Added trivial const qualifiers
[gromacs.git] / src / gromacs / mdlib / groupcoord.cpp
blob9e4ec821b0de98ee7860287e9f5e21eb09083fe0
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
5 * Copyright (c) 2001-2008, The GROMACS development team.
6 * Copyright (c) 2012,2014,2015,2017,2018, by the GROMACS development team, led by
7 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
8 * and including many others, as listed in the AUTHORS file in the
9 * top-level source directory and at http://www.gromacs.org.
11 * GROMACS is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public License
13 * as published by the Free Software Foundation; either version 2.1
14 * of the License, or (at your option) any later version.
16 * GROMACS is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * Lesser General Public License for more details.
21 * You should have received a copy of the GNU Lesser General Public
22 * License along with GROMACS; if not, see
23 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
24 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
26 * If you want to redistribute modifications to GROMACS, please
27 * consider that scientific software is very special. Version
28 * control is crucial - bugs must be traceable. We will be happy to
29 * consider code for inclusion in the official distribution, but
30 * derived work must not be called official GROMACS. Details are found
31 * in the README & COPYING files - if they are missing, get the
32 * official version at http://www.gromacs.org.
34 * To help us fund GROMACS development, we humbly ask that you cite
35 * the research papers on the package. Check out http://www.gromacs.org.
37 #include "gmxpre.h"
39 #include "groupcoord.h"
41 #include "gromacs/domdec/ga2la.h"
42 #include "gromacs/gmxlib/network.h"
43 #include "gromacs/math/vec.h"
44 #include "gromacs/mdtypes/commrec.h"
45 #include "gromacs/pbcutil/pbc.h"
46 #include "gromacs/utility/smalloc.h"
48 #define MIN(a, b) (((a) < (b)) ? (a) : (b))
52 /* Select the indices of the group's atoms which are local and store them in
53 * anrs_loc[0..nr_loc]. The indices are saved in coll_ind[] for later reduction
54 * in communicate_group_positions()
56 void
57 dd_make_local_group_indices(const gmx_ga2la_t *ga2la,
58 const int nr, /* IN: Total number of atoms in the group */
59 int anrs[], /* IN: Global atom numbers of the groups atoms */
60 int *nr_loc, /* OUT: Number of group atoms found locally */
61 int *anrs_loc[], /* OUT: Local atom numbers of the group */
62 int *nalloc_loc, /* IN+OUT: Allocation size of anrs_loc */
63 int coll_ind[]) /* OUT (opt): Where is this position found in the collective array? */
65 GMX_ASSERT(ga2la, "We need a valid ga2la object");
67 /* Loop over all the atom indices of the group to check
68 * which ones are on the local node */
69 int localnr = 0;
70 for (int i = 0; i < nr; i++)
72 if (const int *ii = ga2la->findHome(anrs[i]))
74 /* The atom with this index is a home atom */
75 if (localnr >= *nalloc_loc) /* Check whether memory suffices */
77 *nalloc_loc = over_alloc_dd(localnr+1);
78 /* We never need more memory than the number of atoms in the group */
79 *nalloc_loc = MIN(*nalloc_loc, nr);
80 srenew(*anrs_loc, *nalloc_loc);
82 /* Save the atoms index in the local atom numbers array */
83 (*anrs_loc)[localnr] = *ii;
85 if (coll_ind != nullptr)
87 /* Keep track of where this local atom belongs in the collective index array.
88 * This is needed when reducing the local arrays to a collective/global array
89 * in communicate_group_positions */
90 coll_ind[localnr] = i;
93 /* add one to the local atom count */
94 localnr++;
98 /* Return the number of local atoms that were found */
99 *nr_loc = localnr;
103 static void get_shifts_group(
104 int npbcdim,
105 const matrix box,
106 rvec *xcoll, /* IN: Collective set of positions [0..nr] */
107 int nr, /* IN: Total number of atoms in the group */
108 rvec *xcoll_old, /* IN: Positions from the last time step [0...nr] */
109 ivec *shifts) /* OUT: Shifts for xcoll */
111 int i, m, d;
112 rvec dx;
115 /* Get the shifts such that each atom is within closest
116 * distance to its position at the last NS time step after shifting.
117 * If we start with a whole group, and always keep track of
118 * shift changes, the group will stay whole this way */
119 for (i = 0; i < nr; i++)
121 clear_ivec(shifts[i]);
124 for (i = 0; i < nr; i++)
126 /* The distance this atom moved since the last time step */
127 /* If this is more than just a bit, it has changed its home pbc box */
128 rvec_sub(xcoll[i], xcoll_old[i], dx);
130 for (m = npbcdim-1; m >= 0; m--)
132 while (dx[m] < -0.5*box[m][m])
134 for (d = 0; d < DIM; d++)
136 dx[d] += box[m][d];
138 shifts[i][m]++;
140 while (dx[m] >= 0.5*box[m][m])
142 for (d = 0; d < DIM; d++)
144 dx[d] -= box[m][d];
146 shifts[i][m]--;
153 static void shift_positions_group(
154 const matrix box,
155 rvec x[], /* The positions [0..nr] */
156 ivec *is, /* The shifts [0..nr] */
157 int nr) /* The number of positions and shifts */
159 int i, tx, ty, tz;
162 /* Loop over the group's atoms */
163 if (TRICLINIC(box))
165 for (i = 0; i < nr; i++)
167 tx = is[i][XX];
168 ty = is[i][YY];
169 tz = is[i][ZZ];
171 x[i][XX] = x[i][XX]+tx*box[XX][XX]+ty*box[YY][XX]+tz*box[ZZ][XX];
172 x[i][YY] = x[i][YY]+ty*box[YY][YY]+tz*box[ZZ][YY];
173 x[i][ZZ] = x[i][ZZ]+tz*box[ZZ][ZZ];
176 else
178 for (i = 0; i < nr; i++)
180 tx = is[i][XX];
181 ty = is[i][YY];
182 tz = is[i][ZZ];
184 x[i][XX] = x[i][XX]+tx*box[XX][XX];
185 x[i][YY] = x[i][YY]+ty*box[YY][YY];
186 x[i][ZZ] = x[i][ZZ]+tz*box[ZZ][ZZ];
192 /* Assemble the positions of the group such that every node has all of them.
193 * The atom indices are retrieved from anrs_loc[0..nr_loc]
194 * Note that coll_ind[i] = i is needed in the serial case */
195 extern void communicate_group_positions(
196 const t_commrec *cr, /* Pointer to MPI communication data */
197 rvec *xcoll, /* Collective array of positions */
198 ivec *shifts, /* Collective array of shifts for xcoll (can be NULL) */
199 ivec *extra_shifts, /* (optional) Extra shifts since last time step */
200 const gmx_bool bNS, /* (optional) NS step, the shifts have changed */
201 const rvec *x_loc, /* Local positions on this node */
202 const int nr, /* Total number of atoms in the group */
203 const int nr_loc, /* Local number of atoms in the group */
204 const int *anrs_loc, /* Local atom numbers */
205 const int *coll_ind, /* Collective index */
206 rvec *xcoll_old, /* (optional) Positions from the last time step,
207 used to make group whole */
208 const matrix box) /* (optional) The box */
210 int i;
213 /* Zero out the groups' global position array */
214 clear_rvecs(nr, xcoll);
216 /* Put the local positions that this node has into the right place of
217 * the collective array. Note that in the serial case, coll_ind[i] = i */
218 for (i = 0; i < nr_loc; i++)
220 copy_rvec(x_loc[anrs_loc[i]], xcoll[coll_ind[i]]);
223 if (PAR(cr))
225 /* Add the arrays from all nodes together */
226 gmx_sum(nr*3, xcoll[0], cr);
228 /* Now we have all the positions of the group in the xcoll array present on all
229 * nodes.
231 * The rest of the code is for making the group whole again in case atoms changed
232 * their PBC representation / crossed a box boundary. We only do that if the
233 * shifts array is allocated. */
234 if (nullptr != shifts)
236 /* To make the group whole, start with a whole group and each
237 * step move the assembled positions at closest distance to the positions
238 * from the last step. First shift the positions with the saved shift
239 * vectors (these are 0 when this routine is called for the first time!) */
240 shift_positions_group(box, xcoll, shifts, nr);
242 /* Now check if some shifts changed since the last step.
243 * This only needs to be done when the shifts are expected to have changed,
244 * i.e. after neighbor searching */
245 if (bNS)
247 get_shifts_group(3, box, xcoll, nr, xcoll_old, extra_shifts);
249 /* Shift with the additional shifts such that we get a whole group now */
250 shift_positions_group(box, xcoll, extra_shifts, nr);
252 /* Add the shift vectors together for the next time step */
253 for (i = 0; i < nr; i++)
255 shifts[i][XX] += extra_shifts[i][XX];
256 shifts[i][YY] += extra_shifts[i][YY];
257 shifts[i][ZZ] += extra_shifts[i][ZZ];
260 /* Store current correctly-shifted positions for comparison in the next NS time step */
261 for (i = 0; i < nr; i++)
263 copy_rvec(xcoll[i], xcoll_old[i]);
270 /* Determine the (weighted) sum vector from positions x */
271 extern double get_sum_of_positions(rvec x[], real weight[], const int nat, dvec dsumvec)
273 int i;
274 rvec x_weighted;
275 double weight_sum = 0.0;
278 /* Zero out the center */
279 clear_dvec(dsumvec);
281 /* Loop over all atoms and add their weighted position vectors */
282 if (weight != nullptr)
284 for (i = 0; i < nat; i++)
286 weight_sum += weight[i];
287 svmul(weight[i], x[i], x_weighted);
288 dsumvec[XX] += x_weighted[XX];
289 dsumvec[YY] += x_weighted[YY];
290 dsumvec[ZZ] += x_weighted[ZZ];
293 else
295 for (i = 0; i < nat; i++)
297 dsumvec[XX] += x[i][XX];
298 dsumvec[YY] += x[i][YY];
299 dsumvec[ZZ] += x[i][ZZ];
302 return weight_sum;
306 /* Determine center of structure from collective positions x */
307 extern void get_center(rvec x[], real weight[], const int nr, rvec rcenter)
309 dvec dcenter;
310 double weight_sum, denom;
313 weight_sum = get_sum_of_positions(x, weight, nr, dcenter);
315 if (weight != nullptr)
317 denom = weight_sum; /* Divide by the sum of weight */
319 else
321 denom = nr; /* Divide by the number of atoms */
324 dsvmul(1.0/denom, dcenter, dcenter);
326 rcenter[XX] = dcenter[XX];
327 rcenter[YY] = dcenter[YY];
328 rcenter[ZZ] = dcenter[ZZ];
332 /* Get the center from local positions that already have the correct
333 * PBC representation */
334 extern void get_center_comm(
335 const t_commrec *cr,
336 rvec x_loc[], /* Local positions */
337 real weight_loc[], /* Local masses or other weights */
338 int nr_loc, /* Local number of atoms */
339 int nr_group, /* Total number of atoms of the group */
340 rvec center) /* Weighted center */
342 double weight_sum, denom;
343 dvec dsumvec;
344 double buf[4];
347 weight_sum = get_sum_of_positions(x_loc, weight_loc, nr_loc, dsumvec);
349 /* Add the local contributions from all nodes. Put the sum vector and the
350 * weight in a buffer array so that we get along with a single communication
351 * call. */
352 if (PAR(cr))
354 buf[0] = dsumvec[XX];
355 buf[1] = dsumvec[YY];
356 buf[2] = dsumvec[ZZ];
357 buf[3] = weight_sum;
359 /* Communicate buffer */
360 gmx_sumd(4, buf, cr);
362 dsumvec[XX] = buf[0];
363 dsumvec[YY] = buf[1];
364 dsumvec[ZZ] = buf[2];
365 weight_sum = buf[3];
368 if (weight_loc != nullptr)
370 denom = 1.0/weight_sum; /* Divide by the sum of weight to get center of mass e.g. */
372 else
374 denom = 1.0/nr_group; /* Divide by the number of atoms to get the geometrical center */
377 center[XX] = dsumvec[XX]*denom;
378 center[YY] = dsumvec[YY]*denom;
379 center[ZZ] = dsumvec[ZZ]*denom;
383 /* Translate x with transvec */
384 extern void translate_x(rvec x[], const int nr, const rvec transvec)
386 int i;
389 for (i = 0; i < nr; i++)
391 rvec_inc(x[i], transvec);
396 extern void rotate_x(rvec x[], const int nr, matrix rmat)
398 int i, j, k;
399 rvec x_old;
402 /* Apply the rotation matrix */
403 for (i = 0; i < nr; i++)
405 for (j = 0; j < 3; j++)
407 x_old[j] = x[i][j];
409 for (j = 0; j < 3; j++)
411 x[i][j] = 0;
412 for (k = 0; k < 3; k++)
414 x[i][j] += rmat[k][j]*x_old[k];