
329 dm = std::max(dl, dh);
330 dm0 = std::max(dm, 0.0f);
331 d2 += dm0*dm0;
333 return d2;
337 #if !NBNXN_SEARCH_BB_SIMD4
339 /*! \brief Plain C code calculating the distance^2 between two bounding boxes in xyz0 format
341 * \param[in] bb_i First bounding box
342 * \param[in] bb_j Second bounding box
344 static float clusterBoundingBoxDistance2(const BoundingBox &bb_i,
345 const BoundingBox &bb_j)
347 float dl = bb_i.lower.x - bb_j.upper.x;
348 float dh = bb_j.lower.x - bb_i.upper.x;
349 float dm = std::max(dl, dh);
350 float dm0 = std::max(dm, 0.0F);
351 float d2 = dm0*dm0;
353 dl = bb_i.lower.y - bb_j.upper.y;
354 dh = bb_j.lower.y - bb_i.upper.y;
355 dm = std::max(dl, dh);
356 dm0 = std::max(dm, 0.0F);
357 d2 += dm0*dm0;
359 dl = bb_i.lower.z - bb_j.upper.z;
360 dh = bb_j.lower.z - bb_i.upper.z;
361 dm = std::max(dl, dh);
362 dm0 = std::max(dm, 0.0F);
363 d2 += dm0*dm0;
365 return d2;
368 #else /* NBNXN_SEARCH_BB_SIMD4 */
370 /*! \brief 4-wide SIMD code calculating the distance^2 between two bounding boxes in xyz0 format
372 * \param[in] bb_i First bounding box, should be aligned for 4-wide SIMD
373 * \param[in] bb_j Second bounding box, should be aligned for 4-wide SIMD
375 static float clusterBoundingBoxDistance2(const BoundingBox &bb_i,
376 const BoundingBox &bb_j)
378 // TODO: During SIMDv2 transition only some archs use namespace (remove when done)
379 using namespace gmx;
381 const Simd4Float bb_i_S0 = load4(bb_i.lower.ptr());
382 const Simd4Float bb_i_S1 = load4(bb_i.upper.ptr());
383 const Simd4Float bb_j_S0 = load4(bb_j.lower.ptr());
384 const Simd4Float bb_j_S1 = load4(bb_j.upper.ptr());
386 const Simd4Float dl_S = bb_i_S0 - bb_j_S1;
387 const Simd4Float dh_S = bb_j_S0 - bb_i_S1;
389 const Simd4Float dm_S = max(dl_S, dh_S);
390 const Simd4Float dm0_S = max(dm_S, simd4SetZeroF());
392 return dotProduct(dm0_S, dm0_S);
395 /* Calculate bb bounding distances of bb_i[si,...,si+3] and store them in d2 */
396 template <int boundingBoxStart>
397 static inline void gmx_simdcall
398 clusterBoundingBoxDistance2_xxxx_simd4_inner(const float *bb_i,
399 float *d2,
400 const Simd4Float xj_l,
401 const Simd4Float yj_l,
402 const Simd4Float zj_l,
403 const Simd4Float xj_h,
404 const Simd4Float yj_h,
405 const Simd4Float zj_h)
407 constexpr int stride = c_packedBoundingBoxesDimSize;
409 const int shi = boundingBoxStart*Nbnxm::c_numBoundingBoxBounds1D*DIM;
411 const Simd4Float zero = setZero();
413 const Simd4Float xi_l = load4(bb_i + shi + 0*stride);
414 const Simd4Float yi_l = load4(bb_i + shi + 1*stride);
415 const Simd4Float zi_l = load4(bb_i + shi + 2*stride);
416 const Simd4Float xi_h = load4(bb_i + shi + 3*stride);
417 const Simd4Float yi_h = load4(bb_i + shi + 4*stride);
418 const Simd4Float zi_h = load4(bb_i + shi + 5*stride);
420 const Simd4Float dx_0 = xi_l - xj_h;
421 const Simd4Float dy_0 = yi_l - yj_h;
422 const Simd4Float dz_0 = zi_l - zj_h;
424 const Simd4Float dx_1 = xj_l - xi_h;
425 const Simd4Float dy_1 = yj_l - yi_h;
426 const Simd4Float dz_1 = zj_l - zi_h;
428 const Simd4Float mx = max(dx_0, dx_1);
429 const Simd4Float my = max(dy_0, dy_1);
430 const Simd4Float mz = max(dz_0, dz_1);
432 const Simd4Float m0x = max(mx, zero);
433 const Simd4Float m0y = max(my, zero);
434 const Simd4Float m0z = max(mz, zero);
436 const Simd4Float d2x = m0x * m0x;
437 const Simd4Float d2y = m0y * m0y;
438 const Simd4Float d2z = m0z * m0z;
440 const Simd4Float d2s = d2x + d2y;
441 const Simd4Float d2t = d2s + d2z;
443 store4(d2 + boundingBoxStart, d2t);
446 /* 4-wide SIMD code for nsi bb distances for bb format xxxxyyyyzzzz */
447 static void
448 clusterBoundingBoxDistance2_xxxx_simd4(const float *bb_j,
449 const int nsi,
450 const float *bb_i,
451 float *d2)
453 constexpr int stride = c_packedBoundingBoxesDimSize;
455 // TODO: During SIMDv2 transition only some archs use namespace (remove when done)
456 using namespace gmx;
458 const Simd4Float xj_l = Simd4Float(bb_j[0*stride]);
459 const Simd4Float yj_l = Simd4Float(bb_j[1*stride]);
460 const Simd4Float zj_l = Simd4Float(bb_j[2*stride]);
461 const Simd4Float xj_h = Simd4Float(bb_j[3*stride]);
462 const Simd4Float yj_h = Simd4Float(bb_j[4*stride]);
463 const Simd4Float zj_h = Simd4Float(bb_j[5*stride]);
465 /* Here we "loop" over si (0,stride) from 0 to nsi with step stride.
466 * But as we know the number of iterations is 1 or 2, we unroll manually.
468 clusterBoundingBoxDistance2_xxxx_simd4_inner<0>(bb_i, d2,
469 xj_l, yj_l, zj_l,
470 xj_h, yj_h, zj_h);
471 if (stride < nsi)
473 clusterBoundingBoxDistance2_xxxx_simd4_inner<stride>(bb_i, d2,
474 xj_l, yj_l, zj_l,
475 xj_h, yj_h, zj_h);
479 #endif /* NBNXN_SEARCH_BB_SIMD4 */
482 /* Returns if any atom pair from two clusters is within distance sqrt(rlist2) */
483 static inline gmx_bool
484 clusterpair_in_range(const NbnxnPairlistGpuWork &work,
485 int si,
486 int csj, int stride, const real *x_j,
487 real rlist2)
489 #if !GMX_SIMD4_HAVE_REAL
491 /* Plain C version.
492 * All coordinates are stored as xyzxyz...
495 const real *x_i = work.iSuperClusterData.x.data();
497 for (int i = 0; i < c_nbnxnGpuClusterSize; i++)
499 int i0 = (si*c_nbnxnGpuClusterSize + i)*DIM;
500 for (int j = 0; j < c_nbnxnGpuClusterSize; j++)
502 int j0 = (csj*c_nbnxnGpuClusterSize + j)*stride;
504 real d2 = gmx::square(x_i[i0 ] - x_j[j0 ]) + gmx::square(x_i[i0+1] - x_j[j0+1]) + gmx::square(x_i[i0+2] - x_j[j0+2]);
506 if (d2 < rlist2)
508 return TRUE;
513 return FALSE;
515 #else /* !GMX_SIMD4_HAVE_REAL */
517 /* 4-wide SIMD version.
518 * The coordinates x_i are stored as xxxxyyyy..., x_j is stored xyzxyz...
519 * Using 8-wide AVX(2) is not faster on Intel Sandy Bridge and Haswell.
521 static_assert(c_nbnxnGpuClusterSize == 8 || c_nbnxnGpuClusterSize == 4,
522 "A cluster is hard-coded to 4/8 atoms.");
524 Simd4Real rc2_S = Simd4Real(rlist2);
526 const real *x_i = work.iSuperClusterData.xSimd.data();
528 int dim_stride = c_nbnxnGpuClusterSize*DIM;
529 Simd4Real ix_S0 = load4(x_i + si*dim_stride + 0*GMX_SIMD4_WIDTH);
530 Simd4Real iy_S0 = load4(x_i + si*dim_stride + 1*GMX_SIMD4_WIDTH);
531 Simd4Real iz_S0 = load4(x_i + si*dim_stride + 2*GMX_SIMD4_WIDTH);
533 Simd4Real ix_S1, iy_S1, iz_S1;
534 if (c_nbnxnGpuClusterSize == 8)
536 ix_S1 = load4(x_i + si*dim_stride + 3*GMX_SIMD4_WIDTH);
537 iy_S1 = load4(x_i + si*dim_stride + 4*GMX_SIMD4_WIDTH);
538 iz_S1 = load4(x_i + si*dim_stride + 5*GMX_SIMD4_WIDTH);
540 /* We loop from the outer to the inner particles to maximize
541 * the chance that we find a pair in range quickly and return.
543 int j0 = csj*c_nbnxnGpuClusterSize;
544 int j1 = j0 + c_nbnxnGpuClusterSize - 1;
545 while (j0 < j1)
547 Simd4Real jx0_S, jy0_S, jz0_S;
548 Simd4Real jx1_S, jy1_S, jz1_S;
550 Simd4Real dx_S0, dy_S0, dz_S0;
551 Simd4Real dx_S1, dy_S1, dz_S1;
552 Simd4Real dx_S2, dy_S2, dz_S2;
553 Simd4Real dx_S3, dy_S3, dz_S3;
555 Simd4Real rsq_S0;
556 Simd4Real rsq_S1;
557 Simd4Real rsq_S2;
558 Simd4Real rsq_S3;
560 Simd4Bool wco_S0;
561 Simd4Bool wco_S1;
562 Simd4Bool wco_S2;
563 Simd4Bool wco_S3;
564 Simd4Bool wco_any_S01, wco_any_S23, wco_any_S;
566 jx0_S = Simd4Real(x_j[j0*stride+0]);
567 jy0_S = Simd4Real(x_j[j0*stride+1]);
568 jz0_S = Simd4Real(x_j[j0*stride+2]);
570 jx1_S = Simd4Real(x_j[j1*stride+0]);
571 jy1_S = Simd4Real(x_j[j1*stride+1]);
572 jz1_S = Simd4Real(x_j[j1*stride+2]);
574 /* Calculate distance */
575 dx_S0 = ix_S0 - jx0_S;
576 dy_S0 = iy_S0 - jy0_S;
577 dz_S0 = iz_S0 - jz0_S;
578 dx_S2 = ix_S0 - jx1_S;
579 dy_S2 = iy_S0 - jy1_S;
580 dz_S2 = iz_S0 - jz1_S;
581 if (c_nbnxnGpuClusterSize == 8)
583 dx_S1 = ix_S1 - jx0_S;
584 dy_S1 = iy_S1 - jy0_S;
585 dz_S1 = iz_S1 - jz0_S;
586 dx_S3 = ix_S1 - jx1_S;
587 dy_S3 = iy_S1 - jy1_S;
588 dz_S3 = iz_S1 - jz1_S;
591 /* rsq = dx*dx+dy*dy+dz*dz */
592 rsq_S0 = norm2(dx_S0, dy_S0, dz_S0);
593 rsq_S2 = norm2(dx_S2, dy_S2, dz_S2);
594 if (c_nbnxnGpuClusterSize == 8)
596 rsq_S1 = norm2(dx_S1, dy_S1, dz_S1);
597 rsq_S3 = norm2(dx_S3, dy_S3, dz_S3);
600 wco_S0 = (rsq_S0 < rc2_S);
601 wco_S2 = (rsq_S2 < rc2_S);
602 if (c_nbnxnGpuClusterSize == 8)
604 wco_S1 = (rsq_S1 < rc2_S);
605 wco_S3 = (rsq_S3 < rc2_S);
607 if (c_nbnxnGpuClusterSize == 8)
609 wco_any_S01 = wco_S0 || wco_S1;
610 wco_any_S23 = wco_S2 || wco_S3;
611 wco_any_S = wco_any_S01 || wco_any_S23;
613 else
615 wco_any_S = wco_S0 || wco_S2;
618 if (anyTrue(wco_any_S))
620 return TRUE;
623 j0++;
624 j1--;
627 return FALSE;
629 #endif /* !GMX_SIMD4_HAVE_REAL */
632 /* Returns the j-cluster index for index cjIndex in a cj list */
633 static inline int nblCj(gmx::ArrayRef<const nbnxn_cj_t> cjList,
634 int cjIndex)
636 return cjList[cjIndex].cj;
639 /* Returns the j-cluster index for index cjIndex in a cj4 list */
640 static inline int nblCj(gmx::ArrayRef<const nbnxn_cj4_t> cj4List,
641 int cjIndex)
643 return cj4List[cjIndex/c_nbnxnGpuJgroupSize].cj[cjIndex & (c_nbnxnGpuJgroupSize - 1)];
646 /* Returns the i-interaction mask of the j sub-cell for index cj_ind */
647 static unsigned int nbl_imask0(const NbnxnPairlistGpu *nbl, int cj_ind)
649 return nbl->cj4[cj_ind/c_nbnxnGpuJgroupSize].imei[0].imask;
652 NbnxnPairlistCpu::NbnxnPairlistCpu() :
653 na_ci(c_nbnxnCpuIClusterSize),
654 na_cj(0),
655 rlist(0),
656 ncjInUse(0),
657 nci_tot(0),
658 work(std::make_unique<NbnxnPairlistCpuWork>())
662 NbnxnPairlistGpu::NbnxnPairlistGpu(gmx::PinningPolicy pinningPolicy) :
663 na_ci(c_nbnxnGpuClusterSize),
664 na_cj(c_nbnxnGpuClusterSize),
665 na_sc(c_gpuNumClusterPerCell*c_nbnxnGpuClusterSize),
666 rlist(0),
667 sci({}, {pinningPolicy}),
668 cj4({}, {pinningPolicy}),
669 excl({}, {pinningPolicy}),
670 nci_tot(0),
671 work(std::make_unique<NbnxnPairlistGpuWork>())
673 static_assert(c_nbnxnGpuNumClusterPerSupercluster == c_gpuNumClusterPerCell,
674 "The search code assumes that the a super-cluster matches a search grid cell");
676 static_assert(sizeof(cj4[0].imei[0].imask)*8 >= c_nbnxnGpuJgroupSize*c_gpuNumClusterPerCell,
677 "The i super-cluster cluster interaction mask does not contain a sufficient number of bits");
679 static_assert(sizeof(excl[0])*8 >= c_nbnxnGpuJgroupSize*c_gpuNumClusterPerCell, "The GPU exclusion mask does not contain a sufficient number of bits");
681 // We always want a first entry without any exclusions
682 excl.resize(1);
685 // TODO: Move to pairlistset.cpp
686 PairlistSet::PairlistSet(const Nbnxm::InteractionLocality locality,
687 const PairlistParams &pairlistParams) :
688 locality_(locality),
689 params_(pairlistParams)
691 isCpuType_ =
692 (params_.pairlistType == PairlistType::Simple4x2 ||
693 params_.pairlistType == PairlistType::Simple4x4 ||
694 params_.pairlistType == PairlistType::Simple4x8);
695 // Currently GPU lists are always combined
696 combineLists_ = !isCpuType_;
698 const int numLists = gmx_omp_nthreads_get(emntNonbonded);
700 if (!combineLists_ &&
701 numLists > NBNXN_BUFFERFLAG_MAX_THREADS)
703 gmx_fatal(FARGS, "%d OpenMP threads were requested. Since the non-bonded force buffer reduction is prohibitively slow with more than %d threads, we do not allow this. Use %d or less OpenMP threads.",
704 numLists, NBNXN_BUFFERFLAG_MAX_THREADS, NBNXN_BUFFERFLAG_MAX_THREADS);
707 if (isCpuType_)
709 cpuLists_.resize(numLists);
710 if (numLists > 1)
712 cpuListsWork_.resize(numLists);
715 else
717 /* Only list 0 is used on the GPU, use normal allocation for i>0 */
718 gpuLists_.emplace_back(gmx::PinningPolicy::PinnedIfSupported);
719 /* Lists 0 to numLists are use for constructing lists in parallel
720 * on the CPU using numLists threads (and then merged into list 0).
722 for (int i = 1; i < numLists; i++)
724 gpuLists_.emplace_back(gmx::PinningPolicy::CannotBePinned);
727 if (params_.haveFep)
729 fepLists_.resize(numLists);
731 /* Execute in order to avoid memory interleaving between threads */
732 #pragma omp parallel for num_threads(numLists) schedule(static)
733 for (int i = 0; i < numLists; i++)
737 /* We used to allocate all normal lists locally on each thread
738 * as well. The question is if allocating the object on the
739 * master thread (but all contained list memory thread local)
740 * impacts performance.
742 fepLists_[i] = std::make_unique<t_nblist>();
743 nbnxn_init_pairlist_fep(fepLists_[i].get());
745 GMX_CATCH_ALL_AND_EXIT_WITH_FATAL_ERROR;
750 /* Print statistics of a pair list, used for debug output */
751 static void print_nblist_statistics(FILE *fp,
752 const NbnxnPairlistCpu &nbl,
753 const Nbnxm::GridSet &gridSet,
754 const real rl)
756 const Grid &grid = gridSet.grids()[0];
757 const Grid::Dimensions &dims = grid.dimensions();
759 fprintf(fp, "nbl nci %zu ncj %d\n",
760 nbl.ci.size(), nbl.ncjInUse);
761 const int numAtomsJCluster = grid.geometry().numAtomsJCluster;
762 const double numAtomsPerCell = nbl.ncjInUse/static_cast<double>(grid.numCells())*numAtomsJCluster;
763 fprintf(fp, "nbl na_cj %d rl %g ncp %d per cell %.1f atoms %.1f ratio %.2f\n",
764 nbl.na_cj, rl, nbl.ncjInUse, nbl.ncjInUse/static_cast<double>(grid.numCells()),
765 numAtomsPerCell,
766 numAtomsPerCell/(0.5*4.0/3.0*M_PI*rl*rl*rl*grid.numCells()*numAtomsJCluster/(dims.gridSize[XX]*dims.gridSize[YY]*dims.gridSize[ZZ])));
768 fprintf(fp, "nbl average j cell list length %.1f\n",
769 0.25*nbl.ncjInUse/std::max(static_cast<double>(nbl.ci.size()), 1.0));
771 int cs[SHIFTS] = { 0 };
772 int npexcl = 0;
773 for (const nbnxn_ci_t &ciEntry : nbl.ci)
775 cs[ciEntry.shift & NBNXN_CI_SHIFT] +=
776 ciEntry.cj_ind_end - ciEntry.cj_ind_start;
778 int j = ciEntry.cj_ind_start;
779 while (j < ciEntry.cj_ind_end &&
780 nbl.cj[j].excl != NBNXN_INTERACTION_MASK_ALL)
782 npexcl++;
783 j++;
786 fprintf(fp, "nbl cell pairs, total: %zu excl: %d %.1f%%\n",
787 nbl.cj.size(), npexcl, 100*npexcl/std::max(static_cast<double>(nbl.cj.size()), 1.0));
788 for (int s = 0; s < SHIFTS; s++)
790 if (cs[s] > 0)
792 fprintf(fp, "nbl shift %2d ncj %3d\n", s, cs[s]);
797 /* Print statistics of a pair lists, used for debug output */
798 static void print_nblist_statistics(FILE *fp,
799 const NbnxnPairlistGpu &nbl,
800 const Nbnxm::GridSet &gridSet,
801 const real rl)
803 const Grid &grid = gridSet.grids()[0];
804 const Grid::Dimensions &dims = grid.dimensions();
806 fprintf(fp, "nbl nsci %zu ncj4 %zu nsi %d excl4 %zu\n",
807 nbl.sci.size(), nbl.cj4.size(), nbl.nci_tot, nbl.excl.size());
808 const int numAtomsCluster = grid.geometry().numAtomsICluster;
809 const double numAtomsPerCell = nbl.nci_tot/static_cast<double>(grid.numClusters())*numAtomsCluster;
810 fprintf(fp, "nbl na_c %d rl %g ncp %d per cell %.1f atoms %.1f ratio %.2f\n",
811 nbl.na_ci, rl, nbl.nci_tot, nbl.nci_tot/static_cast<double>(grid.numClusters()),
812 numAtomsPerCell,
813 numAtomsPerCell/(0.5*4.0/3.0*M_PI*rl*rl*rl*grid.numClusters()*numAtomsCluster/(dims.gridSize[XX]*dims.gridSize[YY]*dims.gridSize[ZZ])));
815 double sum_nsp = 0;
816 double sum_nsp2 = 0;
817 int nsp_max = 0;
818 int c[c_gpuNumClusterPerCell + 1] = { 0 };
819 for (const nbnxn_sci_t &sci : nbl.sci)
821 int nsp = 0;
822 for (int j4 = sci.cj4_ind_start; j4 < sci.cj4_ind_end; j4++)
824 for (int j = 0; j < c_nbnxnGpuJgroupSize; j++)
826 int b = 0;
827 for (int si = 0; si < c_gpuNumClusterPerCell; si++)
829 if (nbl.cj4[j4].imei[0].imask & (1U << (j*c_gpuNumClusterPerCell + si)))
831 b++;
834 nsp += b;
835 c[b]++;
838 sum_nsp += nsp;
839 sum_nsp2 += nsp*nsp;
840 nsp_max = std::max(nsp_max, nsp);
842 if (!nbl.sci.empty())
844 sum_nsp /= nbl.sci.size();
845 sum_nsp2 /= nbl.sci.size();
847 fprintf(fp, "nbl #cluster-pairs: av %.1f stddev %.1f max %d\n",
848 sum_nsp, std::sqrt(sum_nsp2 - sum_nsp*sum_nsp), nsp_max);
850 if (!nbl.cj4.empty())
852 for (int b = 0; b <= c_gpuNumClusterPerCell; b++)
854 fprintf(fp, "nbl j-list #i-subcell %d %7d %4.1f\n",
855 b, c[b], 100.0*c[b]/size_t {nbl.cj4.size()*c_nbnxnGpuJgroupSize});
860 /* Returns a reference to the exclusion mask for j-cluster-group \p cj4 and warp \p warp
861 * Generates a new exclusion entry when the j-cluster-group uses
862 * the default all-interaction mask at call time, so the returned mask
863 * can be modified when needed.
865 static nbnxn_excl_t &get_exclusion_mask(NbnxnPairlistGpu *nbl,
866 int cj4,
867 int warp)
869 if (nbl->cj4[cj4].imei[warp].excl_ind == 0)
871 /* No exclusions set, make a new list entry */
872 const size_t oldSize = nbl->excl.size();
873 GMX_ASSERT(oldSize >= 1, "We should always have entry [0]");
874 /* Add entry with default values: no exclusions */
875 nbl->excl.resize(oldSize + 1);
876 nbl->cj4[cj4].imei[warp].excl_ind = oldSize;
879 return nbl->excl[nbl->cj4[cj4].imei[warp].excl_ind];
882 /* Sets self exclusions and excludes half of the double pairs in the self cluster-pair \p nbl->cj4[cj4Index].cj[jOffsetInGroup]
884 * \param[in,out] nbl The cluster pair list
885 * \param[in] cj4Index The j-cluster group index into \p nbl->cj4
886 * \param[in] jOffsetInGroup The j-entry offset in \p nbl->cj4[cj4Index]
887 * \param[in] iClusterInCell The i-cluster index in the cell
889 static void
890 setSelfAndNewtonExclusionsGpu(NbnxnPairlistGpu *nbl,
891 const int cj4Index,
892 const int jOffsetInGroup,
893 const int iClusterInCell)
895 constexpr int numJatomsPerPart = c_nbnxnGpuClusterSize/c_nbnxnGpuClusterpairSplit;
897 /* The exclusions are stored separately for each part of the split */
898 for (int part = 0; part < c_nbnxnGpuClusterpairSplit; part++)
900 const int jOffset = part*numJatomsPerPart;
901 /* Make a new exclusion mask entry for each part, if we don't already have one yet */
902 nbnxn_excl_t &excl = get_exclusion_mask(nbl, cj4Index, part);
904 /* Set all bits with j-index <= i-index */
905 for (int jIndexInPart = 0; jIndexInPart < numJatomsPerPart; jIndexInPart++)
907 for (int i = jOffset + jIndexInPart; i < c_nbnxnGpuClusterSize; i++)
909 excl.pair[jIndexInPart*c_nbnxnGpuClusterSize + i] &=
910 ~(1U << (jOffsetInGroup*c_gpuNumClusterPerCell + iClusterInCell));
916 /* Returns a diagonal or off-diagonal interaction mask for plain C lists */
917 static unsigned int get_imask(gmx_bool rdiag, int ci, int cj)
919 return (rdiag && ci == cj ? NBNXN_INTERACTION_MASK_DIAG : NBNXN_INTERACTION_MASK_ALL);
922 /* Returns a diagonal or off-diagonal interaction mask for cj-size=2 */
923 gmx_unused static unsigned int get_imask_simd_j2(gmx_bool rdiag, int ci, int cj)
925 return (rdiag && ci*2 == cj ? NBNXN_INTERACTION_MASK_DIAG_J2_0 :
926 (rdiag && ci*2+1 == cj ? NBNXN_INTERACTION_MASK_DIAG_J2_1 :
927 NBNXN_INTERACTION_MASK_ALL));
930 /* Returns a diagonal or off-diagonal interaction mask for cj-size=4 */
931 gmx_unused static unsigned int get_imask_simd_j4(gmx_bool rdiag, int ci, int cj)
933 return (rdiag && ci == cj ? NBNXN_INTERACTION_MASK_DIAG : NBNXN_INTERACTION_MASK_ALL);
936 /* Returns a diagonal or off-diagonal interaction mask for cj-size=8 */
937 gmx_unused static unsigned int get_imask_simd_j8(gmx_bool rdiag, int ci, int cj)
939 return (rdiag && ci == cj*2 ? NBNXN_INTERACTION_MASK_DIAG_J8_0 :
940 (rdiag && ci == cj*2+1 ? NBNXN_INTERACTION_MASK_DIAG_J8_1 :
941 NBNXN_INTERACTION_MASK_ALL));
944 #if GMX_SIMD
945 #if GMX_SIMD_REAL_WIDTH == 2
946 #define get_imask_simd_4xn get_imask_simd_j2
947 #endif
948 #if GMX_SIMD_REAL_WIDTH == 4
949 #define get_imask_simd_4xn get_imask_simd_j4
950 #endif
951 #if GMX_SIMD_REAL_WIDTH == 8
952 #define get_imask_simd_4xn get_imask_simd_j8
953 #define get_imask_simd_2xnn get_imask_simd_j4
954 #endif
955 #if GMX_SIMD_REAL_WIDTH == 16
956 #define get_imask_simd_2xnn get_imask_simd_j8
957 #endif
958 #endif
960 /* Plain C code for checking and adding cluster-pairs to the list.
962 * \param[in] gridj The j-grid
963 * \param[in,out] nbl The pair-list to store the cluster pairs in
964 * \param[in] icluster The index of the i-cluster
965 * \param[in] jclusterFirst The first cluster in the j-range
966 * \param[in] jclusterLast The last cluster in the j-range
967 * \param[in] excludeSubDiagonal Exclude atom pairs with i-index > j-index
968 * \param[in] x_j Coordinates for the j-atom, in xyz format
969 * \param[in] rlist2 The squared list cut-off
970 * \param[in] rbb2 The squared cut-off for putting cluster-pairs in the list based on bounding box distance only
971 * \param[in,out] numDistanceChecks The number of distance checks performed
973 static void
974 makeClusterListSimple(const Grid &jGrid,
975 NbnxnPairlistCpu * nbl,
976 int icluster,
977 int jclusterFirst,
978 int jclusterLast,
979 bool excludeSubDiagonal,
980 const real * gmx_restrict x_j,
981 real rlist2,
982 float rbb2,
983 int * gmx_restrict numDistanceChecks)
985 const BoundingBox * gmx_restrict bb_ci = nbl->work->iClusterData.bb.data();
986 const real * gmx_restrict x_ci = nbl->work->iClusterData.x.data();
988 gmx_bool InRange;
990 InRange = FALSE;
991 while (!InRange && jclusterFirst <= jclusterLast)
993 real d2 = clusterBoundingBoxDistance2(bb_ci[0], jGrid.jBoundingBoxes()[jclusterFirst]);
994 *numDistanceChecks += 2;
996 /* Check if the distance is within the distance where
997 * we use only the bounding box distance rbb,
998 * or within the cut-off and there is at least one atom pair
999 * within the cut-off.
1001 if (d2 < rbb2)
1003 InRange = TRUE;
1005 else if (d2 < rlist2)
1007 int cjf_gl = jGrid.cellOffset() + jclusterFirst;
1008 for (int i = 0; i < c_nbnxnCpuIClusterSize && !InRange; i++)
1010 for (int j = 0; j < c_nbnxnCpuIClusterSize; j++)
1012 InRange = InRange ||
1013 (gmx::square(x_ci[i*STRIDE_XYZ+XX] - x_j[(cjf_gl*c_nbnxnCpuIClusterSize+j)*STRIDE_XYZ+XX]) +
1014 gmx::square(x_ci[i*STRIDE_XYZ+YY] - x_j[(cjf_gl*c_nbnxnCpuIClusterSize+j)*STRIDE_XYZ+YY]) +
1015 gmx::square(x_ci[i*STRIDE_XYZ+ZZ] - x_j[(cjf_gl*c_nbnxnCpuIClusterSize+j)*STRIDE_XYZ+ZZ]) < rlist2);
1018 *numDistanceChecks += c_nbnxnCpuIClusterSize*c_nbnxnCpuIClusterSize;
1020 if (!InRange)
1022 jclusterFirst++;
1025 if (!InRange)
1027 return;
1030 InRange = FALSE;
1031 while (!InRange && jclusterLast > jclusterFirst)
1033 real d2 = clusterBoundingBoxDistance2(bb_ci[0], jGrid.jBoundingBoxes()[jclusterLast]);
1034 *numDistanceChecks += 2;
1036 /* Check if the distance is within the distance where
1037 * we use only the bounding box distance rbb,
1038 * or within the cut-off and there is at least one atom pair
1039 * within the cut-off.
1041 if (d2 < rbb2)
1043 InRange = TRUE;
1045 else if (d2 < rlist2)
1047 int cjl_gl = jGrid.cellOffset() + jclusterLast;
1048 for (int i = 0; i < c_nbnxnCpuIClusterSize && !InRange; i++)
1050 for (int j = 0; j < c_nbnxnCpuIClusterSize; j++)
1052 InRange = InRange ||
1053 (gmx::square(x_ci[i*STRIDE_XYZ+XX] - x_j[(cjl_gl*c_nbnxnCpuIClusterSize+j)*STRIDE_XYZ+XX]) +
1054 gmx::square(x_ci[i*STRIDE_XYZ+YY] - x_j[(cjl_gl*c_nbnxnCpuIClusterSize+j)*STRIDE_XYZ+YY]) +
1055 gmx::square(x_ci[i*STRIDE_XYZ+ZZ] - x_j[(cjl_gl*c_nbnxnCpuIClusterSize+j)*STRIDE_XYZ+ZZ]) < rlist2);
1058 *numDistanceChecks += c_nbnxnCpuIClusterSize*c_nbnxnCpuIClusterSize;
1060 if (!InRange)
1062 jclusterLast--;
1066 if (jclusterFirst <= jclusterLast)
1068 for (int jcluster = jclusterFirst; jcluster <= jclusterLast; jcluster++)
1070 /* Store cj and the interaction mask */
1071 nbnxn_cj_t cjEntry;
1072 cjEntry.cj = jGrid.cellOffset() + jcluster;
1073 cjEntry.excl = get_imask(excludeSubDiagonal, icluster, jcluster);
1074 nbl->cj.push_back(cjEntry);
1076 /* Increase the closing index in the i list */
1077 nbl->ci.back().cj_ind_end = nbl->cj.size();
1081 #ifdef GMX_NBNXN_SIMD_4XN
1082 #include "gromacs/nbnxm/pairlist_simd_4xm.h"
1083 #endif
1084 #ifdef GMX_NBNXN_SIMD_2XNN
1085 #include "gromacs/nbnxm/pairlist_simd_2xmm.h"
1086 #endif
1088 /* Plain C or SIMD4 code for making a pair list of super-cell sci vs scj.
1089 * Checks bounding box distances and possibly atom pair distances.
1091 static void make_cluster_list_supersub(const Grid &iGrid,
1092 const Grid &jGrid,
1093 NbnxnPairlistGpu *nbl,
1094 const int sci,
1095 const int scj,
1096 const bool excludeSubDiagonal,
1097 const int stride,
1098 const real *x,
1099 const real rlist2,
1100 const float rbb2,
1101 int *numDistanceChecks)
1103 NbnxnPairlistGpuWork &work = *nbl->work;
1105 #if NBNXN_BBXXXX
1106 const float *pbb_ci = work.iSuperClusterData.bbPacked.data();
1107 #else
1108 const BoundingBox *bb_ci = work.iSuperClusterData.bb.data();
1109 #endif
1111 assert(c_nbnxnGpuClusterSize == iGrid.geometry().numAtomsICluster);
1112 assert(c_nbnxnGpuClusterSize == jGrid.geometry().numAtomsICluster);
1114 /* We generate the pairlist mainly based on bounding-box distances
1115 * and do atom pair distance based pruning on the GPU.
1116 * Only if a j-group contains a single cluster-pair, we try to prune
1117 * that pair based on atom distances on the CPU to avoid empty j-groups.
1119 #define PRUNE_LIST_CPU_ONE 1
1120 #define PRUNE_LIST_CPU_ALL 0
1122 #if PRUNE_LIST_CPU_ONE
1123 int ci_last = -1;
1124 #endif
1126 float *d2l = work.distanceBuffer.data();
1128 for (int subc = 0; subc < jGrid.numClustersPerCell()[scj]; subc++)
1130 const int cj4_ind = work.cj_ind/c_nbnxnGpuJgroupSize;
1131 const int cj_offset = work.cj_ind - cj4_ind*c_nbnxnGpuJgroupSize;
1132 const int cj = scj*c_gpuNumClusterPerCell + subc;
1134 const int cj_gl = jGrid.cellOffset()*c_gpuNumClusterPerCell + cj;
1136 int ci1;
1137 if (excludeSubDiagonal && sci == scj)
1139 ci1 = subc + 1;
1141 else
1143 ci1 = iGrid.numClustersPerCell()[sci];
1146 #if NBNXN_BBXXXX
1147 /* Determine all ci1 bb distances in one call with SIMD4 */
1148 const int offset = packedBoundingBoxesIndex(cj) + (cj & (c_packedBoundingBoxesDimSize - 1));
1149 clusterBoundingBoxDistance2_xxxx_simd4(jGrid.packedBoundingBoxes().data() + offset,
1150 ci1, pbb_ci, d2l);
1151 *numDistanceChecks += c_nbnxnGpuClusterSize*2;
1152 #endif
1154 int npair = 0;
1155 unsigned int imask = 0;
1156 /* We use a fixed upper-bound instead of ci1 to help optimization */
1157 for (int ci = 0; ci < c_gpuNumClusterPerCell; ci++)
1159 if (ci == ci1)
1161 break;
1164 #if !NBNXN_BBXXXX
1165 /* Determine the bb distance between ci and cj */
1166 d2l[ci] = clusterBoundingBoxDistance2(bb_ci[ci], jGrid.jBoundingBoxes()[cj]);
1167 *numDistanceChecks += 2;
1168 #endif
1169 float d2 = d2l[ci];
1171 #if PRUNE_LIST_CPU_ALL
1172 /* Check if the distance is within the distance where
1173 * we use only the bounding box distance rbb,
1174 * or within the cut-off and there is at least one atom pair
1175 * within the cut-off. This check is very costly.
1177 *numDistanceChecks += c_nbnxnGpuClusterSize*c_nbnxnGpuClusterSize;
1178 if (d2 < rbb2 ||
1179 (d2 < rlist2 &&
1180 clusterpair_in_range(work, ci, cj_gl, stride, x, rlist2)))
1181 #else
1182 /* Check if the distance between the two bounding boxes
1183 * in within the pair-list cut-off.
1185 if (d2 < rlist2)
1186 #endif
1188 /* Flag this i-subcell to be taken into account */
1189 imask |= (1U << (cj_offset*c_gpuNumClusterPerCell + ci));
1191 #if PRUNE_LIST_CPU_ONE
1192 ci_last = ci;
1193 #endif
1195 npair++;
1199 #if PRUNE_LIST_CPU_ONE
1200 /* If we only found 1 pair, check if any atoms are actually
1201 * within the cut-off, so we could get rid of it.
1203 if (npair == 1 && d2l[ci_last] >= rbb2 &&
1204 !clusterpair_in_range(work, ci_last, cj_gl, stride, x, rlist2))
1206 imask &= ~(1U << (cj_offset*c_gpuNumClusterPerCell + ci_last));
1207 npair--;
1209 #endif
1211 if (npair > 0)
1213 /* We have at least one cluster pair: add a j-entry */
1214 if (static_cast<size_t>(cj4_ind) == nbl->cj4.size())
1216 nbl->cj4.resize(nbl->cj4.size() + 1);
1218 nbnxn_cj4_t *cj4 = &nbl->cj4[cj4_ind];
1220 cj4->cj[cj_offset] = cj_gl;
1222 /* Set the exclusions for the ci==sj entry.
1223 * Here we don't bother to check if this entry is actually flagged,
1224 * as it will nearly always be in the list.
1226 if (excludeSubDiagonal && sci == scj)
1228 setSelfAndNewtonExclusionsGpu(nbl, cj4_ind, cj_offset, subc);
1231 /* Copy the cluster interaction mask to the list */
1232 for (int w = 0; w < c_nbnxnGpuClusterpairSplit; w++)
1234 cj4->imei[w].imask |= imask;
1237 nbl->work->cj_ind++;
1239 /* Keep the count */
1240 nbl->nci_tot += npair;
1242 /* Increase the closing index in i super-cell list */
1243 nbl->sci.back().cj4_ind_end =
1244 (nbl->work->cj_ind + c_nbnxnGpuJgroupSize - 1)/c_nbnxnGpuJgroupSize;
1249 /* Returns how many contiguous j-clusters we have starting in the i-list */
1250 template <typename CjListType>
1251 static int numContiguousJClusters(const int cjIndexStart,
1252 const int cjIndexEnd,
1253 gmx::ArrayRef<const CjListType> cjList)
1255 const int firstJCluster = nblCj(cjList, cjIndexStart);
1257 int numContiguous = 0;
1259 while (cjIndexStart + numContiguous < cjIndexEnd &&
1260 nblCj(cjList, cjIndexStart + numContiguous) == firstJCluster + numContiguous)
1262 numContiguous++;
1265 return numContiguous;
1268 /*! \internal
1269 * \brief Helper struct for efficient searching for excluded atoms in a j-list
1271 struct JListRanges
1273 /*! \brief Constructs a j-list range from \p cjList with the given index range */
1274 template <typename CjListType>
1275 JListRanges(int cjIndexStart,
1276 int cjIndexEnd,
1277 gmx::ArrayRef<const CjListType> cjList);
1279 int cjIndexStart; //!< The start index in the j-list
1280 int cjIndexEnd; //!< The end index in the j-list
1281 int cjFirst; //!< The j-cluster with index cjIndexStart
1282 int cjLast; //!< The j-cluster with index cjIndexEnd-1
1283 int numDirect; //!< Up to cjIndexStart+numDirect the j-clusters are cjFirst + the index offset
1286 #ifndef DOXYGEN
1287 template <typename CjListType>
1288 JListRanges::JListRanges(int cjIndexStart,
1289 int cjIndexEnd,
1290 gmx::ArrayRef<const CjListType> cjList) :
1291 cjIndexStart(cjIndexStart),
1292 cjIndexEnd(cjIndexEnd)
1294 GMX_ASSERT(cjIndexEnd > cjIndexStart, "JListRanges should only be called with non-empty lists");
1296 cjFirst = nblCj(cjList, cjIndexStart);
1297 cjLast = nblCj(cjList, cjIndexEnd - 1);
1299 /* Determine how many contiguous j-cells we have starting
1300 * from the first i-cell. This number can be used to directly
1301 * calculate j-cell indices for excluded atoms.
1303 numDirect = numContiguousJClusters(cjIndexStart, cjIndexEnd, cjList);
1305 #endif // !DOXYGEN
1307 /* Return the index of \p jCluster in the given range or -1 when not present
1309 * Note: This code is executed very often and therefore performance is
1310 * important. It should be inlined and fully optimized.
1312 template <typename CjListType>
1313 static inline int
1314 findJClusterInJList(int jCluster,
1315 const JListRanges &ranges,
1316 gmx::ArrayRef<const CjListType> cjList)
1318 int index;
1320 if (jCluster < ranges.cjFirst + ranges.numDirect)
1322 /* We can calculate the index directly using the offset */
1323 index = ranges.cjIndexStart + jCluster - ranges.cjFirst;
1325 else
1327 /* Search for jCluster using bisection */
1328 index = -1;
1329 int rangeStart = ranges.cjIndexStart + ranges.numDirect;
1330 int rangeEnd = ranges.cjIndexEnd;
1331 int rangeMiddle;
1332 while (index == -1 && rangeStart < rangeEnd)
1334 rangeMiddle = (rangeStart + rangeEnd) >> 1;
1336 const int clusterMiddle = nblCj(cjList, rangeMiddle);
1338 if (jCluster == clusterMiddle)
1340 index = rangeMiddle;
1342 else if (jCluster < clusterMiddle)
1344 rangeEnd = rangeMiddle;
1346 else
1348 rangeStart = rangeMiddle + 1;
1353 return index;
1356 // TODO: Get rid of the two functions below by renaming sci to ci (or something better)
1358 /* Return the i-entry in the list we are currently operating on */
1359 static nbnxn_ci_t *getOpenIEntry(NbnxnPairlistCpu *nbl)
1361 return &nbl->ci.back();
1364 /* Return the i-entry in the list we are currently operating on */
1365 static nbnxn_sci_t *getOpenIEntry(NbnxnPairlistGpu *nbl)
1367 return &nbl->sci.back();
1370 /* Set all atom-pair exclusions for a simple type list i-entry
1372 * Set all atom-pair exclusions from the topology stored in exclusions
1373 * as masks in the pair-list for simple list entry iEntry.
1375 static void
1376 setExclusionsForIEntry(const Nbnxm::GridSet &gridSet,
1377 NbnxnPairlistCpu *nbl,
1378 gmx_bool diagRemoved,
1379 int na_cj_2log,
1380 const nbnxn_ci_t &iEntry,
1381 const t_blocka &exclusions)
1383 if (iEntry.cj_ind_end == iEntry.cj_ind_start)
1385 /* Empty list: no exclusions */
1386 return;
1389 const JListRanges ranges(iEntry.cj_ind_start, iEntry.cj_ind_end, gmx::makeConstArrayRef(nbl->cj));
1391 const int iCluster = iEntry.ci;
1393 gmx::ArrayRef<const int> cell = gridSet.cells();
1394 gmx::ArrayRef<const int> atomIndices = gridSet.atomIndices();
1396 /* Loop over the atoms in the i-cluster */
1397 for (int i = 0; i < nbl->na_ci; i++)
1399 const int iIndex = iCluster*nbl->na_ci + i;
1400 const int iAtom = atomIndices[iIndex];
1401 if (iAtom >= 0)
1403 /* Loop over the topology-based exclusions for this i-atom */
1404 for (int exclIndex = exclusions.index[iAtom]; exclIndex < exclusions.index[iAtom + 1]; exclIndex++)
1406 const int jAtom = exclusions.a[exclIndex];
1408 if (jAtom == iAtom)
1410 /* The self exclusion are already set, save some time */
1411 continue;
1414 /* Get the index of the j-atom in the nbnxn atom data */
1415 const int jIndex = cell[jAtom];
1417 /* Without shifts we only calculate interactions j>i
1418 * for one-way pair-lists.
1420 if (diagRemoved && jIndex <= iIndex)
1422 continue;
1425 const int jCluster = (jIndex >> na_cj_2log);
1427 /* Could the cluster se be in our list? */
1428 if (jCluster >= ranges.cjFirst && jCluster <= ranges.cjLast)
1430 const int index =
1431 findJClusterInJList(jCluster, ranges,
1432 gmx::makeConstArrayRef(nbl->cj));
1434 if (index >= 0)
1436 /* We found an exclusion, clear the corresponding
1437 * interaction bit.
1439 const int innerJ = jIndex - (jCluster << na_cj_2log);
1441 nbl->cj[index].excl &= ~(1U << ((i << na_cj_2log) + innerJ));
1449 /* Add a new i-entry to the FEP list and copy the i-properties */
1450 static inline void fep_list_new_nri_copy(t_nblist *nlist)
1452 /* Add a new i-entry */
1453 nlist->nri++;
1455 assert(nlist->nri < nlist->maxnri);
1457 /* Duplicate the last i-entry, except for jindex, which continues */
1458 nlist->iinr[nlist->nri] = nlist->iinr[nlist->nri-1];
1459 nlist->shift[nlist->nri] = nlist->shift[nlist->nri-1];
1460 nlist->gid[nlist->nri] = nlist->gid[nlist->nri-1];
1461 nlist->jindex[nlist->nri] = nlist->nrj;
1464 /* Rellocate FEP list for size nl->maxnri, TODO: replace by C++ */
1465 static void reallocate_nblist(t_nblist *nl)
1467 if (gmx_debug_at)
1469 fprintf(debug, "reallocating neigborlist (ielec=%d, ivdw=%d, igeometry=%d, type=%d), maxnri=%d\n",
1470 nl->ielec, nl->ivdw, nl->igeometry, nl->type, nl->maxnri);
1472 srenew(nl->iinr, nl->maxnri);
1473 srenew(nl->gid, nl->maxnri);
1474 srenew(nl->shift, nl->maxnri);
1475 srenew(nl->jindex, nl->maxnri+1);
1478 /* For load balancing of the free-energy lists over threads, we set
1479 * the maximum nrj size of an i-entry to 40. This leads to good
1480 * load balancing in the worst case scenario of a single perturbed
1481 * particle on 16 threads, while not introducing significant overhead.
1482 * Note that half of the perturbed pairs will anyhow end up in very small lists,
1483 * since non perturbed i-particles will see few perturbed j-particles).
1485 const int max_nrj_fep = 40;
1487 /* Exclude the perturbed pairs from the Verlet list. This is only done to avoid
1488 * singularities for overlapping particles (0/0), since the charges and
1489 * LJ parameters have been zeroed in the nbnxn data structure.
1490 * Simultaneously make a group pair list for the perturbed pairs.
1492 static void make_fep_list(gmx::ArrayRef<const int> atomIndices,
1493 const nbnxn_atomdata_t *nbat,
1494 NbnxnPairlistCpu *nbl,
1495 gmx_bool bDiagRemoved,
1496 nbnxn_ci_t *nbl_ci,
1497 real gmx_unused shx,
1498 real gmx_unused shy,
1499 real gmx_unused shz,
1500 real gmx_unused rlist_fep2,
1501 const Grid &iGrid,
1502 const Grid &jGrid,
1503 t_nblist *nlist)
1505 int ci, cj_ind_start, cj_ind_end, cja, cjr;
1506 int nri_max;
1507 int gid_i = 0, gid_j, gid;
1508 int egp_shift, egp_mask;
1509 int gid_cj = 0;
1510 int ind_i, ind_j, ai, aj;
1511 int nri;
1512 gmx_bool bFEP_i, bFEP_i_all;
1514 if (nbl_ci->cj_ind_end == nbl_ci->cj_ind_start)
1516 /* Empty list */
1517 return;
1520 ci = nbl_ci->ci;
1522 cj_ind_start = nbl_ci->cj_ind_start;
1523 cj_ind_end = nbl_ci->cj_ind_end;
1525 /* In worst case we have alternating energy groups
1526 * and create #atom-pair lists, which means we need the size
1527 * of a cluster pair (na_ci*na_cj) times the number of cj's.
1529 nri_max = nbl->na_ci*nbl->na_cj*(cj_ind_end - cj_ind_start);
1530 if (nlist->nri + nri_max > nlist->maxnri)
1532 nlist->maxnri = over_alloc_large(nlist->nri + nri_max);
1533 reallocate_nblist(nlist);
1536 const int numAtomsJCluster = jGrid.geometry().numAtomsJCluster;
1538 const nbnxn_atomdata_t::Params &nbatParams = nbat->params();
1540 const int ngid = nbatParams.nenergrp;
1542 /* TODO: Consider adding a check in grompp and changing this to an assert */
1543 const int numBitsInEnergyGroupIdsForAtomsInJCluster = sizeof(gid_cj)*8;
1544 if (ngid*numAtomsJCluster > numBitsInEnergyGroupIdsForAtomsInJCluster)
1546 gmx_fatal(FARGS, "The Verlet scheme with %dx%d kernels and free-energy only supports up to %zu energy groups",
1547 iGrid.geometry().numAtomsICluster, numAtomsJCluster,
1548 (sizeof(gid_cj)*8)/numAtomsJCluster);
1551 egp_shift = nbatParams.neg_2log;
1552 egp_mask = (1 << egp_shift) - 1;
1554 /* Loop over the atoms in the i sub-cell */
1555 bFEP_i_all = TRUE;
1556 for (int i = 0; i < nbl->na_ci; i++)
1558 ind_i = ci*nbl->na_ci + i;
1559 ai = atomIndices[ind_i];
1560 if (ai >= 0)
1562 nri = nlist->nri;
1563 nlist->jindex[nri+1] = nlist->jindex[nri];
1564 nlist->iinr[nri] = ai;
1565 /* The actual energy group pair index is set later */
1566 nlist->gid[nri] = 0;
1567 nlist->shift[nri] = nbl_ci->shift & NBNXN_CI_SHIFT;
1569 bFEP_i = iGrid.atomIsPerturbed(ci - iGrid.cellOffset(), i);
1571 bFEP_i_all = bFEP_i_all && bFEP_i;
1573 if (nlist->nrj + (cj_ind_end - cj_ind_start)*nbl->na_cj > nlist->maxnrj)
1575 nlist->maxnrj = over_alloc_small(nlist->nrj + (cj_ind_end - cj_ind_start)*nbl->na_cj);
1576 srenew(nlist->jjnr, nlist->maxnrj);
1577 srenew(nlist->excl_fep, nlist->maxnrj);
1580 if (ngid > 1)
1582 gid_i = (nbatParams.energrp[ci] >> (egp_shift*i)) & egp_mask;
1585 for (int cj_ind = cj_ind_start; cj_ind < cj_ind_end; cj_ind++)
1587 unsigned int fep_cj;
1589 cja = nbl->cj[cj_ind].cj;
1591 if (numAtomsJCluster == jGrid.geometry().numAtomsICluster)
1593 cjr = cja - jGrid.cellOffset();
1594 fep_cj = jGrid.fepBits(cjr);
1595 if (ngid > 1)
1597 gid_cj = nbatParams.energrp[cja];
1600 else if (2*numAtomsJCluster == jGrid.geometry().numAtomsICluster)
1602 cjr = cja - jGrid.cellOffset()*2;
1603 /* Extract half of the ci fep/energrp mask */
1604 fep_cj = (jGrid.fepBits(cjr >> 1) >> ((cjr & 1)*numAtomsJCluster)) & ((1 << numAtomsJCluster) - 1);
1605 if (ngid > 1)
1607 gid_cj = nbatParams.energrp[cja >> 1] >> ((cja & 1)*numAtomsJCluster*egp_shift) & ((1 << (numAtomsJCluster*egp_shift)) - 1);
1610 else
1612 cjr = cja - (jGrid.cellOffset() >> 1);
1613 /* Combine two ci fep masks/energrp */
1614 fep_cj = jGrid.fepBits(cjr*2) + (jGrid.fepBits(cjr*2 + 1) << jGrid.geometry().numAtomsICluster);
1615 if (ngid > 1)
1617 gid_cj = nbatParams.energrp[cja*2] + (nbatParams.energrp[cja*2+1] << (jGrid.geometry().numAtomsICluster*egp_shift));
1621 if (bFEP_i || fep_cj != 0)
1623 for (int j = 0; j < nbl->na_cj; j++)
1625 /* Is this interaction perturbed and not excluded? */
1626 ind_j = cja*nbl->na_cj + j;
1627 aj = atomIndices[ind_j];
1628 if (aj >= 0 &&
1629 (bFEP_i || (fep_cj & (1 << j))) &&
1630 (!bDiagRemoved || ind_j >= ind_i))
1632 if (ngid > 1)
1634 gid_j = (gid_cj >> (j*egp_shift)) & egp_mask;
1635 gid = GID(gid_i, gid_j, ngid);
1637 if (nlist->nrj > nlist->jindex[nri] &&
1638 nlist->gid[nri] != gid)
1640 /* Energy group pair changed: new list */
1641 fep_list_new_nri_copy(nlist);
1642 nri = nlist->nri;
1644 nlist->gid[nri] = gid;
1647 if (nlist->nrj - nlist->jindex[nri] >= max_nrj_fep)
1649 fep_list_new_nri_copy(nlist);
1650 nri = nlist->nri;
1653 /* Add it to the FEP list */
1654 nlist->jjnr[nlist->nrj] = aj;
1655 nlist->excl_fep[nlist->nrj] = (nbl->cj[cj_ind].excl >> (i*nbl->na_cj + j)) & 1;
1656 nlist->nrj++;
1658 /* Exclude it from the normal list.
1659 * Note that the charge has been set to zero,
1660 * but we need to avoid 0/0, as perturbed atoms
1661 * can be on top of each other.
1663 nbl->cj[cj_ind].excl &= ~(1U << (i*nbl->na_cj + j));
1669 if (nlist->nrj > nlist->jindex[nri])
1671 /* Actually add this new, non-empty, list */
1672 nlist->nri++;
1673 nlist->jindex[nlist->nri] = nlist->nrj;
1678 if (bFEP_i_all)
1680 /* All interactions are perturbed, we can skip this entry */
1681 nbl_ci->cj_ind_end = cj_ind_start;
1682 nbl->ncjInUse -= cj_ind_end - cj_ind_start;
1686 /* Return the index of atom a within a cluster */
1687 static inline int cj_mod_cj4(int cj)
1689 return cj & (c_nbnxnGpuJgroupSize - 1);
1692 /* Convert a j-cluster to a cj4 group */
1693 static inline int cj_to_cj4(int cj)
1695 return cj/c_nbnxnGpuJgroupSize;
1698 /* Return the index of an j-atom within a warp */
1699 static inline int a_mod_wj(int a)
1701 return a & (c_nbnxnGpuClusterSize/c_nbnxnGpuClusterpairSplit - 1);
1704 /* As make_fep_list above, but for super/sub lists. */
1705 static void make_fep_list(gmx::ArrayRef<const int> atomIndices,
1706 const nbnxn_atomdata_t *nbat,
1707 NbnxnPairlistGpu *nbl,
1708 gmx_bool bDiagRemoved,
1709 const nbnxn_sci_t *nbl_sci,
1710 real shx,
1711 real shy,
1712 real shz,
1713 real rlist_fep2,
1714 const Grid &iGrid,
1715 const Grid &jGrid,
1716 t_nblist *nlist)
1718 int nri_max;
1719 int c_abs;
1720 int ind_i, ind_j, ai, aj;
1721 int nri;
1722 gmx_bool bFEP_i;
1723 real xi, yi, zi;
1724 const nbnxn_cj4_t *cj4;
1726 const int numJClusterGroups = nbl_sci->numJClusterGroups();
1727 if (numJClusterGroups == 0)
1729 /* Empty list */
1730 return;
1733 const int sci = nbl_sci->sci;
1735 const int cj4_ind_start = nbl_sci->cj4_ind_start;
1736 const int cj4_ind_end = nbl_sci->cj4_ind_end;
1738 /* Here we process one super-cell, max #atoms na_sc, versus a list
1739 * cj4 entries, each with max c_nbnxnGpuJgroupSize cj's, each
1740 * of size na_cj atoms.
1741 * On the GPU we don't support energy groups (yet).
1742 * So for each of the na_sc i-atoms, we need max one FEP list
1743 * for each max_nrj_fep j-atoms.
1745 nri_max = nbl->na_sc*nbl->na_cj*(1 + (numJClusterGroups*c_nbnxnGpuJgroupSize)/max_nrj_fep);
1746 if (nlist->nri + nri_max > nlist->maxnri)
1748 nlist->maxnri = over_alloc_large(nlist->nri + nri_max);
1749 reallocate_nblist(nlist);
1752 /* Loop over the atoms in the i super-cluster */
1753 for (int c = 0; c < c_gpuNumClusterPerCell; c++)
1755 c_abs = sci*c_gpuNumClusterPerCell + c;
1757 for (int i = 0; i < nbl->na_ci; i++)
1759 ind_i = c_abs*nbl->na_ci + i;
1760 ai = atomIndices[ind_i];
1761 if (ai >= 0)
1763 nri = nlist->nri;
1764 nlist->jindex[nri+1] = nlist->jindex[nri];
1765 nlist->iinr[nri] = ai;
1766 /* With GPUs, energy groups are not supported */
1767 nlist->gid[nri] = 0;
1768 nlist->shift[nri] = nbl_sci->shift & NBNXN_CI_SHIFT;
1770 bFEP_i = iGrid.atomIsPerturbed(c_abs - iGrid.cellOffset()*c_gpuNumClusterPerCell, i);
1772 xi = nbat->x()[ind_i*nbat->xstride+XX] + shx;
1773 yi = nbat->x()[ind_i*nbat->xstride+YY] + shy;
1774 zi = nbat->x()[ind_i*nbat->xstride+ZZ] + shz;
1776 const int nrjMax = nlist->nrj + numJClusterGroups*c_nbnxnGpuJgroupSize*nbl->na_cj;
1777 if (nrjMax > nlist->maxnrj)
1779 nlist->maxnrj = over_alloc_small(nrjMax);
1780 srenew(nlist->jjnr, nlist->maxnrj);
1781 srenew(nlist->excl_fep, nlist->maxnrj);
1784 for (int cj4_ind = cj4_ind_start; cj4_ind < cj4_ind_end; cj4_ind++)
1786 cj4 = &nbl->cj4[cj4_ind];
1788 for (int gcj = 0; gcj < c_nbnxnGpuJgroupSize; gcj++)
1790 if ((cj4->imei[0].imask & (1U << (gcj*c_gpuNumClusterPerCell + c))) == 0)
1792 /* Skip this ci for this cj */
1793 continue;
1796 const int cjr =
1797 cj4->cj[gcj] - jGrid.cellOffset()*c_gpuNumClusterPerCell;
1799 if (bFEP_i || jGrid.clusterIsPerturbed(cjr))
1801 for (int j = 0; j < nbl->na_cj; j++)
1803 /* Is this interaction perturbed and not excluded? */
1804 ind_j = (jGrid.cellOffset()*c_gpuNumClusterPerCell + cjr)*nbl->na_cj + j;
1805 aj = atomIndices[ind_j];
1806 if (aj >= 0 &&
1807 (bFEP_i || jGrid.atomIsPerturbed(cjr, j)) &&
1808 (!bDiagRemoved || ind_j >= ind_i))
1810 int excl_pair;
1811 unsigned int excl_bit;
1812 real dx, dy, dz;
1814 const int jHalf = j/(c_nbnxnGpuClusterSize/c_nbnxnGpuClusterpairSplit);
1815 nbnxn_excl_t &excl =
1816 get_exclusion_mask(nbl, cj4_ind, jHalf);
1818 excl_pair = a_mod_wj(j)*nbl->na_ci + i;
1819 excl_bit = (1U << (gcj*c_gpuNumClusterPerCell + c));
1821 dx = nbat->x()[ind_j*nbat->xstride+XX] - xi;
1822 dy = nbat->x()[ind_j*nbat->xstride+YY] - yi;
1823 dz = nbat->x()[ind_j*nbat->xstride+ZZ] - zi;
1825 /* The unpruned GPU list has more than 2/3
1826 * of the atom pairs beyond rlist. Using
1827 * this list will cause a lot of overhead
1828 * in the CPU FEP kernels, especially
1829 * relative to the fast GPU kernels.
1830 * So we prune the FEP list here.
1832 if (dx*dx + dy*dy + dz*dz < rlist_fep2)
1834 if (nlist->nrj - nlist->jindex[nri] >= max_nrj_fep)
1836 fep_list_new_nri_copy(nlist);
1837 nri = nlist->nri;
1840 /* Add it to the FEP list */
1841 nlist->jjnr[nlist->nrj] = aj;
1842 nlist->excl_fep[nlist->nrj] = (excl.pair[excl_pair] & excl_bit) ? 1 : 0;
1843 nlist->nrj++;
1846 /* Exclude it from the normal list.
1847 * Note that the charge and LJ parameters have
1848 * been set to zero, but we need to avoid 0/0,
1849 * as perturbed atoms can be on top of each other.
1851 excl.pair[excl_pair] &= ~excl_bit;
1855 /* Note that we could mask out this pair in imask
1856 * if all i- and/or all j-particles are perturbed.
1857 * But since the perturbed pairs on the CPU will
1858 * take an order of magnitude more time, the GPU
1859 * will finish before the CPU and there is no gain.
1865 if (nlist->nrj > nlist->jindex[nri])
1867 /* Actually add this new, non-empty, list */
1868 nlist->nri++;
1869 nlist->jindex[nlist->nri] = nlist->nrj;
1876 /* Set all atom-pair exclusions for a GPU type list i-entry
1878 * Sets all atom-pair exclusions from the topology stored in exclusions
1879 * as masks in the pair-list for i-super-cluster list entry iEntry.
1881 static void
1882 setExclusionsForIEntry(const Nbnxm::GridSet &gridSet,
1883 NbnxnPairlistGpu *nbl,
1884 gmx_bool diagRemoved,
1885 int gmx_unused na_cj_2log,
1886 const nbnxn_sci_t &iEntry,
1887 const t_blocka &exclusions)
1889 if (iEntry.numJClusterGroups() == 0)
1891 /* Empty list */
1892 return;
1895 /* Set the search ranges using start and end j-cluster indices.
1896 * Note that here we can not use cj4_ind_end, since the last cj4
1897 * can be only partially filled, so we use cj_ind.
1899 const JListRanges ranges(iEntry.cj4_ind_start*c_nbnxnGpuJgroupSize,
1900 nbl->work->cj_ind,
1901 gmx::makeConstArrayRef(nbl->cj4));
1903 GMX_ASSERT(nbl->na_ci == c_nbnxnGpuClusterSize, "na_ci should match the GPU cluster size");
1904 constexpr int c_clusterSize = c_nbnxnGpuClusterSize;
1905 constexpr int c_superClusterSize = c_nbnxnGpuNumClusterPerSupercluster*c_nbnxnGpuClusterSize;
1907 const int iSuperCluster = iEntry.sci;
1909 gmx::ArrayRef<const int> atomIndices = gridSet.atomIndices();
1910 gmx::ArrayRef<const int> cell = gridSet.cells();
1912 /* Loop over the atoms in the i super-cluster */
1913 for (int i = 0; i < c_superClusterSize; i++)
1915 const int iIndex = iSuperCluster*c_superClusterSize + i;
1916 const int iAtom = atomIndices[iIndex];
1917 if (iAtom >= 0)
1919 const int iCluster = i/c_clusterSize;
1921 /* Loop over the topology-based exclusions for this i-atom */
1922 for (int exclIndex = exclusions.index[iAtom]; exclIndex < exclusions.index[iAtom + 1]; exclIndex++)
1924 const int jAtom = exclusions.a[exclIndex];
1926 if (jAtom == iAtom)
1928 /* The self exclusions are already set, save some time */
1929 continue;
1932 /* Get the index of the j-atom in the nbnxn atom data */
1933 const int jIndex = cell[jAtom];
1935 /* Without shifts we only calculate interactions j>i
1936 * for one-way pair-lists.
1938 /* NOTE: We would like to use iIndex on the right hand side,
1939 * but that makes this routine 25% slower with gcc6/7.
1940 * Even using c_superClusterSize makes it slower.
1941 * Either of these changes triggers peeling of the exclIndex
1942 * loop, which apparently leads to far less efficient code.
1944 if (diagRemoved && jIndex <= iSuperCluster*nbl->na_sc + i)
1946 continue;
1949 const int jCluster = jIndex/c_clusterSize;
1951 /* Check whether the cluster is in our list? */
1952 if (jCluster >= ranges.cjFirst && jCluster <= ranges.cjLast)
1954 const int index =
1955 findJClusterInJList(jCluster, ranges,
1956 gmx::makeConstArrayRef(nbl->cj4));
1958 if (index >= 0)
1960 /* We found an exclusion, clear the corresponding
1961 * interaction bit.
1963 const unsigned int pairMask = (1U << (cj_mod_cj4(index)*c_gpuNumClusterPerCell + iCluster));
1964 /* Check if the i-cluster interacts with the j-cluster */
1965 if (nbl_imask0(nbl, index) & pairMask)
1967 const int innerI = (i & (c_clusterSize - 1));
1968 const int innerJ = (jIndex & (c_clusterSize - 1));
1970 /* Determine which j-half (CUDA warp) we are in */
1971 const int jHalf = innerJ/(c_clusterSize/c_nbnxnGpuClusterpairSplit);
1973 nbnxn_excl_t &interactionMask =
1974 get_exclusion_mask(nbl, cj_to_cj4(index), jHalf);
1976 interactionMask.pair[a_mod_wj(innerJ)*c_clusterSize + innerI] &= ~pairMask;
1985 /* Make a new ci entry at the back of nbl->ci */
1986 static void addNewIEntry(NbnxnPairlistCpu *nbl, int ci, int shift, int flags)
1988 nbnxn_ci_t ciEntry;
1989 ciEntry.ci = ci;
1990 ciEntry.shift = shift;
1991 /* Store the interaction flags along with the shift */
1992 ciEntry.shift |= flags;
1993 ciEntry.cj_ind_start = nbl->cj.size();
1994 ciEntry.cj_ind_end = nbl->cj.size();
1995 nbl->ci.push_back(ciEntry);
1998 /* Make a new sci entry at index nbl->nsci */
1999 static void addNewIEntry(NbnxnPairlistGpu *nbl, int sci, int shift, int gmx_unused flags)
2001 nbnxn_sci_t sciEntry;
2002 sciEntry.sci = sci;
2003 sciEntry.shift = shift;
2004 sciEntry.cj4_ind_start = nbl->cj4.size();
2005 sciEntry.cj4_ind_end = nbl->cj4.size();
2007 nbl->sci.push_back(sciEntry);
2010 /* Sort the simple j-list cj on exclusions.
2011 * Entries with exclusions will all be sorted to the beginning of the list.
2013 static void sort_cj_excl(nbnxn_cj_t *cj, int ncj,
2014 NbnxnPairlistCpuWork *work)
2016 work->cj.resize(ncj);
2018 /* Make a list of the j-cells involving exclusions */
2019 int jnew = 0;
2020 for (int j = 0; j < ncj; j++)
2022 if (cj[j].excl != NBNXN_INTERACTION_MASK_ALL)
2024 work->cj[jnew++] = cj[j];
2027 /* Check if there are exclusions at all or not just the first entry */
2028 if (!((jnew == 0) ||
2029 (jnew == 1 && cj[0].excl != NBNXN_INTERACTION_MASK_ALL)))
2031 for (int j = 0; j < ncj; j++)
2033 if (cj[j].excl == NBNXN_INTERACTION_MASK_ALL)
2035 work->cj[jnew++] = cj[j];
2038 for (int j = 0; j < ncj; j++)
2040 cj[j] = work->cj[j];
2045 /* Close this simple list i entry */
2046 static void closeIEntry(NbnxnPairlistCpu *nbl,
2047 int gmx_unused sp_max_av,
2048 gmx_bool gmx_unused progBal,
2049 float gmx_unused nsp_tot_est,
2050 int gmx_unused thread,
2051 int gmx_unused nthread)
2053 nbnxn_ci_t &ciEntry = nbl->ci.back();
2055 /* All content of the new ci entry have already been filled correctly,
2056 * we only need to sort and increase counts or remove the entry when empty.
2058 const int jlen = ciEntry.cj_ind_end - ciEntry.cj_ind_start;
2059 if (jlen > 0)
2061 sort_cj_excl(nbl->cj.data() + ciEntry.cj_ind_start, jlen, nbl->work.get());
2063 /* The counts below are used for non-bonded pair/flop counts
2064 * and should therefore match the available kernel setups.
2066 if (!(ciEntry.shift & NBNXN_CI_DO_COUL(0)))
2068 nbl->work->ncj_noq += jlen;
2070 else if ((ciEntry.shift & NBNXN_CI_HALF_LJ(0)) ||
2071 !(ciEntry.shift & NBNXN_CI_DO_LJ(0)))
2073 nbl->work->ncj_hlj += jlen;
2076 else
2078 /* Entry is empty: remove it */
2079 nbl->ci.pop_back();
2083 /* Split sci entry for load balancing on the GPU.
2084 * Splitting ensures we have enough lists to fully utilize the whole GPU.
2085 * With progBal we generate progressively smaller lists, which improves
2086 * load balancing. As we only know the current count on our own thread,
2087 * we will need to estimate the current total amount of i-entries.
2088 * As the lists get concatenated later, this estimate depends
2089 * both on nthread and our own thread index.
2091 static void split_sci_entry(NbnxnPairlistGpu *nbl,
2092 int nsp_target_av,
2093 gmx_bool progBal, float nsp_tot_est,
2094 int thread, int nthread)
2096 int nsp_max;
2098 if (progBal)
2100 float nsp_est;
2102 /* Estimate the total numbers of ci's of the nblist combined
2103 * over all threads using the target number of ci's.
2105 nsp_est = (nsp_tot_est*thread)/nthread + nbl->nci_tot;
2107 /* The first ci blocks should be larger, to avoid overhead.
2108 * The last ci blocks should be smaller, to improve load balancing.
2109 * The factor 3/2 makes the first block 3/2 times the target average
2110 * and ensures that the total number of blocks end up equal to
2111 * that of equally sized blocks of size nsp_target_av.
2113 nsp_max = static_cast<int>(nsp_target_av*(nsp_tot_est*1.5/(nsp_est + nsp_tot_est)));
2115 else
2117 nsp_max = nsp_target_av;
2120 const int cj4_start = nbl->sci.back().cj4_ind_start;
2121 const int cj4_end = nbl->sci.back().cj4_ind_end;
2122 const int j4len = cj4_end - cj4_start;
2124 if (j4len > 1 && j4len*c_gpuNumClusterPerCell*c_nbnxnGpuJgroupSize > nsp_max)
2126 /* Modify the last ci entry and process the cj4's again */
2128 int nsp = 0;
2129 int nsp_sci = 0;
2130 int nsp_cj4_e = 0;
2131 int nsp_cj4 = 0;
2132 for (int cj4 = cj4_start; cj4 < cj4_end; cj4++)
2134 int nsp_cj4_p = nsp_cj4;
2135 /* Count the number of cluster pairs in this cj4 group */
2136 nsp_cj4 = 0;
2137 for (int p = 0; p < c_gpuNumClusterPerCell*c_nbnxnGpuJgroupSize; p++)
2139 nsp_cj4 += (nbl->cj4[cj4].imei[0].imask >> p) & 1;
2142 /* If adding the current cj4 with nsp_cj4 pairs get us further
2143 * away from our target nsp_max, split the list before this cj4.
2145 if (nsp > 0 && nsp_max - nsp < nsp + nsp_cj4 - nsp_max)
2147 /* Split the list at cj4 */
2148 nbl->sci.back().cj4_ind_end = cj4;
2149 /* Create a new sci entry */
2150 nbnxn_sci_t sciNew;
2151 sciNew.sci = nbl->sci.back().sci;
2152 sciNew.shift = nbl->sci.back().shift;
2153 sciNew.cj4_ind_start = cj4;
2154 nbl->sci.push_back(sciNew);
2156 nsp_sci = nsp;
2157 nsp_cj4_e = nsp_cj4_p;
2158 nsp = 0;
2160 nsp += nsp_cj4;
2163 /* Put the remaining cj4's in the last sci entry */
2164 nbl->sci.back().cj4_ind_end = cj4_end;
2166 /* Possibly balance out the last two sci's
2167 * by moving the last cj4 of the second last sci.
2169 if (nsp_sci - nsp_cj4_e >= nsp + nsp_cj4_e)
2171 GMX_ASSERT(nbl->sci.size() >= 2, "We expect at least two elements");
2172 nbl->sci[nbl->sci.size() - 2].cj4_ind_end--;
2173 nbl->sci[nbl->sci.size() - 1].cj4_ind_start--;
2178 /* Clost this super/sub list i entry */
2179 static void closeIEntry(NbnxnPairlistGpu *nbl,
2180 int nsp_max_av,
2181 gmx_bool progBal, float nsp_tot_est,
2182 int thread, int nthread)
2184 nbnxn_sci_t &sciEntry = *getOpenIEntry(nbl);
2186 /* All content of the new ci entry have already been filled correctly,
2187 * we only need to, potentially, split or remove the entry when empty.
2189 int j4len = sciEntry.numJClusterGroups();
2190 if (j4len > 0)
2192 /* We can only have complete blocks of 4 j-entries in a list,
2193 * so round the count up before closing.
2195 int ncj4 = (nbl->work->cj_ind + c_nbnxnGpuJgroupSize - 1)/c_nbnxnGpuJgroupSize;
2196 nbl->work->cj_ind = ncj4*c_nbnxnGpuJgroupSize;
2198 if (nsp_max_av > 0)
2200 /* Measure the size of the new entry and potentially split it */
2201 split_sci_entry(nbl, nsp_max_av, progBal, nsp_tot_est,
2202 thread, nthread);
2205 else
2207 /* Entry is empty: remove it */
2208 nbl->sci.pop_back();
2212 /* Syncs the working array before adding another grid pair to the GPU list */
2213 static void sync_work(NbnxnPairlistCpu gmx_unused *nbl)
2217 /* Syncs the working array before adding another grid pair to the GPU list */
2218 static void sync_work(NbnxnPairlistGpu *nbl)
2220 nbl->work->cj_ind = nbl->cj4.size()*c_nbnxnGpuJgroupSize;
2223 /* Clears an NbnxnPairlistCpu data structure */
2224 static void clear_pairlist(NbnxnPairlistCpu *nbl)
2226 nbl->ci.clear();
2227 nbl->cj.clear();
2228 nbl->ncjInUse = 0;
2229 nbl->nci_tot = 0;
2230 nbl->ciOuter.clear();
2231 nbl->cjOuter.clear();
2233 nbl->work->ncj_noq = 0;
2234 nbl->work->ncj_hlj = 0;
2237 /* Clears an NbnxnPairlistGpu data structure */
2238 static void clear_pairlist(NbnxnPairlistGpu *nbl)
2240 nbl->sci.clear();
2241 nbl->cj4.clear();
2242 nbl->excl.resize(1);
2243 nbl->nci_tot = 0;
2246 /* Clears a group scheme pair list */
2247 static void clear_pairlist_fep(t_nblist *nl)
2249 nl->nri = 0;
2250 nl->nrj = 0;
2251 if (nl->jindex == nullptr)
2253 snew(nl->jindex, 1);
2255 nl->jindex[0] = 0;
2258 /* Sets a simple list i-cell bounding box, including PBC shift */
2259 static inline void set_icell_bb_simple(gmx::ArrayRef<const BoundingBox> bb,
2260 int ci,
2261 real shx, real shy, real shz,
2262 BoundingBox *bb_ci)
2264 bb_ci->lower.x = bb[ci].lower.x + shx;
2265 bb_ci->lower.y = bb[ci].lower.y + shy;
2266 bb_ci->lower.z = bb[ci].lower.z + shz;
2267 bb_ci->upper.x = bb[ci].upper.x + shx;
2268 bb_ci->upper.y = bb[ci].upper.y + shy;
2269 bb_ci->upper.z = bb[ci].upper.z + shz;
2272 /* Sets a simple list i-cell bounding box, including PBC shift */
2273 static inline void set_icell_bb(const Grid &iGrid,
2274 int ci,
2275 real shx, real shy, real shz,
2276 NbnxnPairlistCpuWork *work)
2278 set_icell_bb_simple(iGrid.iBoundingBoxes(), ci, shx, shy, shz,
2279 &work->iClusterData.bb[0]);
2282 #if NBNXN_BBXXXX
2283 /* Sets a super-cell and sub cell bounding boxes, including PBC shift */
2284 static void set_icell_bbxxxx_supersub(gmx::ArrayRef<const float> bb,
2285 int ci,
2286 real shx, real shy, real shz,
2287 float *bb_ci)
2289 constexpr int cellBBStride = packedBoundingBoxesIndex(c_gpuNumClusterPerCell);
2290 constexpr int pbbStride = c_packedBoundingBoxesDimSize;
2291 const int ia = ci*cellBBStride;
2292 for (int m = 0; m < cellBBStride; m += c_packedBoundingBoxesSize)
2294 for (int i = 0; i < pbbStride; i++)
2296 bb_ci[m + 0*pbbStride + i] = bb[ia + m + 0*pbbStride + i] + shx;
2297 bb_ci[m + 1*pbbStride + i] = bb[ia + m + 1*pbbStride + i] + shy;
2298 bb_ci[m + 2*pbbStride + i] = bb[ia + m + 2*pbbStride + i] + shz;
2299 bb_ci[m + 3*pbbStride + i] = bb[ia + m + 3*pbbStride + i] + shx;
2300 bb_ci[m + 4*pbbStride + i] = bb[ia + m + 4*pbbStride + i] + shy;
2301 bb_ci[m + 5*pbbStride + i] = bb[ia + m + 5*pbbStride + i] + shz;
2305 #endif
2307 /* Sets a super-cell and sub cell bounding boxes, including PBC shift */
2308 gmx_unused static void set_icell_bb_supersub(gmx::ArrayRef<const BoundingBox> bb,
2309 int ci,
2310 real shx, real shy, real shz,
2311 BoundingBox *bb_ci)
2313 for (int i = 0; i < c_gpuNumClusterPerCell; i++)
2315 set_icell_bb_simple(bb, ci*c_gpuNumClusterPerCell+i,
2316 shx, shy, shz,
2317 &bb_ci[i]);
2321 /* Sets a super-cell and sub cell bounding boxes, including PBC shift */
2322 gmx_unused static void set_icell_bb(const Grid &iGrid,
2323 int ci,
2324 real shx, real shy, real shz,
2325 NbnxnPairlistGpuWork *work)
2327 #if NBNXN_BBXXXX
2328 set_icell_bbxxxx_supersub(iGrid.packedBoundingBoxes(), ci, shx, shy, shz,
2329 work->iSuperClusterData.bbPacked.data());
2330 #else
2331 set_icell_bb_supersub(iGrid.iBoundingBoxes(), ci, shx, shy, shz,
2332 work->iSuperClusterData.bb.data());
2333 #endif
2336 /* Copies PBC shifted i-cell atom coordinates x,y,z to working array */
2337 static void icell_set_x_simple(int ci,
2338 real shx, real shy, real shz,
2339 int stride, const real *x,
2340 NbnxnPairlistCpuWork::IClusterData *iClusterData)
2342 const int ia = ci*c_nbnxnCpuIClusterSize;
2344 for (int i = 0; i < c_nbnxnCpuIClusterSize; i++)
2346 iClusterData->x[i*STRIDE_XYZ+XX] = x[(ia+i)*stride+XX] + shx;
2347 iClusterData->x[i*STRIDE_XYZ+YY] = x[(ia+i)*stride+YY] + shy;
2348 iClusterData->x[i*STRIDE_XYZ+ZZ] = x[(ia+i)*stride+ZZ] + shz;
2352 static void icell_set_x(int ci,
2353 real shx, real shy, real shz,
2354 int stride, const real *x,
2355 const ClusterDistanceKernelType kernelType,
2356 NbnxnPairlistCpuWork *work)
2358 switch (kernelType)
2360 #if GMX_SIMD
2361 #ifdef GMX_NBNXN_SIMD_4XN
2362 case ClusterDistanceKernelType::CpuSimd_4xM:
2363 icell_set_x_simd_4xn(ci, shx, shy, shz, stride, x, work);
2364 break;
2365 #endif
2366 #ifdef GMX_NBNXN_SIMD_2XNN
2367 case ClusterDistanceKernelType::CpuSimd_2xMM:
2368 icell_set_x_simd_2xnn(ci, shx, shy, shz, stride, x, work);
2369 break;
2370 #endif
2371 #endif
2372 case ClusterDistanceKernelType::CpuPlainC:
2373 icell_set_x_simple(ci, shx, shy, shz, stride, x, &work->iClusterData);
2374 break;
2375 default:
2376 GMX_ASSERT(false, "Unhandled case");
2377 break;
2381 /* Copies PBC shifted super-cell atom coordinates x,y,z to working array */
2382 static void icell_set_x(int ci,
2383 real shx, real shy, real shz,
2384 int stride, const real *x,
2385 ClusterDistanceKernelType gmx_unused kernelType,
2386 NbnxnPairlistGpuWork *work)
2388 #if !GMX_SIMD4_HAVE_REAL
2390 real * x_ci = work->iSuperClusterData.x.data();
2392 int ia = ci*c_gpuNumClusterPerCell*c_nbnxnGpuClusterSize;
2393 for (int i = 0; i < c_gpuNumClusterPerCell*c_nbnxnGpuClusterSize; i++)
2395 x_ci[i*DIM + XX] = x[(ia+i)*stride + XX] + shx;
2396 x_ci[i*DIM + YY] = x[(ia+i)*stride + YY] + shy;
2397 x_ci[i*DIM + ZZ] = x[(ia+i)*stride + ZZ] + shz;
2400 #else /* !GMX_SIMD4_HAVE_REAL */
2402 real * x_ci = work->iSuperClusterData.xSimd.data();
2404 for (int si = 0; si < c_gpuNumClusterPerCell; si++)
2406 for (int i = 0; i < c_nbnxnGpuClusterSize; i += GMX_SIMD4_WIDTH)
2408 int io = si*c_nbnxnGpuClusterSize + i;
2409 int ia = ci*c_gpuNumClusterPerCell*c_nbnxnGpuClusterSize + io;
2410 for (int j = 0; j < GMX_SIMD4_WIDTH; j++)
2412 x_ci[io*DIM + j + XX*GMX_SIMD4_WIDTH] = x[(ia + j)*stride + XX] + shx;
2413 x_ci[io*DIM + j + YY*GMX_SIMD4_WIDTH] = x[(ia + j)*stride + YY] + shy;
2414 x_ci[io*DIM + j + ZZ*GMX_SIMD4_WIDTH] = x[(ia + j)*stride + ZZ] + shz;
2419 #endif /* !GMX_SIMD4_HAVE_REAL */
2422 static real minimum_subgrid_size_xy(const Grid &grid)
2424 const Grid::Dimensions &dims = grid.dimensions();
2426 if (grid.geometry().isSimple)
2428 return std::min(dims.cellSize[XX], dims.cellSize[YY]);
2430 else
2432 return std::min(dims.cellSize[XX]/c_gpuNumClusterPerCellX,
2433 dims.cellSize[YY]/c_gpuNumClusterPerCellY);
2437 static real effective_buffer_1x1_vs_MxN(const Grid &iGrid,
2438 const Grid &jGrid)
2440 const real eff_1x1_buffer_fac_overest = 0.1;
2442 /* Determine an atom-pair list cut-off buffer size for atom pairs,
2443 * to be added to rlist (including buffer) used for MxN.
2444 * This is for converting an MxN list to a 1x1 list. This means we can't
2445 * use the normal buffer estimate, as we have an MxN list in which
2446 * some atom pairs beyond rlist are missing. We want to capture
2447 * the beneficial effect of buffering by extra pairs just outside rlist,
2448 * while removing the useless pairs that are further away from rlist.
2449 * (Also the buffer could have been set manually not using the estimate.)
2450 * This buffer size is an overestimate.
2451 * We add 10% of the smallest grid sub-cell dimensions.
2452 * Note that the z-size differs per cell and we don't use this,
2453 * so we overestimate.
2454 * With PME, the 10% value gives a buffer that is somewhat larger
2455 * than the effective buffer with a tolerance of 0.005 kJ/mol/ps.
2456 * Smaller tolerances or using RF lead to a smaller effective buffer,
2457 * so 10% gives a safe overestimate.
2459 return eff_1x1_buffer_fac_overest*(minimum_subgrid_size_xy(iGrid) +
2460 minimum_subgrid_size_xy(jGrid));
2463 /* Estimates the interaction volume^2 for non-local interactions */
2464 static real nonlocal_vol2(const struct gmx_domdec_zones_t *zones, const rvec ls, real r)
2466 real cl, ca, za;
2467 real vold_est;
2468 real vol2_est_tot;
2470 vol2_est_tot = 0;
2472 /* Here we simply add up the volumes of 1, 2 or 3 1D decomposition
2473 * not home interaction volume^2. As these volumes are not additive,
2474 * this is an overestimate, but it would only be significant in the limit
2475 * of small cells, where we anyhow need to split the lists into
2476 * as small parts as possible.
2479 for (int z = 0; z < zones->n; z++)
2481 if (zones->shift[z][XX] + zones->shift[z][YY] + zones->shift[z][ZZ] == 1)
2483 cl = 0;
2484 ca = 1;
2485 za = 1;
2486 for (int d = 0; d < DIM; d++)
2488 if (zones->shift[z][d] == 0)
2490 cl += 0.5*ls[d];
2491 ca *= ls[d];
2492 za *= zones->size[z].x1[d] - zones->size[z].x0[d];
2496 /* 4 octants of a sphere */
2497 vold_est = 0.25*M_PI*r*r*r*r;
2498 /* 4 quarter pie slices on the edges */
2499 vold_est += 4*cl*M_PI/6.0*r*r*r;
2500 /* One rectangular volume on a face */
2501 vold_est += ca*0.5*r*r;
2503 vol2_est_tot += vold_est*za;
2507 return vol2_est_tot;
2510 /* Estimates the average size of a full j-list for super/sub setup */
2511 static void get_nsubpair_target(const Nbnxm::GridSet &gridSet,
2512 const InteractionLocality iloc,
2513 const real rlist,
2514 const int min_ci_balanced,
2515 int *nsubpair_target,
2516 float *nsubpair_tot_est)
2518 /* The target value of 36 seems to be the optimum for Kepler.
2519 * Maxwell is less sensitive to the exact value.
2521 const int nsubpair_target_min = 36;
2522 real r_eff_sup, vol_est, nsp_est, nsp_est_nl;
2524 const Grid &grid = gridSet.grids()[0];
2526 /* We don't need to balance list sizes if:
2527 * - We didn't request balancing.
2528 * - The number of grid cells >= the number of lists requested,
2529 * since we will always generate at least #cells lists.
2530 * - We don't have any cells, since then there won't be any lists.
2532 if (min_ci_balanced <= 0 || grid.numCells() >= min_ci_balanced || grid.numCells() == 0)
2534 /* nsubpair_target==0 signals no balancing */
2535 *nsubpair_target = 0;
2536 *nsubpair_tot_est = 0;
2538 return;
2541 gmx::RVec ls;
2542 const int numAtomsCluster = grid.geometry().numAtomsICluster;
2543 const Grid::Dimensions &dims = grid.dimensions();
2545 ls[XX] = dims.cellSize[XX]/c_gpuNumClusterPerCellX;
2546 ls[YY] = dims.cellSize[YY]/c_gpuNumClusterPerCellY;
2547 ls[ZZ] = numAtomsCluster/(dims.atomDensity*ls[XX]*ls[YY]);
2549 /* The formulas below are a heuristic estimate of the average nsj per si*/
2550 r_eff_sup = rlist + nbnxn_get_rlist_effective_inc(numAtomsCluster, ls);
2552 if (!gridSet.domainSetup().haveMultipleDomains ||
2553 gridSet.domainSetup().zones->n == 1)
2555 nsp_est_nl = 0;
2557 else
2559 nsp_est_nl =
2560 gmx::square(dims.atomDensity/numAtomsCluster)*
2561 nonlocal_vol2(gridSet.domainSetup().zones, ls, r_eff_sup);
2564 if (iloc == InteractionLocality::Local)
2566 /* Sub-cell interacts with itself */
2567 vol_est = ls[XX]*ls[YY]*ls[ZZ];
2568 /* 6/2 rectangular volume on the faces */
2569 vol_est += (ls[XX]*ls[YY] + ls[XX]*ls[ZZ] + ls[YY]*ls[ZZ])*r_eff_sup;
2570 /* 12/2 quarter pie slices on the edges */
2571 vol_est += 2*(ls[XX] + ls[YY] + ls[ZZ])*0.25*M_PI*gmx::square(r_eff_sup);
2572 /* 4 octants of a sphere */
2573 vol_est += 0.5*4.0/3.0*M_PI*gmx::power3(r_eff_sup);
2575 /* Estimate the number of cluster pairs as the local number of
2576 * clusters times the volume they interact with times the density.
2578 nsp_est = grid.numClusters()*vol_est*dims.atomDensity/numAtomsCluster;
2580 /* Subtract the non-local pair count */
2581 nsp_est -= nsp_est_nl;
2583 /* For small cut-offs nsp_est will be an underesimate.
2584 * With DD nsp_est_nl is an overestimate so nsp_est can get negative.
2585 * So to avoid too small or negative nsp_est we set a minimum of
2586 * all cells interacting with all 3^3 direct neighbors (3^3-1)/2+1=14.
2587 * This might be a slight overestimate for small non-periodic groups of
2588 * atoms as will occur for a local domain with DD, but for small
2589 * groups of atoms we'll anyhow be limited by nsubpair_target_min,
2590 * so this overestimation will not matter.
2592 nsp_est = std::max(nsp_est, grid.numClusters()*14._real);
2594 if (debug)
2596 fprintf(debug, "nsp_est local %5.1f non-local %5.1f\n",
2597 nsp_est, nsp_est_nl);
2600 else
2602 nsp_est = nsp_est_nl;
2605 /* Thus the (average) maximum j-list size should be as follows.
2606 * Since there is overhead, we shouldn't make the lists too small
2607 * (and we can't chop up j-groups) so we use a minimum target size of 36.
2609 *nsubpair_target = std::max(nsubpair_target_min,
2610 roundToInt(nsp_est/min_ci_balanced));
2611 *nsubpair_tot_est = nsp_est;
2613 if (debug)
2615 fprintf(debug, "nbl nsp estimate %.1f, nsubpair_target %d\n",
2616 nsp_est, *nsubpair_target);
2620 /* Debug list print function */
2621 static void print_nblist_ci_cj(FILE *fp,
2622 const NbnxnPairlistCpu &nbl)
2624 for (const nbnxn_ci_t &ciEntry : nbl.ci)
2626 fprintf(fp, "ci %4d shift %2d ncj %3d\n",
2627 ciEntry.ci, ciEntry.shift,
2628 ciEntry.cj_ind_end - ciEntry.cj_ind_start);
2630 for (int j = ciEntry.cj_ind_start; j < ciEntry.cj_ind_end; j++)
2632 fprintf(fp, " cj %5d imask %x\n",
2633 nbl.cj[j].cj,
2634 nbl.cj[j].excl);
2639 /* Debug list print function */
2640 static void print_nblist_sci_cj(FILE *fp,
2641 const NbnxnPairlistGpu &nbl)
2643 for (const nbnxn_sci_t &sci : nbl.sci)
2645 fprintf(fp, "ci %4d shift %2d ncj4 %2d\n",
2646 sci.sci, sci.shift,
2647 sci.numJClusterGroups());
2649 int ncp = 0;
2650 for (int j4 = sci.cj4_ind_start; j4 < sci.cj4_ind_end; j4++)
2652 for (int j = 0; j < c_nbnxnGpuJgroupSize; j++)
2654 fprintf(fp, " sj %5d imask %x\n",
2655 nbl.cj4[j4].cj[j],
2656 nbl.cj4[j4].imei[0].imask);
2657 for (int si = 0; si < c_gpuNumClusterPerCell; si++)
2659 if (nbl.cj4[j4].imei[0].imask & (1U << (j*c_gpuNumClusterPerCell + si)))
2661 ncp++;
2666 fprintf(fp, "ci %4d shift %2d ncj4 %2d ncp %3d\n",
2667 sci.sci, sci.shift,
2668 sci.numJClusterGroups(),
2669 ncp);
2673 /* Combine pair lists *nbl generated on multiple threads nblc */
2674 static void combine_nblists(gmx::ArrayRef<const NbnxnPairlistGpu> nbls,
2675 NbnxnPairlistGpu *nblc)
2677 int nsci = nblc->sci.size();
2678 int ncj4 = nblc->cj4.size();
2679 int nexcl = nblc->excl.size();
2680 for (auto &nbl : nbls)
2682 nsci += nbl.sci.size();
2683 ncj4 += nbl.cj4.size();
2684 nexcl += nbl.excl.size();
2687 /* Resize with the final, combined size, so we can fill in parallel */
2688 /* NOTE: For better performance we should use default initialization */
2689 nblc->sci.resize(nsci);
2690 nblc->cj4.resize(ncj4);
2691 nblc->excl.resize(nexcl);
2693 /* Each thread should copy its own data to the combined arrays,
2694 * as otherwise data will go back and forth between different caches.
2696 const int gmx_unused nthreads = gmx_omp_nthreads_get(emntPairsearch);
2698 #pragma omp parallel for num_threads(nthreads) schedule(static)
2699 for (gmx::index n = 0; n < nbls.ssize(); n++)
2703 /* Determine the offset in the combined data for our thread.
2704 * Note that the original sizes in nblc are lost.
2706 int sci_offset = nsci;
2707 int cj4_offset = ncj4;
2708 int excl_offset = nexcl;
2710 for (gmx::index i = n; i < nbls.ssize(); i++)
2712 sci_offset -= nbls[i].sci.size();
2713 cj4_offset -= nbls[i].cj4.size();
2714 excl_offset -= nbls[i].excl.size();
2717 const NbnxnPairlistGpu &nbli = nbls[n];
2719 for (size_t i = 0; i < nbli.sci.size(); i++)
2721 nblc->sci[sci_offset + i] = nbli.sci[i];
2722 nblc->sci[sci_offset + i].cj4_ind_start += cj4_offset;
2723 nblc->sci[sci_offset + i].cj4_ind_end += cj4_offset;
2726 for (size_t j4 = 0; j4 < nbli.cj4.size(); j4++)
2728 nblc->cj4[cj4_offset + j4] = nbli.cj4[j4];
2729 nblc->cj4[cj4_offset + j4].imei[0].excl_ind += excl_offset;
2730 nblc->cj4[cj4_offset + j4].imei[1].excl_ind += excl_offset;
2733 for (size_t j4 = 0; j4 < nbli.excl.size(); j4++)
2735 nblc->excl[excl_offset + j4] = nbli.excl[j4];
2738 GMX_CATCH_ALL_AND_EXIT_WITH_FATAL_ERROR;
2741 for (auto &nbl : nbls)
2743 nblc->nci_tot += nbl.nci_tot;
2747 static void balance_fep_lists(gmx::ArrayRef < std::unique_ptr < t_nblist>> fepLists,
2748 gmx::ArrayRef<PairsearchWork> work)
2750 const int numLists = fepLists.ssize();
2752 if (numLists == 1)
2754 /* Nothing to balance */
2755 return;
2758 /* Count the total i-lists and pairs */
2759 int nri_tot = 0;
2760 int nrj_tot = 0;
2761 for (const auto &list : fepLists)
2763 nri_tot += list->nri;
2764 nrj_tot += list->nrj;
2767 const int nrj_target = (nrj_tot + numLists - 1)/numLists;
2769 GMX_ASSERT(gmx_omp_nthreads_get(emntNonbonded) == numLists,
2770 "We should have as many work objects as FEP lists");
2772 #pragma omp parallel for schedule(static) num_threads(numLists)
2773 for (int th = 0; th < numLists; th++)
2777 t_nblist *nbl = work[th].nbl_fep.get();
2779 /* Note that here we allocate for the total size, instead of
2780 * a per-thread esimate (which is hard to obtain).
2782 if (nri_tot > nbl->maxnri)
2784 nbl->maxnri = over_alloc_large(nri_tot);
2785 reallocate_nblist(nbl);
2787 if (nri_tot > nbl->maxnri || nrj_tot > nbl->maxnrj)
2789 nbl->maxnrj = over_alloc_small(nrj_tot);
2790 srenew(nbl->jjnr, nbl->maxnrj);
2791 srenew(nbl->excl_fep, nbl->maxnrj);
2794 clear_pairlist_fep(nbl);
2796 GMX_CATCH_ALL_AND_EXIT_WITH_FATAL_ERROR;
2799 /* Loop over the source lists and assign and copy i-entries */
2800 int th_dest = 0;
2801 t_nblist *nbld = work[th_dest].nbl_fep.get();
2802 for (int th = 0; th < numLists; th++)
2804 const t_nblist *nbls = fepLists[th].get();
2806 for (int i = 0; i < nbls->nri; i++)
2808 int nrj;
2810 /* The number of pairs in this i-entry */
2811 nrj = nbls->jindex[i+1] - nbls->jindex[i];
2813 /* Decide if list th_dest is too large and we should procede
2814 * to the next destination list.
2816 if (th_dest + 1 < numLists && nbld->nrj > 0 &&
2817 nbld->nrj + nrj - nrj_target > nrj_target - nbld->nrj)
2819 th_dest++;
2820 nbld = work[th_dest].nbl_fep.get();
2823 nbld->iinr[nbld->nri] = nbls->iinr[i];
2824 nbld->gid[nbld->nri] = nbls->gid[i];
2825 nbld->shift[nbld->nri] = nbls->shift[i];
2827 for (int j = nbls->jindex[i]; j < nbls->jindex[i+1]; j++)
2829 nbld->jjnr[nbld->nrj] = nbls->jjnr[j];
2830 nbld->excl_fep[nbld->nrj] = nbls->excl_fep[j];
2831 nbld->nrj++;
2833 nbld->nri++;
2834 nbld->jindex[nbld->nri] = nbld->nrj;
2838 /* Swap the list pointers */
2839 for (int th = 0; th < numLists; th++)
2841 fepLists[th].swap(work[th].nbl_fep);
2843 if (debug)
2845 fprintf(debug, "nbl_fep[%d] nri %4d nrj %4d\n",
2847 fepLists[th]->nri,
2848 fepLists[th]->nrj);
2853 /* Returns the next ci to be processes by our thread */
2854 static gmx_bool next_ci(const Grid &grid,
2855 int nth, int ci_block,
2856 int *ci_x, int *ci_y,
2857 int *ci_b, int *ci)
2859 (*ci_b)++;
2860 (*ci)++;
2862 if (*ci_b == ci_block)
2864 /* Jump to the next block assigned to this task */
2865 *ci += (nth - 1)*ci_block;
2866 *ci_b = 0;
2869 if (*ci >= grid.numCells())
2871 return FALSE;
2874 while (*ci >= grid.firstCellInColumn(*ci_x*grid.dimensions().numCells[YY] + *ci_y + 1))
2876 *ci_y += 1;
2877 if (*ci_y == grid.dimensions().numCells[YY])
2879 *ci_x += 1;
2880 *ci_y = 0;
2884 return TRUE;
2887 /* Returns the distance^2 for which we put cell pairs in the list
2888 * without checking atom pair distances. This is usually < rlist^2.
2890 static float boundingbox_only_distance2(const Grid::Dimensions &iGridDims,
2891 const Grid::Dimensions &jGridDims,
2892 real rlist,
2893 gmx_bool simple)
2895 /* If the distance between two sub-cell bounding boxes is less
2896 * than this distance, do not check the distance between
2897 * all particle pairs in the sub-cell, since then it is likely
2898 * that the box pair has atom pairs within the cut-off.
2899 * We use the nblist cut-off minus 0.5 times the average x/y diagonal
2900 * spacing of the sub-cells. Around 40% of the checked pairs are pruned.
2901 * Using more than 0.5 gains at most 0.5%.
2902 * If forces are calculated more than twice, the performance gain
2903 * in the force calculation outweighs the cost of checking.
2904 * Note that with subcell lists, the atom-pair distance check
2905 * is only performed when only 1 out of 8 sub-cells in within range,
2906 * this is because the GPU is much faster than the cpu.
2908 real bbx, bby;
2909 real rbb2;
2911 bbx = 0.5*(iGridDims.cellSize[XX] + jGridDims.cellSize[XX]);
2912 bby = 0.5*(iGridDims.cellSize[YY] + jGridDims.cellSize[YY]);
2913 if (!simple)
2915 bbx /= c_gpuNumClusterPerCellX;
2916 bby /= c_gpuNumClusterPerCellY;
2919 rbb2 = std::max(0.0, rlist - 0.5*std::sqrt(bbx*bbx + bby*bby));
2920 rbb2 = rbb2 * rbb2;
2922 #if !GMX_DOUBLE
2923 return rbb2;
2924 #else
2925 return (float)((1+GMX_FLOAT_EPS)*rbb2);
2926 #endif
2929 static int get_ci_block_size(const Grid &iGrid,
2930 const bool haveMultipleDomains,
2931 const int numLists)
2933 const int ci_block_enum = 5;
2934 const int ci_block_denom = 11;
2935 const int ci_block_min_atoms = 16;
2936 int ci_block;
2938 /* Here we decide how to distribute the blocks over the threads.
2939 * We use prime numbers to try to avoid that the grid size becomes
2940 * a multiple of the number of threads, which would lead to some
2941 * threads getting "inner" pairs and others getting boundary pairs,
2942 * which in turns will lead to load imbalance between threads.
2943 * Set the block size as 5/11/ntask times the average number of cells
2944 * in a y,z slab. This should ensure a quite uniform distribution
2945 * of the grid parts of the different thread along all three grid
2946 * zone boundaries with 3D domain decomposition. At the same time
2947 * the blocks will not become too small.
2949 GMX_ASSERT(iGrid.dimensions().numCells[XX] > 0, "Grid can't be empty");
2950 GMX_ASSERT(numLists > 0, "We need at least one list");
2951 ci_block = (iGrid.numCells()*ci_block_enum)/(ci_block_denom*iGrid.dimensions().numCells[XX]*numLists);
2953 const int numAtomsPerCell = iGrid.geometry().numAtomsPerCell;
2955 /* Ensure the blocks are not too small: avoids cache invalidation */
2956 if (ci_block*numAtomsPerCell < ci_block_min_atoms)
2958 ci_block = (ci_block_min_atoms + numAtomsPerCell - 1)/numAtomsPerCell;
2961 /* Without domain decomposition
2962 * or with less than 3 blocks per task, divide in nth blocks.
2964 if (!haveMultipleDomains || numLists*3*ci_block > iGrid.numCells())
2966 ci_block = (iGrid.numCells() + numLists - 1)/numLists;
2969 if (ci_block > 1 && (numLists - 1)*ci_block >= iGrid.numCells())
2971 /* Some threads have no work. Although reducing the block size
2972 * does not decrease the block count on the first few threads,
2973 * with GPUs better mixing of "upper" cells that have more empty
2974 * clusters results in a somewhat lower max load over all threads.
2975 * Without GPUs the regime of so few atoms per thread is less
2976 * performance relevant, but with 8-wide SIMD the same reasoning
2977 * applies, since the pair list uses 4 i-atom "sub-clusters".
2979 ci_block--;
2982 return ci_block;
2985 /* Returns the number of bits to right-shift a cluster index to obtain
2986 * the corresponding force buffer flag index.
2988 static int getBufferFlagShift(int numAtomsPerCluster)
2990 int bufferFlagShift = 0;
2991 while ((numAtomsPerCluster << bufferFlagShift) < NBNXN_BUFFERFLAG_SIZE)
2993 bufferFlagShift++;
2996 return bufferFlagShift;
2999 static bool pairlistIsSimple(const NbnxnPairlistCpu gmx_unused &pairlist)
3001 return true;
3004 static bool pairlistIsSimple(const NbnxnPairlistGpu gmx_unused &pairlist)
3006 return false;
3009 static void
3010 makeClusterListWrapper(NbnxnPairlistCpu *nbl,
3011 const Grid gmx_unused &iGrid,
3012 const int ci,
3013 const Grid &jGrid,
3014 const int firstCell,
3015 const int lastCell,
3016 const bool excludeSubDiagonal,
3017 const nbnxn_atomdata_t *nbat,
3018 const real rlist2,
3019 const real rbb2,
3020 const ClusterDistanceKernelType kernelType,
3021 int *numDistanceChecks)
3023 switch (kernelType)
3025 case ClusterDistanceKernelType::CpuPlainC:
3026 makeClusterListSimple(jGrid,
3027 nbl, ci, firstCell, lastCell,
3028 excludeSubDiagonal,
3029 nbat->x().data(),
3030 rlist2, rbb2,
3031 numDistanceChecks);
3032 break;
3033 #ifdef GMX_NBNXN_SIMD_4XN
3034 case ClusterDistanceKernelType::CpuSimd_4xM:
3035 makeClusterListSimd4xn(jGrid,
3036 nbl, ci, firstCell, lastCell,
3037 excludeSubDiagonal,
3038 nbat->x().data(),
3039 rlist2, rbb2,
3040 numDistanceChecks);
3041 break;
3042 #endif
3043 #ifdef GMX_NBNXN_SIMD_2XNN
3044 case ClusterDistanceKernelType::CpuSimd_2xMM:
3045 makeClusterListSimd2xnn(jGrid,
3046 nbl, ci, firstCell, lastCell,
3047 excludeSubDiagonal,
3048 nbat->x().data(),
3049 rlist2, rbb2,
3050 numDistanceChecks);
3051 break;
3052 #endif
3053 default:
3054 GMX_ASSERT(false, "Unhandled kernel type");
3058 static void
3059 makeClusterListWrapper(NbnxnPairlistGpu *nbl,
3060 const Grid &gmx_unused iGrid,
3061 const int ci,
3062 const Grid &jGrid,
3063 const int firstCell,
3064 const int lastCell,
3065 const bool excludeSubDiagonal,
3066 const nbnxn_atomdata_t *nbat,
3067 const real rlist2,
3068 const real rbb2,
3069 ClusterDistanceKernelType gmx_unused kernelType,
3070 int *numDistanceChecks)
3072 for (int cj = firstCell; cj <= lastCell; cj++)
3074 make_cluster_list_supersub(iGrid, jGrid,
3075 nbl, ci, cj,
3076 excludeSubDiagonal,
3077 nbat->xstride, nbat->x().data(),
3078 rlist2, rbb2,
3079 numDistanceChecks);
3083 static int getNumSimpleJClustersInList(const NbnxnPairlistCpu &nbl)
3085 return nbl.cj.size();
3088 static int getNumSimpleJClustersInList(const gmx_unused NbnxnPairlistGpu &nbl)
3090 return 0;
3093 static void incrementNumSimpleJClustersInList(NbnxnPairlistCpu *nbl,
3094 int ncj_old_j)
3096 nbl->ncjInUse += nbl->cj.size();
3097 nbl->ncjInUse -= ncj_old_j;
3100 static void incrementNumSimpleJClustersInList(NbnxnPairlistGpu gmx_unused *nbl,
3101 int gmx_unused ncj_old_j)
3105 static void checkListSizeConsistency(const NbnxnPairlistCpu &nbl,
3106 const bool haveFreeEnergy)
3108 GMX_RELEASE_ASSERT(static_cast<size_t>(nbl.ncjInUse) == nbl.cj.size() || haveFreeEnergy,
3109 "Without free-energy all cj pair-list entries should be in use. "
3110 "Note that subsequent code does not make use of the equality, "
3111 "this check is only here to catch bugs");
3114 static void checkListSizeConsistency(const NbnxnPairlistGpu gmx_unused &nbl,
3115 bool gmx_unused haveFreeEnergy)
3117 /* We currently can not check consistency here */
3120 /* Set the buffer flags for newly added entries in the list */
3121 static void setBufferFlags(const NbnxnPairlistCpu &nbl,
3122 const int ncj_old_j,
3123 const int gridj_flag_shift,
3124 gmx_bitmask_t *gridj_flag,
3125 const int th)
3127 if (gmx::ssize(nbl.cj) > ncj_old_j)
3129 int cbFirst = nbl.cj[ncj_old_j].cj >> gridj_flag_shift;
3130 int cbLast = nbl.cj.back().cj >> gridj_flag_shift;
3131 for (int cb = cbFirst; cb <= cbLast; cb++)
3133 bitmask_init_bit(&gridj_flag[cb], th);
3138 static void setBufferFlags(const NbnxnPairlistGpu gmx_unused &nbl,
3139 int gmx_unused ncj_old_j,
3140 int gmx_unused gridj_flag_shift,
3141 gmx_bitmask_t gmx_unused *gridj_flag,
3142 int gmx_unused th)
3144 GMX_ASSERT(false, "This function should never be called");
3147 /* Generates the part of pair-list nbl assigned to our thread */
3148 template <typename T>
3149 static void nbnxn_make_pairlist_part(const Nbnxm::GridSet &gridSet,
3150 const Grid &iGrid,
3151 const Grid &jGrid,
3152 PairsearchWork *work,
3153 const nbnxn_atomdata_t *nbat,
3154 const t_blocka &exclusions,
3155 real rlist,
3156 const PairlistType pairlistType,
3157 int ci_block,
3158 gmx_bool bFBufferFlag,
3159 int nsubpair_max,
3160 gmx_bool progBal,
3161 float nsubpair_tot_est,
3162 int th, int nth,
3163 T *nbl,
3164 t_nblist *nbl_fep)
3166 int na_cj_2log;
3167 matrix box;
3168 real rl_fep2 = 0;
3169 float rbb2;
3170 int ci_b, ci, ci_x, ci_y, ci_xy;
3171 ivec shp;
3172 real bx0, bx1, by0, by1, bz0, bz1;
3173 real bz1_frac;
3174 real d2cx, d2z, d2z_cx, d2z_cy, d2zx, d2zxy, d2xy;
3175 int cxf, cxl, cyf, cyf_x, cyl;
3176 int numDistanceChecks;
3177 int gridi_flag_shift = 0, gridj_flag_shift = 0;
3178 gmx_bitmask_t *gridj_flag = nullptr;
3179 int ncj_old_i, ncj_old_j;
3181 if (jGrid.geometry().isSimple != pairlistIsSimple(*nbl) ||
3182 iGrid.geometry().isSimple != pairlistIsSimple(*nbl))
3184 gmx_incons("Grid incompatible with pair-list");
3187 sync_work(nbl);
3188 GMX_ASSERT(nbl->na_ci == jGrid.geometry().numAtomsICluster,
3189 "The cluster sizes in the list and grid should match");
3190 nbl->na_cj = JClusterSizePerListType[pairlistType];
3191 na_cj_2log = get_2log(nbl->na_cj);
3193 nbl->rlist = rlist;
3195 if (bFBufferFlag)
3197 /* Determine conversion of clusters to flag blocks */
3198 gridi_flag_shift = getBufferFlagShift(nbl->na_ci);
3199 gridj_flag_shift = getBufferFlagShift(nbl->na_cj);
3201 gridj_flag = work->buffer_flags.flag;
3204 gridSet.getBox(box);
3206 const bool haveFep = gridSet.haveFep();
3208 const real rlist2 = nbl->rlist*nbl->rlist;
3210 // Select the cluster pair distance kernel type
3211 const ClusterDistanceKernelType kernelType =
3212 getClusterDistanceKernelType(pairlistType, *nbat);
3214 if (haveFep && !pairlistIsSimple(*nbl))
3216 /* Determine an atom-pair list cut-off distance for FEP atom pairs.
3217 * We should not simply use rlist, since then we would not have
3218 * the small, effective buffering of the NxN lists.
3219 * The buffer is on overestimate, but the resulting cost for pairs
3220 * beyond rlist is neglible compared to the FEP pairs within rlist.
3222 rl_fep2 = nbl->rlist + effective_buffer_1x1_vs_MxN(iGrid, jGrid);
3224 if (debug)
3226 fprintf(debug, "nbl_fep atom-pair rlist %f\n", rl_fep2);
3228 rl_fep2 = rl_fep2*rl_fep2;
3231 const Grid::Dimensions &iGridDims = iGrid.dimensions();
3232 const Grid::Dimensions &jGridDims = jGrid.dimensions();
3234 rbb2 = boundingbox_only_distance2(iGridDims, jGridDims, nbl->rlist, pairlistIsSimple(*nbl));
3236 if (debug)
3238 fprintf(debug, "nbl bounding box only distance %f\n", std::sqrt(rbb2));
3241 const bool isIntraGridList = (&iGrid == &jGrid);
3243 /* Set the shift range */
3244 for (int d = 0; d < DIM; d++)
3246 /* Check if we need periodicity shifts.
3247 * Without PBC or with domain decomposition we don't need them.
3249 if (d >= ePBC2npbcdim(gridSet.domainSetup().ePBC) ||
3250 gridSet.domainSetup().haveMultipleDomainsPerDim[d])
3252 shp[d] = 0;
3254 else
3256 const real listRangeCellToCell =
3257 listRangeForGridCellToGridCell(rlist, iGrid.dimensions(), jGrid.dimensions());
3258 if (d == XX &&
3259 box[XX][XX] - fabs(box[YY][XX]) - fabs(box[ZZ][XX]) < listRangeCellToCell)
3261 shp[d] = 2;
3263 else
3265 shp[d] = 1;
3269 const bool bSimple = pairlistIsSimple(*nbl);
3270 gmx::ArrayRef<const BoundingBox> bb_i;
3271 #if NBNXN_BBXXXX
3272 gmx::ArrayRef<const float> pbb_i;
3273 if (bSimple)
3275 bb_i = iGrid.iBoundingBoxes();
3277 else
3279 pbb_i = iGrid.packedBoundingBoxes();
3281 #else
3282 /* We use the normal bounding box format for both grid types */
3283 bb_i = iGrid.iBoundingBoxes();
3284 #endif
3285 gmx::ArrayRef<const BoundingBox1D> bbcz_i = iGrid.zBoundingBoxes();
3286 gmx::ArrayRef<const int> flags_i = iGrid.clusterFlags();
3287 gmx::ArrayRef<const BoundingBox1D> bbcz_j = jGrid.zBoundingBoxes();
3288 int cell0_i = iGrid.cellOffset();
3290 if (debug)
3292 fprintf(debug, "nbl nc_i %d col.av. %.1f ci_block %d\n",
3293 iGrid.numCells(), iGrid.numCells()/static_cast<double>(iGrid.numColumns()), ci_block);
3296 numDistanceChecks = 0;
3298 const real listRangeBBToJCell2 = gmx::square(listRangeForBoundingBoxToGridCell(rlist, jGrid.dimensions()));
3300 /* Initially ci_b and ci to 1 before where we want them to start,
3301 * as they will both be incremented in next_ci.
3303 ci_b = -1;
3304 ci = th*ci_block - 1;
3305 ci_x = 0;
3306 ci_y = 0;
3307 while (next_ci(iGrid, nth, ci_block, &ci_x, &ci_y, &ci_b, &ci))
3309 if (bSimple && flags_i[ci] == 0)
3311 continue;
3313 ncj_old_i = getNumSimpleJClustersInList(*nbl);
3315 d2cx = 0;
3316 if (!isIntraGridList && shp[XX] == 0)
3318 if (bSimple)
3320 bx1 = bb_i[ci].upper.x;
3322 else
3324 bx1 = iGridDims.lowerCorner[XX] + (real(ci_x)+1)*iGridDims.cellSize[XX];
3326 if (bx1 < jGridDims.lowerCorner[XX])
3328 d2cx = gmx::square(jGridDims.lowerCorner[XX] - bx1);
3330 if (d2cx >= listRangeBBToJCell2)
3332 continue;
3337 ci_xy = ci_x*iGridDims.numCells[YY] + ci_y;
3339 /* Loop over shift vectors in three dimensions */
3340 for (int tz = -shp[ZZ]; tz <= shp[ZZ]; tz++)
3342 const real shz = real(tz)*box[ZZ][ZZ];
3344 bz0 = bbcz_i[ci].lower + shz;
3345 bz1 = bbcz_i[ci].upper + shz;
3347 if (tz == 0)
3349 d2z = 0;
3351 else if (tz < 0)
3353 d2z = gmx::square(bz1);
3355 else
3357 d2z = gmx::square(bz0 - box[ZZ][ZZ]);
3360 d2z_cx = d2z + d2cx;
3362 if (d2z_cx >= rlist2)
3364 continue;
3367 bz1_frac = bz1/real(iGrid.numCellsInColumn(ci_xy));
3368 if (bz1_frac < 0)
3370 bz1_frac = 0;
3372 /* The check with bz1_frac close to or larger than 1 comes later */
3374 for (int ty = -shp[YY]; ty <= shp[YY]; ty++)
3376 const real shy = real(ty)*box[YY][YY] + real(tz)*box[ZZ][YY];
3378 if (bSimple)
3380 by0 = bb_i[ci].lower.y + shy;
3381 by1 = bb_i[ci].upper.y + shy;
3383 else
3385 by0 = iGridDims.lowerCorner[YY] + (real(ci_y) )*iGridDims.cellSize[YY] + shy;
3386 by1 = iGridDims.lowerCorner[YY] + (real(ci_y) + 1)*iGridDims.cellSize[YY] + shy;
3389 get_cell_range<YY>(by0, by1,
3390 jGridDims,
3391 d2z_cx, rlist,
3392 &cyf, &cyl);
3394 if (cyf > cyl)
3396 continue;
3399 d2z_cy = d2z;
3400 if (by1 < jGridDims.lowerCorner[YY])
3402 d2z_cy += gmx::square(jGridDims.lowerCorner[YY] - by1);
3404 else if (by0 > jGridDims.upperCorner[YY])
3406 d2z_cy += gmx::square(by0 - jGridDims.upperCorner[YY]);
3409 for (int tx = -shp[XX]; tx <= shp[XX]; tx++)
3411 const int shift = XYZ2IS(tx, ty, tz);
3413 const bool excludeSubDiagonal = (isIntraGridList && shift == CENTRAL);
3415 if (c_pbcShiftBackward && isIntraGridList && shift > CENTRAL)
3417 continue;
3420 const real shx = real(tx)*box[XX][XX] + real(ty)*box[YY][XX] + real(tz)*box[ZZ][XX];
3422 if (bSimple)
3424 bx0 = bb_i[ci].lower.x + shx;
3425 bx1 = bb_i[ci].upper.x + shx;
3427 else
3429 bx0 = iGridDims.lowerCorner[XX] + (real(ci_x) )*iGridDims.cellSize[XX] + shx;
3430 bx1 = iGridDims.lowerCorner[XX] + (real(ci_x)+1)*iGridDims.cellSize[XX] + shx;
3433 get_cell_range<XX>(bx0, bx1,
3434 jGridDims,
3435 d2z_cy, rlist,
3436 &cxf, &cxl);
3438 if (cxf > cxl)
3440 continue;
3443 addNewIEntry(nbl, cell0_i+ci, shift, flags_i[ci]);
3445 if ((!c_pbcShiftBackward || excludeSubDiagonal) &&
3446 cxf < ci_x)
3448 /* Leave the pairs with i > j.
3449 * x is the major index, so skip half of it.
3451 cxf = ci_x;
3454 set_icell_bb(iGrid, ci, shx, shy, shz,
3455 nbl->work.get());
3457 icell_set_x(cell0_i+ci, shx, shy, shz,
3458 nbat->xstride, nbat->x().data(),
3459 kernelType,
3460 nbl->work.get());
3462 for (int cx = cxf; cx <= cxl; cx++)
3464 const real cx_real = cx;
3465 d2zx = d2z;
3466 if (jGridDims.lowerCorner[XX] + cx_real*jGridDims.cellSize[XX] > bx1)
3468 d2zx += gmx::square(jGridDims.lowerCorner[XX] + cx_real*jGridDims.cellSize[XX] - bx1);
3470 else if (jGridDims.lowerCorner[XX] + (cx_real+1)*jGridDims.cellSize[XX] < bx0)
3472 d2zx += gmx::square(jGridDims.lowerCorner[XX] + (cx_real+1)*jGridDims.cellSize[XX] - bx0);
3475 if (isIntraGridList &&
3476 cx == 0 &&
3477 (!c_pbcShiftBackward || shift == CENTRAL) &&
3478 cyf < ci_y)
3480 /* Leave the pairs with i > j.
3481 * Skip half of y when i and j have the same x.
3483 cyf_x = ci_y;
3485 else
3487 cyf_x = cyf;
3490 for (int cy = cyf_x; cy <= cyl; cy++)
3492 const int columnStart = jGrid.firstCellInColumn(cx*jGridDims.numCells[YY] + cy);
3493 const int columnEnd = jGrid.firstCellInColumn(cx*jGridDims.numCells[YY] + cy + 1);
3495 const real cy_real = cy;
3496 d2zxy = d2zx;
3497 if (jGridDims.lowerCorner[YY] + cy_real*jGridDims.cellSize[YY] > by1)
3499 d2zxy += gmx::square(jGridDims.lowerCorner[YY] + cy_real*jGridDims.cellSize[YY] - by1);
3501 else if (jGridDims.lowerCorner[YY] + (cy_real + 1)*jGridDims.cellSize[YY] < by0)
3503 d2zxy += gmx::square(jGridDims.lowerCorner[YY] + (cy_real + 1)*jGridDims.cellSize[YY] - by0);
3505 if (columnStart < columnEnd && d2zxy < listRangeBBToJCell2)
3507 /* To improve efficiency in the common case
3508 * of a homogeneous particle distribution,
3509 * we estimate the index of the middle cell
3510 * in range (midCell). We search down and up
3511 * starting from this index.
3513 * Note that the bbcz_j array contains bounds
3514 * for i-clusters, thus for clusters of 4 atoms.
3515 * For the common case where the j-cluster size
3516 * is 8, we could step with a stride of 2,
3517 * but we do not do this because it would
3518 * complicate this code even more.
3520 int midCell = columnStart + static_cast<int>(bz1_frac*static_cast<real>(columnEnd - columnStart));
3521 if (midCell >= columnEnd)
3523 midCell = columnEnd - 1;
3526 d2xy = d2zxy - d2z;
3528 /* Find the lowest cell that can possibly
3529 * be within range.
3530 * Check if we hit the bottom of the grid,
3531 * if the j-cell is below the i-cell and if so,
3532 * if it is within range.
3534 int downTestCell = midCell;
3535 while (downTestCell >= columnStart &&
3536 (bbcz_j[downTestCell].upper >= bz0 ||
3537 d2xy + gmx::square(bbcz_j[downTestCell].upper - bz0) < rlist2))
3539 downTestCell--;
3541 int firstCell = downTestCell + 1;
3543 /* Find the highest cell that can possibly
3544 * be within range.
3545 * Check if we hit the top of the grid,
3546 * if the j-cell is above the i-cell and if so,
3547 * if it is within range.
3549 int upTestCell = midCell + 1;
3550 while (upTestCell < columnEnd &&
3551 (bbcz_j[upTestCell].lower <= bz1 ||
3552 d2xy + gmx::square(bbcz_j[upTestCell].lower - bz1) < rlist2))
3554 upTestCell++;
3556 int lastCell = upTestCell - 1;
3558 #define NBNXN_REFCODE 0
3559 #if NBNXN_REFCODE
3561 /* Simple reference code, for debugging,
3562 * overrides the more complex code above.
3564 firstCell = columnEnd;
3565 lastCell = -1;
3566 for (int k = columnStart; k < columnEnd; k++)
3568 if (d2xy + gmx::square(bbcz_j[k*NNBSBB_D + 1] - bz0) < rlist2 &&
3569 k < firstCell)
3571 firstCell = k;
3573 if (d2xy + gmx::square(bbcz_j[k*NNBSBB_D] - bz1) < rlist2 &&
3574 k > lastCell)
3576 lastCell = k;
3580 #endif
3582 if (isIntraGridList)
3584 /* We want each atom/cell pair only once,
3585 * only use cj >= ci.
3587 if (!c_pbcShiftBackward || shift == CENTRAL)
3589 firstCell = std::max(firstCell, ci);
3593 if (firstCell <= lastCell)
3595 GMX_ASSERT(firstCell >= columnStart && lastCell < columnEnd, "The range should reside within the current grid column");
3597 /* For f buffer flags with simple lists */
3598 ncj_old_j = getNumSimpleJClustersInList(*nbl);
3600 makeClusterListWrapper(nbl,
3601 iGrid, ci,
3602 jGrid, firstCell, lastCell,
3603 excludeSubDiagonal,
3604 nbat,
3605 rlist2, rbb2,
3606 kernelType,
3607 &numDistanceChecks);
3609 if (bFBufferFlag)
3611 setBufferFlags(*nbl, ncj_old_j, gridj_flag_shift,
3612 gridj_flag, th);
3615 incrementNumSimpleJClustersInList(nbl, ncj_old_j);
3621 /* Set the exclusions for this ci list */
3622 setExclusionsForIEntry(gridSet,
3623 nbl,
3624 excludeSubDiagonal,
3625 na_cj_2log,
3626 *getOpenIEntry(nbl),
3627 exclusions);
3629 if (haveFep)
3631 make_fep_list(gridSet.atomIndices(), nbat, nbl,
3632 excludeSubDiagonal,
3633 getOpenIEntry(nbl),
3634 shx, shy, shz,
3635 rl_fep2,
3636 iGrid, jGrid, nbl_fep);
3639 /* Close this ci list */
3640 closeIEntry(nbl,
3641 nsubpair_max,
3642 progBal, nsubpair_tot_est,
3643 th, nth);
3648 if (bFBufferFlag && getNumSimpleJClustersInList(*nbl) > ncj_old_i)
3650 bitmask_init_bit(&(work->buffer_flags.flag[(iGrid.cellOffset() + ci) >> gridi_flag_shift]), th);
3654 work->ndistc = numDistanceChecks;
3656 checkListSizeConsistency(*nbl, haveFep);
3658 if (debug)
3660 fprintf(debug, "number of distance checks %d\n", numDistanceChecks);
3662 print_nblist_statistics(debug, *nbl, gridSet, rlist);
3664 if (haveFep)
3666 fprintf(debug, "nbl FEP list pairs: %d\n", nbl_fep->nrj);
3671 static void reduce_buffer_flags(gmx::ArrayRef<PairsearchWork> searchWork,
3672 int nsrc,
3673 const nbnxn_buffer_flags_t *dest)
3675 for (int s = 0; s < nsrc; s++)
3677 gmx_bitmask_t * flag = searchWork[s].buffer_flags.flag;
3679 for (int b = 0; b < dest->nflag; b++)
3681 bitmask_union(&(dest->flag[b]), flag[b]);
3686 static void print_reduction_cost(const nbnxn_buffer_flags_t *flags, int nout)
3688 int nelem, nkeep, ncopy, nred, out;
3689 gmx_bitmask_t mask_0;
3691 nelem = 0;
3692 nkeep = 0;
3693 ncopy = 0;
3694 nred = 0;
3695 bitmask_init_bit(&mask_0, 0);
3696 for (int b = 0; b < flags->nflag; b++)
3698 if (bitmask_is_equal(flags->flag[b], mask_0))
3700 /* Only flag 0 is set, no copy of reduction required */
3701 nelem++;
3702 nkeep++;
3704 else if (!bitmask_is_zero(flags->flag[b]))
3706 int c = 0;
3707 for (out = 0; out < nout; out++)
3709 if (bitmask_is_set(flags->flag[b], out))
3711 c++;
3714 nelem += c;
3715 if (c == 1)
3717 ncopy++;
3719 else
3721 nred += c;
3726 fprintf(debug, "nbnxn reduction: #flag %d #list %d elem %4.2f, keep %4.2f copy %4.2f red %4.2f\n",
3727 flags->nflag, nout,
3728 nelem/static_cast<double>(flags->nflag),
3729 nkeep/static_cast<double>(flags->nflag),
3730 ncopy/static_cast<double>(flags->nflag),
3731 nred/static_cast<double>(flags->nflag));
3734 /* Copies the list entries from src to dest when cjStart <= *cjGlobal < cjEnd.
3735 * *cjGlobal is updated with the cj count in src.
3736 * When setFlags==true, flag bit t is set in flag for all i and j clusters.
3738 template<bool setFlags>
3739 static void copySelectedListRange(const nbnxn_ci_t * gmx_restrict srcCi,
3740 const NbnxnPairlistCpu * gmx_restrict src,
3741 NbnxnPairlistCpu * gmx_restrict dest,
3742 gmx_bitmask_t *flag,
3743 int iFlagShift, int jFlagShift, int t)
3745 const int ncj = srcCi->cj_ind_end - srcCi->cj_ind_start;
3747 dest->ci.push_back(*srcCi);
3748 dest->ci.back().cj_ind_start = dest->cj.size();
3749 dest->ci.back().cj_ind_end = dest->ci.back().cj_ind_start + ncj;
3751 if (setFlags)
3753 bitmask_init_bit(&flag[srcCi->ci >> iFlagShift], t);
3756 for (int j = srcCi->cj_ind_start; j < srcCi->cj_ind_end; j++)
3758 dest->cj.push_back(src->cj[j]);
3760 if (setFlags)
3762 /* NOTE: This is relatively expensive, since this
3763 * operation is done for all elements in the list,
3764 * whereas at list generation this is done only
3765 * once for each flag entry.
3767 bitmask_init_bit(&flag[src->cj[j].cj >> jFlagShift], t);
3772 #if defined(__GNUC__) && !defined(__clang__) && !defined(__ICC) && __GNUC__ == 7
3773 /* Avoid gcc 7 avx512 loop vectorization bug (actually only needed with -mavx512f) */
3774 #pragma GCC push_options
3775 #pragma GCC optimize ("no-tree-vectorize")
3776 #endif
3778 /* Returns the number of cluster pairs that are in use summed over all lists */
3779 static int countClusterpairs(gmx::ArrayRef<const NbnxnPairlistCpu> pairlists)
3781 /* gcc 7 with -mavx512f can miss the contributions of 16 consecutive
3782 * elements to the sum calculated in this loop. Above we have disabled
3783 * loop vectorization to avoid this bug.
3785 int ncjTotal = 0;
3786 for (const auto &pairlist : pairlists)
3788 ncjTotal += pairlist.ncjInUse;
3790 return ncjTotal;
3793 #if defined(__GNUC__) && !defined(__clang__) && !defined(__ICC) && __GNUC__ == 7
3794 #pragma GCC pop_options
3795 #endif
3797 /* This routine re-balances the pairlists such that all are nearly equally
3798 * sized. Only whole i-entries are moved between lists. These are moved
3799 * between the ends of the lists, such that the buffer reduction cost should
3800 * not change significantly.
3801 * Note that all original reduction flags are currently kept. This can lead
3802 * to reduction of parts of the force buffer that could be avoided. But since
3803 * the original lists are quite balanced, this will only give minor overhead.
3805 static void rebalanceSimpleLists(gmx::ArrayRef<const NbnxnPairlistCpu> srcSet,
3806 gmx::ArrayRef<NbnxnPairlistCpu> destSet,
3807 gmx::ArrayRef<PairsearchWork> searchWork)
3809 const int ncjTotal = countClusterpairs(srcSet);
3810 const int numLists = srcSet.ssize();
3811 const int ncjTarget = (ncjTotal + numLists - 1)/numLists;
3813 #pragma omp parallel num_threads(numLists)
3815 int t = gmx_omp_get_thread_num();
3817 int cjStart = ncjTarget* t;
3818 int cjEnd = ncjTarget*(t + 1);
3820 /* The destination pair-list for task/thread t */
3821 NbnxnPairlistCpu &dest = destSet[t];
3823 clear_pairlist(&dest);
3824 dest.na_cj = srcSet[0].na_cj;
3826 /* Note that the flags in the work struct (still) contain flags
3827 * for all entries that are present in srcSet->nbl[t].
3829 gmx_bitmask_t *flag = searchWork[t].buffer_flags.flag;
3831 int iFlagShift = getBufferFlagShift(dest.na_ci);
3832 int jFlagShift = getBufferFlagShift(dest.na_cj);
3834 int cjGlobal = 0;
3835 for (int s = 0; s < numLists && cjGlobal < cjEnd; s++)
3837 const NbnxnPairlistCpu *src = &srcSet[s];
3839 if (cjGlobal + src->ncjInUse > cjStart)
3841 for (gmx::index i = 0; i < gmx::ssize(src->ci) && cjGlobal < cjEnd; i++)
3843 const nbnxn_ci_t *srcCi = &src->ci[i];
3844 int ncj = srcCi->cj_ind_end - srcCi->cj_ind_start;
3845 if (cjGlobal >= cjStart)
3847 /* If the source list is not our own, we need to set
3848 * extra flags (the template bool parameter).
3850 if (s != t)
3852 copySelectedListRange
3853 <true>
3854 (srcCi, src, &dest,
3855 flag, iFlagShift, jFlagShift, t);
3857 else
3859 copySelectedListRange
3860 <false>
3861 (srcCi, src,
3862 &dest, flag, iFlagShift, jFlagShift, t);
3865 cjGlobal += ncj;
3868 else
3870 cjGlobal += src->ncjInUse;
3874 dest.ncjInUse = dest.cj.size();
3877 #ifndef NDEBUG
3878 const int ncjTotalNew = countClusterpairs(destSet);
3879 GMX_RELEASE_ASSERT(ncjTotalNew == ncjTotal, "The total size of the lists before and after rebalancing should match");
3880 #endif
3883 /* Returns if the pairlists are so imbalanced that it is worth rebalancing. */
3884 static bool checkRebalanceSimpleLists(gmx::ArrayRef<const NbnxnPairlistCpu> lists)
3886 int numLists = lists.ssize();
3887 int ncjMax = 0;
3888 int ncjTotal = 0;
3889 for (int s = 0; s < numLists; s++)
3891 ncjMax = std::max(ncjMax, lists[s].ncjInUse);
3892 ncjTotal += lists[s].ncjInUse;
3894 if (debug)
3896 fprintf(debug, "Pair-list ncjMax %d ncjTotal %d\n", ncjMax, ncjTotal);
3898 /* The rebalancing adds 3% extra time to the search. Heuristically we
3899 * determined that under common conditions the non-bonded kernel balance
3900 * improvement will outweigh this when the imbalance is more than 3%.
3901 * But this will, obviously, depend on search vs kernel time and nstlist.
3903 const real rebalanceTolerance = 1.03;
3905 return real(numLists*ncjMax) > real(ncjTotal)*rebalanceTolerance;
3908 /* Perform a count (linear) sort to sort the smaller lists to the end.
3909 * This avoids load imbalance on the GPU, as large lists will be
3910 * scheduled and executed first and the smaller lists later.
3911 * Load balancing between multi-processors only happens at the end
3912 * and there smaller lists lead to more effective load balancing.
3913 * The sorting is done on the cj4 count, not on the actual pair counts.
3914 * Not only does this make the sort faster, but it also results in
3915 * better load balancing than using a list sorted on exact load.
3916 * This function swaps the pointer in the pair list to avoid a copy operation.
3918 static void sort_sci(NbnxnPairlistGpu *nbl)
3920 if (nbl->cj4.size() <= nbl->sci.size())
3922 /* nsci = 0 or all sci have size 1, sorting won't change the order */
3923 return;
3926 NbnxnPairlistGpuWork &work = *nbl->work;
3928 /* We will distinguish differences up to double the average */
3929 const int m = static_cast<int>((2*ssize(nbl->cj4))/ssize(nbl->sci));
3931 /* Resize work.sci_sort so we can sort into it */
3932 work.sci_sort.resize(nbl->sci.size());
3934 std::vector<int> &sort = work.sortBuffer;
3935 /* Set up m + 1 entries in sort, initialized at 0 */
3936 sort.clear();
3937 sort.resize(m + 1, 0);
3938 /* Count the entries of each size */
3939 for (const nbnxn_sci_t &sci : nbl->sci)
3941 int i = std::min(m, sci.numJClusterGroups());
3942 sort[i]++;
3944 /* Calculate the offset for each count */
3945 int s0 = sort[m];
3946 sort[m] = 0;
3947 for (gmx::index i = m - 1; i >= 0; i--)
3949 int s1 = sort[i];
3950 sort[i] = sort[i + 1] + s0;
3951 s0 = s1;
3954 /* Sort entries directly into place */
3955 gmx::ArrayRef<nbnxn_sci_t> sci_sort = work.sci_sort;
3956 for (const nbnxn_sci_t &sci : nbl->sci)
3958 int i = std::min(m, sci.numJClusterGroups());
3959 sci_sort[sort[i]++] = sci;
3962 /* Swap the sci pointers so we use the new, sorted list */
3963 std::swap(nbl->sci, work.sci_sort);
3966 //! Prepares CPU lists produced by the search for dynamic pruning
3967 static void prepareListsForDynamicPruning(gmx::ArrayRef<NbnxnPairlistCpu> lists);
3969 void
3970 PairlistSet::constructPairlists(const Nbnxm::GridSet &gridSet,
3971 gmx::ArrayRef<PairsearchWork> searchWork,
3972 nbnxn_atomdata_t *nbat,
3973 const t_blocka *excl,
3974 const int minimumIlistCountForGpuBalancing,
3975 t_nrnb *nrnb,
3976 SearchCycleCounting *searchCycleCounting)
3978 const real rlist = params_.rlistOuter;
3980 int nsubpair_target;
3981 float nsubpair_tot_est;
3982 int ci_block;
3983 gmx_bool progBal;
3984 int np_tot, np_noq, np_hlj, nap;
3986 const int numLists = (isCpuType_ ? cpuLists_.size() : gpuLists_.size());
3988 if (debug)
3990 fprintf(debug, "ns making %d nblists\n", numLists);
3993 nbat->bUseBufferFlags = (nbat->out.size() > 1);
3994 /* We should re-init the flags before making the first list */
3995 if (nbat->bUseBufferFlags && locality_ == InteractionLocality::Local)
3997 init_buffer_flags(&nbat->buffer_flags, nbat->numAtoms());
4000 int nzi;
4001 if (locality_ == InteractionLocality::Local)
4003 /* Only zone (grid) 0 vs 0 */
4004 nzi = 1;
4006 else
4008 nzi = gridSet.domainSetup().zones->nizone;
4011 if (!isCpuType_ && minimumIlistCountForGpuBalancing > 0)
4013 get_nsubpair_target(gridSet, locality_, rlist, minimumIlistCountForGpuBalancing,
4014 &nsubpair_target, &nsubpair_tot_est);
4016 else
4018 nsubpair_target = 0;
4019 nsubpair_tot_est = 0;
4022 /* Clear all pair-lists */
4023 for (int th = 0; th < numLists; th++)
4025 if (isCpuType_)
4027 clear_pairlist(&cpuLists_[th]);
4029 else
4031 clear_pairlist(&gpuLists_[th]);
4034 if (params_.haveFep)
4036 clear_pairlist_fep(fepLists_[th].get());
4040 const gmx_domdec_zones_t *ddZones = gridSet.domainSetup().zones;
4042 for (int zi = 0; zi < nzi; zi++)
4044 const Grid &iGrid = gridSet.grids()[zi];
4046 int zj0;
4047 int zj1;
4048 if (locality_ == InteractionLocality::Local)
4050 zj0 = 0;
4051 zj1 = 1;
4053 else
4055 zj0 = ddZones->izone[zi].j0;
4056 zj1 = ddZones->izone[zi].j1;
4057 if (zi == 0)
4059 zj0++;
4062 for (int zj = zj0; zj < zj1; zj++)
4064 const Grid &jGrid = gridSet.grids()[zj];
4066 if (debug)
4068 fprintf(debug, "ns search grid %d vs %d\n", zi, zj);
4071 searchCycleCounting->start(enbsCCsearch);
4073 ci_block = get_ci_block_size(iGrid, gridSet.domainSetup().haveMultipleDomains, numLists);
4075 /* With GPU: generate progressively smaller lists for
4076 * load balancing for local only or non-local with 2 zones.
4078 progBal = (locality_ == InteractionLocality::Local || ddZones->n <= 2);
4080 #pragma omp parallel for num_threads(numLists) schedule(static)
4081 for (int th = 0; th < numLists; th++)
4085 /* Re-init the thread-local work flag data before making
4086 * the first list (not an elegant conditional).
4088 if (nbat->bUseBufferFlags && ((zi == 0 && zj == 0)))
4090 init_buffer_flags(&searchWork[th].buffer_flags, nbat->numAtoms());
4093 if (combineLists_ && th > 0)
4095 GMX_ASSERT(!isCpuType_, "Can only combine GPU lists");
4097 clear_pairlist(&gpuLists_[th]);
4100 PairsearchWork &work = searchWork[th];
4102 work.cycleCounter.start();
4104 t_nblist *fepListPtr = (fepLists_.empty() ? nullptr : fepLists_[th].get());
4106 /* Divide the i cells equally over the pairlists */
4107 if (isCpuType_)
4109 nbnxn_make_pairlist_part(gridSet, iGrid, jGrid,
4110 &work, nbat, *excl,
4111 rlist,
4112 params_.pairlistType,
4113 ci_block,
4114 nbat->bUseBufferFlags,
4115 nsubpair_target,
4116 progBal, nsubpair_tot_est,
4117 th, numLists,
4118 &cpuLists_[th],
4119 fepListPtr);
4121 else
4123 nbnxn_make_pairlist_part(gridSet, iGrid, jGrid,
4124 &work, nbat, *excl,
4125 rlist,
4126 params_.pairlistType,
4127 ci_block,
4128 nbat->bUseBufferFlags,
4129 nsubpair_target,
4130 progBal, nsubpair_tot_est,
4131 th, numLists,
4132 &gpuLists_[th],
4133 fepListPtr);
4136 work.cycleCounter.stop();
4138 GMX_CATCH_ALL_AND_EXIT_WITH_FATAL_ERROR;
4140 searchCycleCounting->stop(enbsCCsearch);
4142 np_tot = 0;
4143 np_noq = 0;
4144 np_hlj = 0;
4145 for (int th = 0; th < numLists; th++)
4147 inc_nrnb(nrnb, eNR_NBNXN_DIST2, searchWork[th].ndistc);
4149 if (isCpuType_)
4151 const NbnxnPairlistCpu &nbl = cpuLists_[th];
4152 np_tot += nbl.cj.size();
4153 np_noq += nbl.work->ncj_noq;
4154 np_hlj += nbl.work->ncj_hlj;
4156 else
4158 const NbnxnPairlistGpu &nbl = gpuLists_[th];
4159 /* This count ignores potential subsequent pair pruning */
4160 np_tot += nbl.nci_tot;
4163 if (isCpuType_)
4165 nap = cpuLists_[0].na_ci*cpuLists_[0].na_cj;
4167 else
4169 nap = gmx::square(gpuLists_[0].na_ci);
4171 natpair_ljq_ = (np_tot - np_noq)*nap - np_hlj*nap/2;
4172 natpair_lj_ = np_noq*nap;
4173 natpair_q_ = np_hlj*nap/2;
4175 if (combineLists_ && numLists > 1)
4177 GMX_ASSERT(!isCpuType_, "Can only combine GPU lists");
4179 searchCycleCounting->start(enbsCCcombine);
4181 combine_nblists(gmx::constArrayRefFromArray(&gpuLists_[1], numLists - 1),
4182 &gpuLists_[0]);
4184 searchCycleCounting->stop(enbsCCcombine);
4189 if (isCpuType_)
4191 if (numLists > 1 && checkRebalanceSimpleLists(cpuLists_))
4193 rebalanceSimpleLists(cpuLists_, cpuListsWork_, searchWork);
4195 /* Swap the sets of pair lists */
4196 cpuLists_.swap(cpuListsWork_);
4199 else
4201 /* Sort the entries on size, large ones first */
4202 if (combineLists_ || gpuLists_.size() == 1)
4204 sort_sci(&gpuLists_[0]);
4206 else
4208 #pragma omp parallel for num_threads(numLists) schedule(static)
4209 for (int th = 0; th < numLists; th++)
4213 sort_sci(&gpuLists_[th]);
4215 GMX_CATCH_ALL_AND_EXIT_WITH_FATAL_ERROR;
4220 if (nbat->bUseBufferFlags)
4222 reduce_buffer_flags(searchWork, numLists, &nbat->buffer_flags);
4225 if (gridSet.haveFep())
4227 /* Balance the free-energy lists over all the threads */
4228 balance_fep_lists(fepLists_, searchWork);
4231 if (isCpuType_)
4233 /* This is a fresh list, so not pruned, stored using ci.
4234 * ciOuter is invalid at this point.
4236 GMX_ASSERT(cpuLists_[0].ciOuter.empty(), "ciOuter is invalid so it should be empty");
4239 /* If we have more than one list, they either got rebalancing (CPU)
4240 * or combined (GPU), so we should dump the final result to debug.
4242 if (debug)
4244 if (isCpuType_ && cpuLists_.size() > 1)
4246 for (auto &cpuList : cpuLists_)
4248 print_nblist_statistics(debug, cpuList, gridSet, rlist);
4251 else if (!isCpuType_ && gpuLists_.size() > 1)
4253 print_nblist_statistics(debug, gpuLists_[0], gridSet, rlist);
4257 if (debug)
4259 if (gmx_debug_at)
4261 if (isCpuType_)
4263 for (auto &cpuList : cpuLists_)
4265 print_nblist_ci_cj(debug, cpuList);
4268 else
4270 print_nblist_sci_cj(debug, gpuLists_[0]);
4274 if (nbat->bUseBufferFlags)
4276 print_reduction_cost(&nbat->buffer_flags, numLists);
4280 if (params_.useDynamicPruning && isCpuType_)
4282 prepareListsForDynamicPruning(cpuLists_);
4286 void
4287 PairlistSets::construct(const InteractionLocality iLocality,
4288 PairSearch *pairSearch,
4289 nbnxn_atomdata_t *nbat,
4290 const t_blocka *excl,
4291 const int64_t step,
4292 t_nrnb *nrnb)
4294 pairlistSet(iLocality).constructPairlists(pairSearch->gridSet(), pairSearch->work(),
4295 nbat, excl, minimumIlistCountForGpuBalancing_,
4296 nrnb, &pairSearch->cycleCounting_);
4298 if (iLocality == Nbnxm::InteractionLocality::Local)
4300 outerListCreationStep_ = step;
4302 else
4304 GMX_RELEASE_ASSERT(outerListCreationStep_ == step,
4305 "Outer list should be created at the same step as the inner list");
4308 /* Special performance logging stuff (env.var. GMX_NBNXN_CYCLE) */
4309 if (iLocality == InteractionLocality::Local)
4311 pairSearch->cycleCounting_.searchCount_++;
4313 if (pairSearch->cycleCounting_.recordCycles_ &&
4314 (!pairSearch->gridSet().domainSetup().haveMultipleDomains || iLocality == InteractionLocality::NonLocal) &&
4315 pairSearch->cycleCounting_.searchCount_ % 100 == 0)
4317 pairSearch->cycleCounting_.printCycles(stderr, pairSearch->work());
4321 void
4322 nonbonded_verlet_t::constructPairlist(const Nbnxm::InteractionLocality iLocality,
4323 const t_blocka *excl,
4324 int64_t step,
4325 t_nrnb *nrnb)
4327 pairlistSets_->construct(iLocality, pairSearch_.get(), nbat.get(), excl,
4328 step, nrnb);
4330 if (useGpu())
4332 /* Launch the transfer of the pairlist to the GPU.
4334 * NOTE: The launch overhead is currently not timed separately
4336 Nbnxm::gpu_init_pairlist(gpu_nbv,
4337 pairlistSets().pairlistSet(iLocality).gpuList(),
4338 iLocality);
4342 static void prepareListsForDynamicPruning(gmx::ArrayRef<NbnxnPairlistCpu> lists)
4344 /* TODO: Restructure the lists so we have actual outer and inner
4345 * list objects so we can set a single pointer instead of
4346 * swapping several pointers.
4349 for (auto &list : lists)
4351 /* The search produced a list in ci/cj.
4352 * Swap the list pointers so we get the outer list is ciOuter,cjOuter
4353 * and we can prune that to get an inner list in ci/cj.
4355 GMX_RELEASE_ASSERT(list.ciOuter.empty() && list.cjOuter.empty(),
4356 "The outer lists should be empty before preparation");
4358 std::swap(list.ci, list.ciOuter);
4359 std::swap(list.cj, list.cjOuter);