2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 2012,2013,2014,2015,2016,2017,2018, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
44 #include "gromacs/domdec/domdec.h"
45 #include "gromacs/fileio/confio.h"
46 #include "gromacs/fileio/gmxfio.h"
47 #include "gromacs/fileio/xtcio.h"
48 #include "gromacs/gmxlib/chargegroup.h"
49 #include "gromacs/gmxlib/network.h"
50 #include "gromacs/gmxlib/nrnb.h"
51 #include "gromacs/listed-forces/disre.h"
52 #include "gromacs/listed-forces/orires.h"
53 #include "gromacs/math/functions.h"
54 #include "gromacs/math/units.h"
55 #include "gromacs/math/vec.h"
56 #include "gromacs/mdlib/calcmu.h"
57 #include "gromacs/mdlib/constr.h"
58 #include "gromacs/mdlib/force.h"
59 #include "gromacs/mdlib/update.h"
60 #include "gromacs/mdtypes/enerdata.h"
61 #include "gromacs/mdtypes/forcerec.h"
62 #include "gromacs/mdtypes/inputrec.h"
63 #include "gromacs/mdtypes/md_enums.h"
64 #include "gromacs/mdtypes/mdatom.h"
65 #include "gromacs/mdtypes/state.h"
66 #include "gromacs/random/threefry.h"
67 #include "gromacs/random/uniformrealdistribution.h"
68 #include "gromacs/timing/wallcycle.h"
69 #include "gromacs/utility/fatalerror.h"
70 #include "gromacs/utility/gmxmpi.h"
71 #include "gromacs/utility/smalloc.h"
73 static void init_df_history_weights(df_history_t
*dfhist
, const t_expanded
*expand
, int nlim
)
76 dfhist
->wl_delta
= expand
->init_wl_delta
;
77 for (i
= 0; i
< nlim
; i
++)
79 dfhist
->sum_weights
[i
] = expand
->init_lambda_weights
[i
];
80 dfhist
->sum_dg
[i
] = expand
->init_lambda_weights
[i
];
84 /* Eventually should contain all the functions needed to initialize expanded ensemble
85 before the md loop starts */
86 void init_expanded_ensemble(gmx_bool bStateFromCP
, const t_inputrec
*ir
, df_history_t
*dfhist
)
90 init_df_history_weights(dfhist
, ir
->expandedvals
, ir
->fepvals
->n_lambda
);
94 static void GenerateGibbsProbabilities(const real
*ene
, double *p_k
, double *pks
, int minfep
, int maxfep
)
101 maxene
= ene
[minfep
];
102 /* find the maximum value */
103 for (i
= minfep
; i
<= maxfep
; i
++)
110 /* find the denominator */
111 for (i
= minfep
; i
<= maxfep
; i
++)
113 *pks
+= std::exp(ene
[i
]-maxene
);
116 for (i
= minfep
; i
<= maxfep
; i
++)
118 p_k
[i
] = std::exp(ene
[i
]-maxene
) / *pks
;
122 static void GenerateWeightedGibbsProbabilities(const real
*ene
, double *p_k
, double *pks
, int nlim
, real
*nvals
, real delta
)
131 for (i
= 0; i
< nlim
; i
++)
135 /* add the delta, since we need to make sure it's greater than zero, and
136 we need a non-arbitrary number? */
137 nene
[i
] = ene
[i
] + std::log(nvals
[i
]+delta
);
141 nene
[i
] = ene
[i
] + std::log(nvals
[i
]);
145 /* find the maximum value */
147 for (i
= 0; i
< nlim
; i
++)
149 if (nene
[i
] > maxene
)
155 /* subtract off the maximum, avoiding overflow */
156 for (i
= 0; i
< nlim
; i
++)
161 /* find the denominator */
162 for (i
= 0; i
< nlim
; i
++)
164 *pks
+= std::exp(nene
[i
]);
168 for (i
= 0; i
< nlim
; i
++)
170 p_k
[i
] = std::exp(nene
[i
]) / *pks
;
175 static int FindMinimum(const real
*min_metric
, int N
)
182 min_val
= min_metric
[0];
184 for (nval
= 0; nval
< N
; nval
++)
186 if (min_metric
[nval
] < min_val
)
188 min_val
= min_metric
[nval
];
195 static gmx_bool
CheckHistogramRatios(int nhisto
, const real
*histo
, real ratio
)
203 for (i
= 0; i
< nhisto
; i
++)
210 /* no samples! is bad!*/
214 nmean
/= static_cast<real
>(nhisto
);
217 for (i
= 0; i
< nhisto
; i
++)
219 /* make sure that all points are in the ratio < x < 1/ratio range */
220 if (!((histo
[i
]/nmean
< 1.0/ratio
) && (histo
[i
]/nmean
> ratio
)))
229 static gmx_bool
CheckIfDoneEquilibrating(int nlim
, const t_expanded
*expand
, const df_history_t
*dfhist
, int64_t step
)
233 gmx_bool bDoneEquilibrating
= TRUE
;
236 /* If we are doing slow growth to get initial values, we haven't finished equilibrating */
237 if (expand
->lmc_forced_nstart
> 0)
239 for (i
= 0; i
< nlim
; i
++)
241 if (dfhist
->n_at_lam
[i
] < expand
->lmc_forced_nstart
) /* we are still doing the initial sweep, so we're definitely not
244 bDoneEquilibrating
= FALSE
;
251 /* assume we have equilibrated the weights, then check to see if any of the conditions are not met */
252 bDoneEquilibrating
= TRUE
;
254 /* calculate the total number of samples */
255 switch (expand
->elmceq
)
258 /* We have not equilibrated, and won't, ever. */
259 bDoneEquilibrating
= FALSE
;
262 /* we have equilibrated -- we're done */
263 bDoneEquilibrating
= TRUE
;
266 /* first, check if we are equilibrating by steps, if we're still under */
267 if (step
< expand
->equil_steps
)
269 bDoneEquilibrating
= FALSE
;
274 for (i
= 0; i
< nlim
; i
++)
276 totalsamples
+= dfhist
->n_at_lam
[i
];
278 if (totalsamples
< expand
->equil_samples
)
280 bDoneEquilibrating
= FALSE
;
284 for (i
= 0; i
< nlim
; i
++)
286 if (dfhist
->n_at_lam
[i
] < expand
->equil_n_at_lam
) /* we are still doing the initial sweep, so we're definitely not
289 bDoneEquilibrating
= FALSE
;
295 if (EWL(expand
->elamstats
)) /* This check is in readir as well, but
298 if (dfhist
->wl_delta
> expand
->equil_wl_delta
)
300 bDoneEquilibrating
= FALSE
;
305 /* we can use the flatness as a judge of good weights, as long as
306 we're not doing minvar, or Wang-Landau.
307 But turn off for now until we figure out exactly how we do this.
310 if (!(EWL(expand
->elamstats
) || expand
->elamstats
== elamstatsMINVAR
))
312 /* we want to use flatness -avoiding- the forced-through samples. Plus, we need to convert to
313 floats for this histogram function. */
316 snew(modhisto
, nlim
);
317 for (i
= 0; i
< nlim
; i
++)
319 modhisto
[i
] = 1.0*(dfhist
->n_at_lam
[i
]-expand
->lmc_forced_nstart
);
321 bIfFlat
= CheckHistogramRatios(nlim
, modhisto
, expand
->equil_ratio
);
325 bDoneEquilibrating
= FALSE
;
330 bDoneEquilibrating
= TRUE
;
334 return bDoneEquilibrating
;
337 static gmx_bool
UpdateWeights(int nlim
, t_expanded
*expand
, df_history_t
*dfhist
,
338 int fep_state
, const real
*scaled_lamee
, const real
*weighted_lamee
, int64_t step
)
340 gmx_bool bSufficientSamples
;
342 int n0
, np1
, nm1
, nval
, min_nvalm
, min_nvalp
, maxc
;
343 real omega_m1_0
, omega_p1_0
, clam_osum
;
344 real de
, de_function
;
345 real cnval
, zero_sum_weights
;
346 real
*omegam_array
, *weightsm_array
, *omegap_array
, *weightsp_array
, *varm_array
, *varp_array
, *dwp_array
, *dwm_array
;
347 real clam_varm
, clam_varp
, clam_weightsm
, clam_weightsp
, clam_minvar
;
348 real
*lam_variance
, *lam_dg
;
351 real chi_m1_0
, chi_p1_0
, chi_m2_0
, chi_p2_0
, chi_p1_m1
, chi_p2_m1
, chi_m1_p1
, chi_m2_p1
;
353 /* if we have equilibrated the weights, exit now */
359 if (CheckIfDoneEquilibrating(nlim
, expand
, dfhist
, step
))
361 dfhist
->bEquil
= TRUE
;
362 /* zero out the visited states so we know how many equilibrated states we have
364 for (i
= 0; i
< nlim
; i
++)
366 dfhist
->n_at_lam
[i
] = 0;
371 /* If we reached this far, we have not equilibrated yet, keep on
372 going resetting the weights */
374 if (EWL(expand
->elamstats
))
376 if (expand
->elamstats
== elamstatsWL
) /* Standard Wang-Landau */
378 dfhist
->sum_weights
[fep_state
] -= dfhist
->wl_delta
;
379 dfhist
->wl_histo
[fep_state
] += 1.0;
381 else if (expand
->elamstats
== elamstatsWWL
) /* Weighted Wang-Landau */
385 /* first increment count */
386 GenerateGibbsProbabilities(weighted_lamee
, p_k
, &pks
, 0, nlim
-1);
387 for (i
= 0; i
< nlim
; i
++)
389 dfhist
->wl_histo
[i
] += static_cast<real
>(p_k
[i
]);
392 /* then increment weights (uses count) */
394 GenerateWeightedGibbsProbabilities(weighted_lamee
, p_k
, &pks
, nlim
, dfhist
->wl_histo
, dfhist
->wl_delta
);
396 for (i
= 0; i
< nlim
; i
++)
398 dfhist
->sum_weights
[i
] -= dfhist
->wl_delta
*static_cast<real
>(p_k
[i
]);
400 /* Alternate definition, using logarithms. Shouldn't make very much difference! */
405 di = (real)1.0 + dfhist->wl_delta*(real)p_k[i];
406 dfhist->sum_weights[i] -= log(di);
412 zero_sum_weights
= dfhist
->sum_weights
[0];
413 for (i
= 0; i
< nlim
; i
++)
415 dfhist
->sum_weights
[i
] -= zero_sum_weights
;
419 if (expand
->elamstats
== elamstatsBARKER
|| expand
->elamstats
== elamstatsMETROPOLIS
|| expand
->elamstats
== elamstatsMINVAR
)
422 de_function
= 0; /* to get rid of warnings, but this value will not be used because of the logic */
423 maxc
= 2*expand
->c_range
+1;
426 snew(lam_variance
, nlim
);
428 snew(omegap_array
, maxc
);
429 snew(weightsp_array
, maxc
);
430 snew(varp_array
, maxc
);
431 snew(dwp_array
, maxc
);
433 snew(omegam_array
, maxc
);
434 snew(weightsm_array
, maxc
);
435 snew(varm_array
, maxc
);
436 snew(dwm_array
, maxc
);
438 /* unpack the current lambdas -- we will only update 2 of these */
440 for (i
= 0; i
< nlim
-1; i
++)
441 { /* only through the second to last */
442 lam_dg
[i
] = dfhist
->sum_dg
[i
+1] - dfhist
->sum_dg
[i
];
443 lam_variance
[i
] = gmx::square(dfhist
->sum_variance
[i
+1]) - gmx::square(dfhist
->sum_variance
[i
]);
446 /* accumulate running averages */
447 for (nval
= 0; nval
< maxc
; nval
++)
449 /* constants for later use */
450 cnval
= static_cast<real
>(nval
-expand
->c_range
);
451 /* actually, should be able to rewrite it w/o exponential, for better numerical stability */
454 de
= std::exp(cnval
- (scaled_lamee
[fep_state
]-scaled_lamee
[fep_state
-1]));
455 if (expand
->elamstats
== elamstatsBARKER
|| expand
->elamstats
== elamstatsMINVAR
)
457 de_function
= 1.0/(1.0+de
);
459 else if (expand
->elamstats
== elamstatsMETROPOLIS
)
467 de_function
= 1.0/de
;
470 dfhist
->accum_m
[fep_state
][nval
] += de_function
;
471 dfhist
->accum_m2
[fep_state
][nval
] += de_function
*de_function
;
474 if (fep_state
< nlim
-1)
476 de
= std::exp(-cnval
+ (scaled_lamee
[fep_state
+1]-scaled_lamee
[fep_state
]));
477 if (expand
->elamstats
== elamstatsBARKER
|| expand
->elamstats
== elamstatsMINVAR
)
479 de_function
= 1.0/(1.0+de
);
481 else if (expand
->elamstats
== elamstatsMETROPOLIS
)
489 de_function
= 1.0/de
;
492 dfhist
->accum_p
[fep_state
][nval
] += de_function
;
493 dfhist
->accum_p2
[fep_state
][nval
] += de_function
*de_function
;
496 /* Metropolis transition and Barker transition (unoptimized Bennett) acceptance weight determination */
498 n0
= dfhist
->n_at_lam
[fep_state
];
501 nm1
= dfhist
->n_at_lam
[fep_state
-1];
507 if (fep_state
< nlim
-1)
509 np1
= dfhist
->n_at_lam
[fep_state
+1];
516 /* logic SHOULD keep these all set correctly whatever the logic, but apparently it can't figure it out. */
517 chi_m1_0
= chi_p1_0
= chi_m2_0
= chi_p2_0
= chi_p1_m1
= chi_p2_m1
= chi_m1_p1
= chi_m2_p1
= 0;
521 chi_m1_0
= dfhist
->accum_m
[fep_state
][nval
]/n0
;
522 chi_p1_0
= dfhist
->accum_p
[fep_state
][nval
]/n0
;
523 chi_m2_0
= dfhist
->accum_m2
[fep_state
][nval
]/n0
;
524 chi_p2_0
= dfhist
->accum_p2
[fep_state
][nval
]/n0
;
527 if ((fep_state
> 0 ) && (nm1
> 0))
529 chi_p1_m1
= dfhist
->accum_p
[fep_state
-1][nval
]/nm1
;
530 chi_p2_m1
= dfhist
->accum_p2
[fep_state
-1][nval
]/nm1
;
533 if ((fep_state
< nlim
-1) && (np1
> 0))
535 chi_m1_p1
= dfhist
->accum_m
[fep_state
+1][nval
]/np1
;
536 chi_m2_p1
= dfhist
->accum_m2
[fep_state
+1][nval
]/np1
;
550 omega_m1_0
= chi_m2_0
/(chi_m1_0
*chi_m1_0
) - 1.0;
553 real omega_p1_m1
= chi_p2_m1
/(chi_p1_m1
*chi_p1_m1
) - 1.0;
554 clam_weightsm
= (std::log(chi_m1_0
) - std::log(chi_p1_m1
)) + cnval
;
555 clam_varm
= (1.0/n0
)*(omega_m1_0
) + (1.0/nm1
)*(omega_p1_m1
);
560 if (fep_state
< nlim
-1)
564 omega_p1_0
= chi_p2_0
/(chi_p1_0
*chi_p1_0
) - 1.0;
567 real omega_m1_p1
= chi_m2_p1
/(chi_m1_p1
*chi_m1_p1
) - 1.0;
568 clam_weightsp
= (std::log(chi_m1_p1
) - std::log(chi_p1_0
)) + cnval
;
569 clam_varp
= (1.0/np1
)*(omega_m1_p1
) + (1.0/n0
)*(omega_p1_0
);
576 omegam_array
[nval
] = omega_m1_0
;
580 omegam_array
[nval
] = 0;
582 weightsm_array
[nval
] = clam_weightsm
;
583 varm_array
[nval
] = clam_varm
;
586 dwm_array
[nval
] = fabs( (cnval
+ std::log((1.0*n0
)/nm1
)) - lam_dg
[fep_state
-1] );
590 dwm_array
[nval
] = std::fabs( cnval
- lam_dg
[fep_state
-1] );
595 omegap_array
[nval
] = omega_p1_0
;
599 omegap_array
[nval
] = 0;
601 weightsp_array
[nval
] = clam_weightsp
;
602 varp_array
[nval
] = clam_varp
;
603 if ((np1
> 0) && (n0
> 0))
605 dwp_array
[nval
] = fabs( (cnval
+ std::log((1.0*np1
)/n0
)) - lam_dg
[fep_state
] );
609 dwp_array
[nval
] = std::fabs( cnval
- lam_dg
[fep_state
] );
614 /* find the C's closest to the old weights value */
616 min_nvalm
= FindMinimum(dwm_array
, maxc
);
617 omega_m1_0
= omegam_array
[min_nvalm
];
618 clam_weightsm
= weightsm_array
[min_nvalm
];
619 clam_varm
= varm_array
[min_nvalm
];
621 min_nvalp
= FindMinimum(dwp_array
, maxc
);
622 omega_p1_0
= omegap_array
[min_nvalp
];
623 clam_weightsp
= weightsp_array
[min_nvalp
];
624 clam_varp
= varp_array
[min_nvalp
];
626 clam_osum
= omega_m1_0
+ omega_p1_0
;
630 clam_minvar
= 0.5*std::log(clam_osum
);
635 lam_dg
[fep_state
-1] = clam_weightsm
;
636 lam_variance
[fep_state
-1] = clam_varm
;
639 if (fep_state
< nlim
-1)
641 lam_dg
[fep_state
] = clam_weightsp
;
642 lam_variance
[fep_state
] = clam_varp
;
645 if (expand
->elamstats
== elamstatsMINVAR
)
647 bSufficientSamples
= TRUE
;
648 /* make sure they are all past a threshold */
649 for (i
= 0; i
< nlim
; i
++)
651 if (dfhist
->n_at_lam
[i
] < expand
->minvarmin
)
653 bSufficientSamples
= FALSE
;
656 if (bSufficientSamples
)
658 dfhist
->sum_minvar
[fep_state
] = clam_minvar
;
661 for (i
= 0; i
< nlim
; i
++)
663 dfhist
->sum_minvar
[i
] += (expand
->minvar_const
-clam_minvar
);
665 expand
->minvar_const
= clam_minvar
;
666 dfhist
->sum_minvar
[fep_state
] = 0.0;
670 dfhist
->sum_minvar
[fep_state
] -= expand
->minvar_const
;
675 /* we need to rezero minvar now, since it could change at fep_state = 0 */
676 dfhist
->sum_dg
[0] = 0.0;
677 dfhist
->sum_variance
[0] = 0.0;
678 dfhist
->sum_weights
[0] = dfhist
->sum_dg
[0] + dfhist
->sum_minvar
[0]; /* should be zero */
680 for (i
= 1; i
< nlim
; i
++)
682 dfhist
->sum_dg
[i
] = lam_dg
[i
-1] + dfhist
->sum_dg
[i
-1];
683 dfhist
->sum_variance
[i
] = std::sqrt(lam_variance
[i
-1] + gmx::square(dfhist
->sum_variance
[i
-1]));
684 dfhist
->sum_weights
[i
] = dfhist
->sum_dg
[i
] + dfhist
->sum_minvar
[i
];
691 sfree(weightsm_array
);
696 sfree(weightsp_array
);
703 static int ChooseNewLambda(int nlim
, const t_expanded
*expand
, df_history_t
*dfhist
, int fep_state
,
704 const real
*weighted_lamee
, double *p_k
,
705 int64_t seed
, int64_t step
)
707 /* Choose new lambda value, and update transition matrix */
709 int i
, ifep
, minfep
, maxfep
, lamnew
, lamtrial
, starting_fep_state
;
710 real r1
, r2
, de
, trialprob
, tprob
= 0;
711 double *propose
, *accept
, *remainder
;
714 gmx::ThreeFry2x64
<0> rng(seed
, gmx::RandomDomain::ExpandedEnsemble
); // We only draw once, so zero bits internal counter is fine
715 gmx::UniformRealDistribution
<real
> dist
;
717 starting_fep_state
= fep_state
;
718 lamnew
= fep_state
; /* so that there is a default setting -- stays the same */
720 if (!EWL(expand
->elamstats
)) /* ignore equilibrating the weights if using WL */
722 if ((expand
->lmc_forced_nstart
> 0) && (dfhist
->n_at_lam
[nlim
-1] <= expand
->lmc_forced_nstart
))
724 /* Use a marching method to run through the lambdas and get preliminary free energy data,
725 before starting 'free' sampling. We start free sampling when we have enough at each lambda */
727 /* if we have enough at this lambda, move on to the next one */
729 if (dfhist
->n_at_lam
[fep_state
] == expand
->lmc_forced_nstart
)
731 lamnew
= fep_state
+1;
732 if (lamnew
== nlim
) /* whoops, stepped too far! */
747 snew(remainder
, nlim
);
749 for (i
= 0; i
< expand
->lmc_repeats
; i
++)
751 rng
.restart(step
, i
);
754 for (ifep
= 0; ifep
< nlim
; ifep
++)
760 if ((expand
->elmcmove
== elmcmoveGIBBS
) || (expand
->elmcmove
== elmcmoveMETGIBBS
))
762 /* use the Gibbs sampler, with restricted range */
763 if (expand
->gibbsdeltalam
< 0)
770 minfep
= fep_state
- expand
->gibbsdeltalam
;
771 maxfep
= fep_state
+ expand
->gibbsdeltalam
;
782 GenerateGibbsProbabilities(weighted_lamee
, p_k
, &pks
, minfep
, maxfep
);
784 if (expand
->elmcmove
== elmcmoveGIBBS
)
786 for (ifep
= minfep
; ifep
<= maxfep
; ifep
++)
788 propose
[ifep
] = p_k
[ifep
];
793 for (lamnew
= minfep
; lamnew
<= maxfep
; lamnew
++)
795 if (r1
<= p_k
[lamnew
])
802 else if (expand
->elmcmove
== elmcmoveMETGIBBS
)
805 /* Metropolized Gibbs sampling */
806 for (ifep
= minfep
; ifep
<= maxfep
; ifep
++)
808 remainder
[ifep
] = 1 - p_k
[ifep
];
811 /* find the proposal probabilities */
813 if (remainder
[fep_state
] == 0)
815 /* only the current state has any probability */
816 /* we have to stay at the current state */
821 for (ifep
= minfep
; ifep
<= maxfep
; ifep
++)
823 if (ifep
!= fep_state
)
825 propose
[ifep
] = p_k
[ifep
]/remainder
[fep_state
];
834 for (lamtrial
= minfep
; lamtrial
<= maxfep
; lamtrial
++)
836 pnorm
= p_k
[lamtrial
]/remainder
[fep_state
];
837 if (lamtrial
!= fep_state
)
847 /* we have now selected lamtrial according to p(lamtrial)/1-p(fep_state) */
849 /* trial probability is min{1,\frac{1 - p(old)}{1-p(new)} MRS 1/8/2008 */
850 trialprob
= (remainder
[fep_state
])/(remainder
[lamtrial
]);
851 if (trialprob
< tprob
)
866 /* now figure out the acceptance probability for each */
867 for (ifep
= minfep
; ifep
<= maxfep
; ifep
++)
870 if (remainder
[ifep
] != 0)
872 trialprob
= (remainder
[fep_state
])/(remainder
[ifep
]);
876 trialprob
= 1.0; /* this state is the only choice! */
878 if (trialprob
< tprob
)
882 /* probability for fep_state=0, but that's fine, it's never proposed! */
883 accept
[ifep
] = tprob
;
889 /* it's possible some rounding is failing */
890 if (gmx_within_tol(remainder
[fep_state
], 0, 50*GMX_DOUBLE_EPS
))
892 /* numerical rounding error -- no state other than the original has weight */
897 /* probably not a numerical issue */
899 int nerror
= 200+(maxfep
-minfep
+1)*60;
901 snew(errorstr
, nerror
);
902 /* if its greater than maxfep, then something went wrong -- probably underflow in the calculation
903 of sum weights. Generated detailed info for failure */
904 loc
+= sprintf(errorstr
, "Something wrong in choosing new lambda state with a Gibbs move -- probably underflow in weight determination.\nDenominator is: %3d%17.10e\n i dE numerator weights\n", 0, pks
);
905 for (ifep
= minfep
; ifep
<= maxfep
; ifep
++)
907 loc
+= sprintf(&errorstr
[loc
], "%3d %17.10e%17.10e%17.10e\n", ifep
, weighted_lamee
[ifep
], p_k
[ifep
], dfhist
->sum_weights
[ifep
]);
909 gmx_fatal(FARGS
, "%s", errorstr
);
913 else if ((expand
->elmcmove
== elmcmoveMETROPOLIS
) || (expand
->elmcmove
== elmcmoveBARKER
))
915 /* use the metropolis sampler with trial +/- 1 */
921 lamtrial
= fep_state
;
925 lamtrial
= fep_state
-1;
930 if (fep_state
== nlim
-1)
932 lamtrial
= fep_state
;
936 lamtrial
= fep_state
+1;
940 de
= weighted_lamee
[lamtrial
] - weighted_lamee
[fep_state
];
941 if (expand
->elmcmove
== elmcmoveMETROPOLIS
)
944 trialprob
= std::exp(de
);
945 if (trialprob
< tprob
)
949 propose
[fep_state
] = 0;
950 propose
[lamtrial
] = 1.0; /* note that this overwrites the above line if fep_state = ntrial, which only occurs at the ends */
951 accept
[fep_state
] = 1.0; /* doesn't actually matter, never proposed unless fep_state = ntrial, in which case it's 1.0 anyway */
952 accept
[lamtrial
] = tprob
;
955 else if (expand
->elmcmove
== elmcmoveBARKER
)
957 tprob
= 1.0/(1.0+std::exp(-de
));
959 propose
[fep_state
] = (1-tprob
);
960 propose
[lamtrial
] += tprob
; /* we add, to account for the fact that at the end, they might be the same point */
961 accept
[fep_state
] = 1.0;
962 accept
[lamtrial
] = 1.0;
976 for (ifep
= 0; ifep
< nlim
; ifep
++)
978 dfhist
->Tij
[fep_state
][ifep
] += propose
[ifep
]*accept
[ifep
];
979 dfhist
->Tij
[fep_state
][fep_state
] += propose
[ifep
]*(1.0-accept
[ifep
]);
984 dfhist
->Tij_empirical
[starting_fep_state
][lamnew
] += 1.0;
993 /* print out the weights to the log, along with current state */
994 void PrintFreeEnergyInfoToFile(FILE *outfile
, const t_lambda
*fep
, const t_expanded
*expand
,
995 const t_simtemp
*simtemp
, const df_history_t
*dfhist
,
996 int fep_state
, int frequency
, int64_t step
)
998 int nlim
, i
, ifep
, jfep
;
999 real dw
, dg
, dv
, Tprint
;
1000 const char *print_names
[efptNR
] = {" FEPL", "MassL", "CoulL", " VdwL", "BondL", "RestT", "Temp.(K)"};
1001 gmx_bool bSimTemp
= FALSE
;
1003 nlim
= fep
->n_lambda
;
1004 if (simtemp
!= nullptr)
1009 if (step
% frequency
== 0)
1011 fprintf(outfile
, " MC-lambda information\n");
1012 if (EWL(expand
->elamstats
) && (!(dfhist
->bEquil
)))
1014 fprintf(outfile
, " Wang-Landau incrementor is: %11.5g\n", dfhist
->wl_delta
);
1016 fprintf(outfile
, " N");
1017 for (i
= 0; i
< efptNR
; i
++)
1019 if (fep
->separate_dvdl
[i
])
1021 fprintf(outfile
, "%7s", print_names
[i
]);
1023 else if ((i
== efptTEMPERATURE
) && bSimTemp
)
1025 fprintf(outfile
, "%10s", print_names
[i
]); /* more space for temperature formats */
1028 fprintf(outfile
, " Count ");
1029 if (expand
->elamstats
== elamstatsMINVAR
)
1031 fprintf(outfile
, "W(in kT) G(in kT) dG(in kT) dV(in kT)\n");
1035 fprintf(outfile
, "G(in kT) dG(in kT)\n");
1037 for (ifep
= 0; ifep
< nlim
; ifep
++)
1047 dw
= dfhist
->sum_weights
[ifep
+1] - dfhist
->sum_weights
[ifep
];
1048 dg
= dfhist
->sum_dg
[ifep
+1] - dfhist
->sum_dg
[ifep
];
1049 dv
= std::sqrt(gmx::square(dfhist
->sum_variance
[ifep
+1]) - gmx::square(dfhist
->sum_variance
[ifep
]));
1051 fprintf(outfile
, "%3d", (ifep
+1));
1052 for (i
= 0; i
< efptNR
; i
++)
1054 if (fep
->separate_dvdl
[i
])
1056 fprintf(outfile
, "%7.3f", fep
->all_lambda
[i
][ifep
]);
1058 else if (i
== efptTEMPERATURE
&& bSimTemp
)
1060 fprintf(outfile
, "%9.3f", simtemp
->temperatures
[ifep
]);
1063 if (EWL(expand
->elamstats
) && (!(dfhist
->bEquil
))) /* if performing WL and still haven't equilibrated */
1065 if (expand
->elamstats
== elamstatsWL
)
1067 fprintf(outfile
, " %8d", static_cast<int>(dfhist
->wl_histo
[ifep
]));
1071 fprintf(outfile
, " %8.3f", dfhist
->wl_histo
[ifep
]);
1074 else /* we have equilibrated weights */
1076 fprintf(outfile
, " %8d", dfhist
->n_at_lam
[ifep
]);
1078 if (expand
->elamstats
== elamstatsMINVAR
)
1080 fprintf(outfile
, " %10.5f %10.5f %10.5f %10.5f", dfhist
->sum_weights
[ifep
], dfhist
->sum_dg
[ifep
], dg
, dv
);
1084 fprintf(outfile
, " %10.5f %10.5f", dfhist
->sum_weights
[ifep
], dw
);
1086 if (ifep
== fep_state
)
1088 fprintf(outfile
, " <<\n");
1092 fprintf(outfile
, " \n");
1095 fprintf(outfile
, "\n");
1097 if ((step
% expand
->nstTij
== 0) && (expand
->nstTij
> 0) && (step
> 0))
1099 fprintf(outfile
, " Transition Matrix\n");
1100 for (ifep
= 0; ifep
< nlim
; ifep
++)
1102 fprintf(outfile
, "%12d", (ifep
+1));
1104 fprintf(outfile
, "\n");
1105 for (ifep
= 0; ifep
< nlim
; ifep
++)
1107 for (jfep
= 0; jfep
< nlim
; jfep
++)
1109 if (dfhist
->n_at_lam
[ifep
] > 0)
1111 if (expand
->bSymmetrizedTMatrix
)
1113 Tprint
= (dfhist
->Tij
[ifep
][jfep
]+dfhist
->Tij
[jfep
][ifep
])/(dfhist
->n_at_lam
[ifep
]+dfhist
->n_at_lam
[jfep
]);
1117 Tprint
= (dfhist
->Tij
[ifep
][jfep
])/(dfhist
->n_at_lam
[ifep
]);
1124 fprintf(outfile
, "%12.8f", Tprint
);
1126 fprintf(outfile
, "%3d\n", (ifep
+1));
1129 fprintf(outfile
, " Empirical Transition Matrix\n");
1130 for (ifep
= 0; ifep
< nlim
; ifep
++)
1132 fprintf(outfile
, "%12d", (ifep
+1));
1134 fprintf(outfile
, "\n");
1135 for (ifep
= 0; ifep
< nlim
; ifep
++)
1137 for (jfep
= 0; jfep
< nlim
; jfep
++)
1139 if (dfhist
->n_at_lam
[ifep
] > 0)
1141 if (expand
->bSymmetrizedTMatrix
)
1143 Tprint
= (dfhist
->Tij_empirical
[ifep
][jfep
]+dfhist
->Tij_empirical
[jfep
][ifep
])/(dfhist
->n_at_lam
[ifep
]+dfhist
->n_at_lam
[jfep
]);
1147 Tprint
= dfhist
->Tij_empirical
[ifep
][jfep
]/(dfhist
->n_at_lam
[ifep
]);
1154 fprintf(outfile
, "%12.8f", Tprint
);
1156 fprintf(outfile
, "%3d\n", (ifep
+1));
1162 int ExpandedEnsembleDynamics(FILE *log
, const t_inputrec
*ir
, const gmx_enerdata_t
*enerd
,
1163 t_state
*state
, t_extmass
*MassQ
, int fep_state
, df_history_t
*dfhist
,
1165 rvec
*v
, const t_mdatoms
*mdatoms
)
1166 /* Note that the state variable is only needed for simulated tempering, not
1167 Hamiltonian expanded ensemble. May be able to remove it after integrator refactoring. */
1169 real
*pfep_lamee
, *scaled_lamee
, *weighted_lamee
;
1171 int i
, nlim
, lamnew
, totalsamples
;
1172 real oneovert
, maxscaled
= 0, maxweighted
= 0;
1175 gmx_bool bIfReset
, bSwitchtoOneOverT
, bDoneEquilibrating
= FALSE
;
1177 expand
= ir
->expandedvals
;
1178 simtemp
= ir
->simtempvals
;
1179 nlim
= ir
->fepvals
->n_lambda
;
1181 snew(scaled_lamee
, nlim
);
1182 snew(weighted_lamee
, nlim
);
1183 snew(pfep_lamee
, nlim
);
1186 /* update the count at the current lambda*/
1187 dfhist
->n_at_lam
[fep_state
]++;
1189 /* need to calculate the PV term somewhere, but not needed here? Not until there's a lambda state that's
1190 pressure controlled.*/
1193 where does this PV term go?
1194 for (i=0;i<nlim;i++)
1196 fep_lamee[i] += pVTerm;
1200 /* determine the minimum value to avoid overflow. Probably a better way to do this */
1201 /* we don't need to include the pressure term, since the volume is the same between the two.
1202 is there some term we are neglecting, however? */
1204 if (ir
->efep
!= efepNO
)
1206 for (i
= 0; i
< nlim
; i
++)
1210 /* Note -- this assumes no mass changes, since kinetic energy is not added . . . */
1211 scaled_lamee
[i
] = (enerd
->enerpart_lambda
[i
+1]-enerd
->enerpart_lambda
[0])/(simtemp
->temperatures
[i
]*BOLTZ
)
1212 + enerd
->term
[F_EPOT
]*(1.0/(simtemp
->temperatures
[i
])- 1.0/(simtemp
->temperatures
[fep_state
]))/BOLTZ
;
1216 scaled_lamee
[i
] = (enerd
->enerpart_lambda
[i
+1]-enerd
->enerpart_lambda
[0])/(expand
->mc_temp
*BOLTZ
);
1217 /* mc_temp is currently set to the system reft unless otherwise defined */
1220 /* save these energies for printing, so they don't get overwritten by the next step */
1221 /* they aren't overwritten in the non-free energy case, but we always print with these
1229 for (i
= 0; i
< nlim
; i
++)
1231 scaled_lamee
[i
] = enerd
->term
[F_EPOT
]*(1.0/simtemp
->temperatures
[i
] - 1.0/simtemp
->temperatures
[fep_state
])/BOLTZ
;
1236 for (i
= 0; i
< nlim
; i
++)
1238 pfep_lamee
[i
] = scaled_lamee
[i
];
1240 weighted_lamee
[i
] = dfhist
->sum_weights
[i
] - scaled_lamee
[i
];
1243 maxscaled
= scaled_lamee
[i
];
1244 maxweighted
= weighted_lamee
[i
];
1248 if (scaled_lamee
[i
] > maxscaled
)
1250 maxscaled
= scaled_lamee
[i
];
1252 if (weighted_lamee
[i
] > maxweighted
)
1254 maxweighted
= weighted_lamee
[i
];
1259 for (i
= 0; i
< nlim
; i
++)
1261 scaled_lamee
[i
] -= maxscaled
;
1262 weighted_lamee
[i
] -= maxweighted
;
1265 /* update weights - we decide whether or not to actually do this inside */
1267 bDoneEquilibrating
= UpdateWeights(nlim
, expand
, dfhist
, fep_state
, scaled_lamee
, weighted_lamee
, step
);
1268 if (bDoneEquilibrating
)
1272 fprintf(log
, "\nStep %" PRId64
": Weights have equilibrated, using criteria: %s\n", step
, elmceq_names
[expand
->elmceq
]);
1276 lamnew
= ChooseNewLambda(nlim
, expand
, dfhist
, fep_state
, weighted_lamee
, p_k
,
1277 ir
->expandedvals
->lmc_seed
, step
);
1278 /* if using simulated tempering, we need to adjust the temperatures */
1279 if (ir
->bSimTemp
&& (lamnew
!= fep_state
)) /* only need to change the temperatures if we change the state */
1284 int nstart
, nend
, gt
;
1286 snew(buf_ngtc
, ir
->opts
.ngtc
);
1288 for (i
= 0; i
< ir
->opts
.ngtc
; i
++)
1290 if (ir
->opts
.ref_t
[i
] > 0)
1292 told
= ir
->opts
.ref_t
[i
];
1293 ir
->opts
.ref_t
[i
] = simtemp
->temperatures
[lamnew
];
1294 buf_ngtc
[i
] = std::sqrt(ir
->opts
.ref_t
[i
]/told
); /* using the buffer as temperature scaling */
1298 /* we don't need to manipulate the ekind information, as it isn't due to be reset until the next step anyway */
1301 nend
= mdatoms
->homenr
;
1302 for (n
= nstart
; n
< nend
; n
++)
1307 gt
= mdatoms
->cTC
[n
];
1309 for (d
= 0; d
< DIM
; d
++)
1311 v
[n
][d
] *= buf_ngtc
[gt
];
1315 if (inputrecNptTrotter(ir
) || inputrecNphTrotter(ir
) || inputrecNvtTrotter(ir
))
1317 /* we need to recalculate the masses if the temperature has changed */
1318 init_npt_masses(ir
, state
, MassQ
, FALSE
);
1319 for (i
= 0; i
< state
->nnhpres
; i
++)
1321 for (j
= 0; j
< ir
->opts
.nhchainlength
; j
++)
1323 state
->nhpres_vxi
[i
+j
] *= buf_ngtc
[i
];
1326 for (i
= 0; i
< ir
->opts
.ngtc
; i
++)
1328 for (j
= 0; j
< ir
->opts
.nhchainlength
; j
++)
1330 state
->nosehoover_vxi
[i
+j
] *= buf_ngtc
[i
];
1337 /* now check on the Wang-Landau updating critera */
1339 if (EWL(expand
->elamstats
))
1341 bSwitchtoOneOverT
= FALSE
;
1342 if (expand
->bWLoneovert
)
1345 for (i
= 0; i
< nlim
; i
++)
1347 totalsamples
+= dfhist
->n_at_lam
[i
];
1349 oneovert
= (1.0*nlim
)/totalsamples
;
1350 /* oneovert has decreasd by a bit since last time, so we actually make sure its within one of this number */
1351 /* switch to 1/t incrementing when wl_delta has decreased at least once, and wl_delta is now less than 1/t */
1352 if ((dfhist
->wl_delta
<= ((totalsamples
)/(totalsamples
-1.00001))*oneovert
) &&
1353 (dfhist
->wl_delta
< expand
->init_wl_delta
))
1355 bSwitchtoOneOverT
= TRUE
;
1358 if (bSwitchtoOneOverT
)
1360 dfhist
->wl_delta
= oneovert
; /* now we reduce by this each time, instead of only at flatness */
1364 bIfReset
= CheckHistogramRatios(nlim
, dfhist
->wl_histo
, expand
->wl_ratio
);
1367 for (i
= 0; i
< nlim
; i
++)
1369 dfhist
->wl_histo
[i
] = 0;
1371 dfhist
->wl_delta
*= expand
->wl_scale
;
1374 fprintf(log
, "\nStep %d: weights are now:", static_cast<int>(step
));
1375 for (i
= 0; i
< nlim
; i
++)
1377 fprintf(log
, " %.5f", dfhist
->sum_weights
[i
]);
1385 sfree(scaled_lamee
);
1386 sfree(weighted_lamee
);