Use set_type_descr() in set type menu creation.
[grace.git] / cephes / ellpk.c
blobee209d68802980623a31a9880b2c5d24d6b64a04
1 /* ellpk.c
3 * Complete elliptic integral of the first kind
7 * SYNOPSIS:
9 * double m1, y, ellpk();
11 * y = ellpk( m1 );
15 * DESCRIPTION:
17 * Approximates the integral
21 * pi/2
22 * -
23 * | |
24 * | dt
25 * K(m) = | ------------------
26 * | 2
27 * | | sqrt( 1 - m sin t )
28 * -
29 * 0
31 * where m = 1 - m1, using the approximation
33 * P(x) - log x Q(x).
35 * The argument m1 is used rather than m so that the logarithmic
36 * singularity at m = 1 will be shifted to the origin; this
37 * preserves maximum accuracy.
39 * K(0) = pi/2.
41 * ACCURACY:
43 * Relative error:
44 * arithmetic domain # trials peak rms
45 * DEC 0,1 16000 3.5e-17 1.1e-17
46 * IEEE 0,1 30000 2.5e-16 6.8e-17
48 * ERROR MESSAGES:
50 * message condition value returned
51 * ellpk domain x<0, x>1 0.0
55 /* ellpk.c */
59 Cephes Math Library, Release 2.0: April, 1987
60 Copyright 1984, 1987 by Stephen L. Moshier
61 Direct inquiries to 30 Frost Street, Cambridge, MA 02140
64 #include "mconf.h"
65 #include "cephes.h"
67 #ifdef DEC
68 static unsigned short P[] =
70 0035020,0127576,0040430,0051544,
71 0036025,0070136,0042703,0153716,
72 0036402,0122614,0062555,0077777,
73 0036441,0102130,0072334,0025172,
74 0036341,0043320,0117242,0172076,
75 0036312,0146456,0077242,0154141,
76 0036420,0003467,0013727,0035407,
77 0036564,0137263,0110651,0020237,
78 0036775,0001330,0144056,0020305,
79 0037305,0144137,0157521,0141734,
80 0040261,0071027,0173721,0147572
82 static unsigned short Q[] =
84 0034366,0130371,0103453,0077633,
85 0035557,0122745,0173515,0113016,
86 0036302,0124470,0167304,0074473,
87 0036575,0132403,0117226,0117576,
88 0036703,0156271,0047124,0147733,
89 0036766,0137465,0002053,0157312,
90 0037031,0014423,0154274,0176515,
91 0037107,0177747,0143216,0016145,
92 0037217,0177777,0172621,0074000,
93 0037377,0177777,0177776,0156435,
94 0040000,0000000,0000000,0000000
96 static unsigned short ac1[] = {0040261,0071027,0173721,0147572};
97 #define C1 (*(double *)ac1)
98 #endif
100 #ifdef IBMPC
101 static unsigned short P[] =
103 0x0a6d,0xc823,0x15ef,0x3f22,
104 0x7afa,0xc8b8,0xae0b,0x3f62,
105 0xb000,0x8cad,0x54b1,0x3f80,
106 0x854f,0x0e9b,0x308b,0x3f84,
107 0x5e88,0x13d4,0x28da,0x3f7c,
108 0x5b0c,0xcfd4,0x59a5,0x3f79,
109 0xe761,0xe2fa,0x00e6,0x3f82,
110 0x2414,0x7235,0x97d6,0x3f8e,
111 0xc419,0x1905,0xa05b,0x3f9f,
112 0x387c,0xfbea,0xb90b,0x3fb8,
113 0x39ef,0xfefa,0x2e42,0x3ff6
115 static unsigned short Q[] =
117 0x6ff3,0x30e5,0xd61f,0x3efe,
118 0xb2c2,0xbee9,0xf4bc,0x3f4d,
119 0x8f27,0x1dd8,0x5527,0x3f78,
120 0xd3f0,0x73d2,0xb6a0,0x3f8f,
121 0x99fb,0x29ca,0x7b97,0x3f98,
122 0x7bd9,0xa085,0xd7e6,0x3f9e,
123 0x9faa,0x7b17,0x2322,0x3fa3,
124 0xc38d,0xf8d1,0xfffc,0x3fa8,
125 0x2f00,0xfeb2,0xffff,0x3fb1,
126 0xdba4,0xffff,0xffff,0x3fbf,
127 0x0000,0x0000,0x0000,0x3fe0
129 static unsigned short ac1[] = {0x39ef,0xfefa,0x2e42,0x3ff6};
130 #define C1 (*(double *)ac1)
131 #endif
133 #ifdef MIEEE
134 static unsigned short P[] =
136 0x3f22,0x15ef,0xc823,0x0a6d,
137 0x3f62,0xae0b,0xc8b8,0x7afa,
138 0x3f80,0x54b1,0x8cad,0xb000,
139 0x3f84,0x308b,0x0e9b,0x854f,
140 0x3f7c,0x28da,0x13d4,0x5e88,
141 0x3f79,0x59a5,0xcfd4,0x5b0c,
142 0x3f82,0x00e6,0xe2fa,0xe761,
143 0x3f8e,0x97d6,0x7235,0x2414,
144 0x3f9f,0xa05b,0x1905,0xc419,
145 0x3fb8,0xb90b,0xfbea,0x387c,
146 0x3ff6,0x2e42,0xfefa,0x39ef
148 static unsigned short Q[] =
150 0x3efe,0xd61f,0x30e5,0x6ff3,
151 0x3f4d,0xf4bc,0xbee9,0xb2c2,
152 0x3f78,0x5527,0x1dd8,0x8f27,
153 0x3f8f,0xb6a0,0x73d2,0xd3f0,
154 0x3f98,0x7b97,0x29ca,0x99fb,
155 0x3f9e,0xd7e6,0xa085,0x7bd9,
156 0x3fa3,0x2322,0x7b17,0x9faa,
157 0x3fa8,0xfffc,0xf8d1,0xc38d,
158 0x3fb1,0xffff,0xfeb2,0x2f00,
159 0x3fbf,0xffff,0xffff,0xdba4,
160 0x3fe0,0x0000,0x0000,0x0000
162 static unsigned short ac1[] = {
163 0x3ff6,0x2e42,0xfefa,0x39ef
165 #define C1 (*(double *)ac1)
166 #endif
168 #ifdef UNK
169 static double P[] =
171 1.37982864606273237150E-4,
172 2.28025724005875567385E-3,
173 7.97404013220415179367E-3,
174 9.85821379021226008714E-3,
175 6.87489687449949877925E-3,
176 6.18901033637687613229E-3,
177 8.79078273952743772254E-3,
178 1.49380448916805252718E-2,
179 3.08851465246711995998E-2,
180 9.65735902811690126535E-2,
181 1.38629436111989062502E0
184 static double Q[] =
186 2.94078955048598507511E-5,
187 9.14184723865917226571E-4,
188 5.94058303753167793257E-3,
189 1.54850516649762399335E-2,
190 2.39089602715924892727E-2,
191 3.01204715227604046988E-2,
192 3.73774314173823228969E-2,
193 4.88280347570998239232E-2,
194 7.03124996963957469739E-2,
195 1.24999999999870820058E-1,
196 4.99999999999999999821E-1
198 static double C1 = 1.3862943611198906188E0; /* log(4) */
199 #endif
201 extern double MACHEP, MAXNUM;
203 double ellpk(x)
204 double x;
207 if( (x < 0.0) || (x > 1.0) )
209 mtherr( "ellpk", DOMAIN );
210 return( 0.0 );
213 if( x > MACHEP )
215 return( polevl(x,P,10) - log(x) * polevl(x,Q,10) );
217 else
219 if( x == 0.0 )
221 mtherr( "ellpk", SING );
222 return( MAXNUM );
224 else
226 return( C1 - 0.5 * log(x) );