3 TLS Working Group D. Taylor
4 Internet-Draft Forge Research Pty Ltd
5 Expires: July 27, 2004 T. Wu
12 Using SRP for TLS Authentication
17 This document is an Internet-Draft and is in full conformance with
18 all provisions of Section 10 of RFC2026.
20 Internet-Drafts are working documents of the Internet Engineering
21 Task Force (IETF), its areas, and its working groups. Note that other
22 groups may also distribute working documents as Internet-Drafts.
24 Internet-Drafts are draft documents valid for a maximum of six months
25 and may be updated, replaced, or obsoleted by other documents at any
26 time. It is inappropriate to use Internet-Drafts as reference
27 material or to cite them other than as "work in progress."
29 The list of current Internet-Drafts can be accessed at http://
30 www.ietf.org/ietf/1id-abstracts.txt.
32 The list of Internet-Draft Shadow Directories can be accessed at
33 http://www.ietf.org/shadow.html.
35 This Internet-Draft will expire on July 27, 2004.
39 Copyright (C) The Internet Society (2004). All Rights Reserved.
43 This memo presents a technique for using the SRP (Secure Remote
44 Password) protocol ([SRP], [SRP-6]) as an authentication method for
45 the TLS (Transport Layer Security) protocol [TLS].
55 Taylor, et al. Expires July 27, 2004 [Page 1]
57 Internet-Draft Using SRP for TLS Authentication January 2004
62 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3
63 2. SRP Authentication in TLS . . . . . . . . . . . . . . . . . 4
64 2.1 Notations and Terminology . . . . . . . . . . . . . . . . . 4
65 2.2 Modifications to the TLS Handshake Sequence . . . . . . . . 4
66 2.2.1 Message Sequence . . . . . . . . . . . . . . . . . . . . . . 5
67 2.2.2 Session Re-use . . . . . . . . . . . . . . . . . . . . . . . 5
68 2.3 Text Preparation . . . . . . . . . . . . . . . . . . . . . . 5
69 2.4 SRP Verifier Creation . . . . . . . . . . . . . . . . . . . 6
70 2.5 Changes to the Handshake Message Contents . . . . . . . . . 6
71 2.5.1 Client hello . . . . . . . . . . . . . . . . . . . . . . . . 6
72 2.5.2 Server certificate . . . . . . . . . . . . . . . . . . . . . 7
73 2.5.3 Server key exchange . . . . . . . . . . . . . . . . . . . . 7
74 2.5.4 Client key exchange . . . . . . . . . . . . . . . . . . . . 8
75 2.6 Calculating the Pre-master Secret . . . . . . . . . . . . . 8
76 2.7 Cipher Suite Definitions . . . . . . . . . . . . . . . . . . 9
77 2.8 New Message Structures . . . . . . . . . . . . . . . . . . . 10
78 2.8.1 ExtensionType . . . . . . . . . . . . . . . . . . . . . . . 10
79 2.8.2 Client Hello . . . . . . . . . . . . . . . . . . . . . . . . 10
80 2.8.3 Server Key Exchange . . . . . . . . . . . . . . . . . . . . 10
81 2.8.4 Client Key Exchange . . . . . . . . . . . . . . . . . . . . 11
82 2.9 Error Alerts . . . . . . . . . . . . . . . . . . . . . . . . 12
83 3. Security Considerations . . . . . . . . . . . . . . . . . . 13
84 Normative References . . . . . . . . . . . . . . . . . . . . 14
85 Informative References . . . . . . . . . . . . . . . . . . . 15
86 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . 15
87 A. SRP Group Parameters . . . . . . . . . . . . . . . . . . . . 16
88 B. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . 20
89 Intellectual Property and Copyright Statements . . . . . . . 21
111 Taylor, et al. Expires July 27, 2004 [Page 2]
113 Internet-Draft Using SRP for TLS Authentication January 2004
118 At the time of writing TLS [TLS] uses public key certificates, or
119 Kerberos, for authentication.
121 These authentication methods do not seem well suited to the
122 applications now being adapted to use TLS ([IMAP] or [FTP], for
123 example). Given that these protocols (and others like them) are
124 designed to use the user name and password method of authentication,
125 being able to safely use user names and passwords to authenticate the
126 TLS connection provides a much easier route to additional security
127 than implementing a public key infrastructure in certain situations.
129 SRP ([SRP], [SRP-6]) is an authentication method that allows the use
130 of user names and passwords over unencrypted channels without
131 revealing the password to an eavesdropper. SRP also supplies a shared
132 secret at the end of the authentication sequence that can be used to
133 generate encryption keys.
135 This document describes the use of the SRP authentication method for
138 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
139 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
140 document are to be interpreted as described in RFC 2119.
167 Taylor, et al. Expires July 27, 2004 [Page 3]
169 Internet-Draft Using SRP for TLS Authentication January 2004
172 2. SRP Authentication in TLS
174 2.1 Notations and Terminology
176 The version of SRP used here is sometimes referred to as "SRP-6"
177 [SRP-6]. This particular version is a slight improvement over
178 "SRP-3", which was described in [SRP] and [RFC2945].
180 This document uses the variable names defined in [SRP-6]:
182 N, g: group parameters (prime and generator)
186 B, b: server's public and private values
188 A, a: client's public and private values
190 I: user name (aka "identity")
196 The | symbol indicates string concatenation, the ^ operator is the
197 exponentiation operation, and the % operator is the integer remainder
198 operation. Conversion between integers and byte-strings assumes the
199 most-significant bytes are stored first, as per [TLS] and [RFC2945].
201 2.2 Modifications to the TLS Handshake Sequence
203 The advent of [SRP-6] allows the SRP protocol to be implemented using
204 the standard sequence of handshake messages defined in [TLS].
206 The parameters to various messages are given in the following
223 Taylor, et al. Expires July 27, 2004 [Page 4]
225 Internet-Draft Using SRP for TLS Authentication January 2004
228 2.2.1 Message Sequence
230 Handshake Message Flow for SRP Authentication
234 Client Hello (I) ------------------------> |
235 | <---------------------------- Server Hello
236 | <---------------------------- Certificate*
237 | <---------------------------- Server Key Exchange (N, g, s, B)
238 | <---------------------------- Server Hello Done
239 Client Key Exchange (A) -----------------> |
240 [Change cipher spec] |
241 Finished --------------------------------> |
242 | [Change cipher spec]
243 | <---------------------------- Finished
245 Application Data <--------------> Application Data
247 * Indicates an optional message which is not always sent.
251 An extended client hello message, as defined in [TLSEXT], is used to
252 send the client identifier (the user name).
256 The short handshake mechanism for re-using sessions for new
257 connections, and renegotiating keys for existing connections will
258 still work with the SRP authentication mechanism and handshake.
260 When a client attemps to re-use a session that uses SRP
261 authentication, it MUST include the SRP extension carrying the user
262 name (I) in the client hello message, in case the server cannot or
263 will not allow re-use of the session, meaning a full handshake
264 sequence is required.
266 If the server does agree to re-use an existing session the server
267 MUST ignore the information in the SRP extension of the client hello
268 message, except for its inclusion in the finished message hashes.
269 This is to ensure attackers cannot replace the authenticated identity
270 without supplying the proper authentication information.
274 The user name and password strings shall be UTF-8 encoded Unicode,
275 prepared using the [SASLPrep] profile of [StringPrep].
279 Taylor, et al. Expires July 27, 2004 [Page 5]
281 Internet-Draft Using SRP for TLS Authentication January 2004
284 2.4 SRP Verifier Creation
286 The verifier is calculated as described in section 3 of [RFC2945]. We
287 give the algorithm here for convenience.
289 The verifier (v) is computed based on the salt (s), user name (I),
290 password (p), and group parameters (N, g). The computation uses the
291 [SHA1] hash algorithm:
293 x = SHA1(s | SHA1(I | ":" | p))
296 2.5 Changes to the Handshake Message Contents
298 This section describes the changes to the TLS handshake message
299 contents when SRP is being used for authentication. The definitions
300 of the new message contents and the on-the-wire changes are given in
305 The user name is appended to the standard client hello message using
306 the hello message extension mechanism defined in [TLSEXT].
308 The client may offer SRP ciphersuites in the hello message but omit
309 the SRP extension. If the server would like to select an SRP
310 ciphersuite in this case, the server MAY return a
311 missing_srp_username alert (see Section 2.9) immediately after
312 processing the client hello message. This alert signals the client
313 to resend the hello message, this time with the SRP extension.
314 Through this idiom, the client can advertise that it supports SRP,
315 but not have to prompt the user for his user name and password, nor
316 expose the user name in the clear, unless necessary.
318 After sending the missing_srp_username alert, the server MUST leave
319 the TLS connection open, yet reset its handshake protocol state so it
320 is prepared to receive a second client hello message. Upon receiving
321 the missing_srp_username alert, the client MUST either send a second
322 client hello message, or send a fatal user_cancelled alert.
324 If the client sends a second hello message, the second hello message
325 MUST offer SRP ciphersuites, and MUST contain the SRP extension, and
326 the server MUST choose one of the SRP ciphersuites. Both client
327 hello messages MUST be treated as handshake messages and included in
328 the hash calculations for the TLS Finished message. The premaster
329 and master secret calculations will use the random value from the
330 second client hello message, not the first.
335 Taylor, et al. Expires July 27, 2004 [Page 6]
337 Internet-Draft Using SRP for TLS Authentication January 2004
340 If the server doesn't have a verifier for the given user name, the
341 server MAY abort the handshake with an unknown_srp_username alert
342 (see Section 2.9). Alternatively, if the server wishes to hide the
343 fact that this user name doesn't have a verifier, the server MAY
344 simulate the protocol as if a verifier existed, but then reject the
345 client's finished message with a bad_record_mac alert, as if the
346 password was incorrect.
348 To simulate the existence of an entry for each user name, the server
349 must consistently return the same salt (s) and group (N, g) values
350 for the same user name. For example, the server could store a secret
351 "seed key" and then use HMAC-SHA1(seed_key, "salt" | user_name) to
352 generate the salts [HMAC]. For B, the server can return a random
353 value between 1 and N-1 inclusive. However, the server should take
354 care to simulate computation delays. One way to do this is to
355 generate a fake verifier using the "seed key" approach, and then
356 proceed with the protocol as usual.
358 2.5.2 Server certificate
360 The server MUST send a certificate if it agrees to an SRP cipher
361 suite that requires the server to provide additional authentication
362 in the form of a digital signature. See Section 2.7 for details of
363 which ciphersuites defined in this document require a server
364 certificate to be sent.
366 Because the server's certificate is only used for generating a
367 digital signature in SRP cipher suites, the certificate sent MUST
368 contain a public key that can be used for verifying digital
371 2.5.3 Server key exchange
373 The server key exchange message contains the prime (N), the generator
374 (g), and the salt value (s) read from the SRP password file based on
375 the user name (I) received in the client hello extension.
377 The server key exchange message also contains the server's public
378 value (B). The server calculates this value as B = 3*v + g^b % N,
379 where b is a random number which SHOULD be at least 256 bits in
382 If the server has sent a certificate message, the server key exchange
383 message MUST be signed.
385 The group parameters (N, g) sent in this message MUST have N as a
386 safe prime (a prime of the form N=2q+1, where q is also prime). The
387 integers from 1 to N-1 will form a group under multiplication % N,
391 Taylor, et al. Expires July 27, 2004 [Page 7]
393 Internet-Draft Using SRP for TLS Authentication January 2004
396 and g MUST be a generator of this group. The SRP group parameters in
397 Appendix A are proven to have these properties, so the client SHOULD
398 accept any parameters from this Appendix which have large enough N
399 values to meet his security requirements. The client MAY accept
400 other group parameters from the server, either by prior arrangement,
401 or by checking the parameters himself.
403 To check that N is a safe prime, the client should use some method
404 such as performing 64 iterations of the Miller-Rabin test with random
405 bases (selected from 2 to N-2) on both N and q (by performing 64
406 iterations, the probability of a false positive is no more than
407 2^-128). To check that g is a generator of the group, the client can
408 check that 1 < g < N-1, and g^q % N equals N-1. Performing these
409 checks may be time-consuming; after checking new parameters, the
410 client may want to add them to a known-good list.
412 Group parameters that are not accepted via one of the above methods
413 MUST be rejected with an insufficient_security alert.
415 The client MUST abort the handshake with an illegal_parameter alert
418 2.5.4 Client key exchange
420 The client key exchange message carries the client's public value
421 (A). The client calculates this value as A = g^a % N, where a is a
422 random number which SHOULD be at least 256 bits in length.
424 The server MUST abort the handshake with an illegal_parameter alert
425 if A % N = 0, 1, or N-1.
427 2.6 Calculating the Pre-master Secret
429 The pre-master secret is calculated by the client as follows:
431 I, p = <read from user>
432 N, g, s, B = <read from server>
436 x = SHA1(s | SHA1(I | ":" | p))
437 <premaster secret> = (B - (3 * g^x)) ^ (a + (u * x)) % N
439 The pre-master secret is calculated by the server as follows:
447 Taylor, et al. Expires July 27, 2004 [Page 8]
449 Internet-Draft Using SRP for TLS Authentication January 2004
452 N, g, s, v = <read from password file>
455 A = <read from client>
457 <premaster secret> = (A * v^u) ^ b % N
459 The finished messages perform the same function as the client and
460 server evidence messages (M1 and M2) specified in [RFC2945]. If
461 either the client or the server calculate an incorrect premaster
462 secret, the finished messages will fail to decrypt properly, and the
463 other party will return a bad_record_mac alert.
465 If a client application receives a bad_record_mac alert when
466 performing an SRP handshake, it should inform the user that the
467 entered user name and password are incorrect.
469 2.7 Cipher Suite Definitions
471 The following cipher suites are added by this draft. The usage of AES
472 ciphersuites is as defined in [RFC3268].
474 CipherSuite TLS_SRP_SHA_WITH_3DES_EDE_CBC_SHA = { 0x00,0x50 };
476 CipherSuite TLS_SRP_SHA_RSA_WITH_3DES_EDE_CBC_SHA = { 0x00,0x51 };
478 CipherSuite TLS_SRP_SHA_DSS_WITH_3DES_EDE_CBC_SHA = { 0x00,0x52 };
480 CipherSuite TLS_SRP_SHA_WITH_AES_128_CBC_SHA = { 0x00,0x53 };
482 CipherSuite TLS_SRP_SHA_RSA_WITH_AES_128_CBC_SHA = { 0x00,0x54 };
484 CipherSuite TLS_SRP_SHA_DSS_WITH_AES_128_CBC_SHA = { 0x00,0x55 };
486 CipherSuite TLS_SRP_SHA_WITH_AES_256_CBC_SHA = { 0x00,0x56 };
488 CipherSuite TLS_SRP_SHA_RSA_WITH_AES_256_CBC_SHA = { 0x00,0x57 };
490 CipherSuite TLS_SRP_SHA_DSS_WITH_AES_256_CBC_SHA = { 0x00,0x58 };
492 Cipher suites that do not include a digital signature algorithm
493 identifier assume the server is authenticated by its possesion of the
496 Cipher suites that begin with TLS_SRP_SHA_RSA or TLS_SRP_SHA_DSS
497 require the server to send a certificate message containing a
498 certificate with the specified type of public key, and to sign the
499 server key exchange message using a matching private key.
503 Taylor, et al. Expires July 27, 2004 [Page 9]
505 Internet-Draft Using SRP for TLS Authentication January 2004
508 Implementations conforming to this specification MUST implement the
509 TLS_SRP_SHA_WITH_3DES_EDE_CBC_SHA ciphersuite, SHOULD implement the
510 TLS_SRP_SHA_WITH_AES_128_CBC_SHA and TLS_SRP_SHA_WITH_AES_256_CBC_SHA
511 ciphersuites, and MAY implement the remaining ciphersuites.
513 2.8 New Message Structures
515 This section shows the structure of the messages passed during a
516 handshake that uses SRP for authentication. The representation
517 language used is the same as that used in [TLS].
521 A new value, "srp(6)", has been added to the enumerated
522 ExtensionType, defined in [TLSEXT]. This value MUST be used as the
523 extension number for the SRP extension.
527 The "extension_data" field of the srp extension SHALL contain:
529 opaque srp_I<1..2^8-1>
531 where srp_I is the user name, encoded per .
533 2.8.3 Server Key Exchange
535 When the value of KeyExchangeAlgorithm is set to "srp", the server's
536 SRP parameters are sent in the server key exchange message, encoded
537 in a ServerSRPParams structure.
539 If a certificate is sent to the client the server key exchange
540 message must be signed. The following table gives the
541 SignatureAlgorithm value to be used for each ciphersuite.
543 Ciphersuite SignatureAlgorithm
545 TLS_SRP_SHA_WITH_3DES_EDE_CBC_SHA anonymous
547 TLS_SRP_SHA_RSA_WITH_3DES_EDE_CBC_SHA rsa
549 TLS_SRP_SHA_DSS_WITH_3DES_EDE_CBC_SHA dsa
551 TLS_SRP_SHA_WITH_AES_128_CBC_SHA anonymous
553 TLS_SRP_SHA_RSA_WITH_AES_128_CBC_SHA rsa
555 TLS_SRP_SHA_DSS_WITH_AES_128_CBC_SHA dsa
559 Taylor, et al. Expires July 27, 2004 [Page 10]
561 Internet-Draft Using SRP for TLS Authentication January 2004
564 TLS_SRP_SHA_WITH_AES_256_CBC_SHA anonymous
566 TLS_SRP_SHA_RSA_WITH_AES_256_CBC_SHA rsa
568 TLS_SRP_SHA_DSS_WITH_AES_256_CBC_SHA dsa
572 select (KeyExchangeAlgorithm) {
574 ServerDHParams params;
575 Signature signed_params;
577 ServerRSAParams params;
578 Signature signed_params;
579 case srp: /* new entry */
580 ServerSRPParams params;
581 Signature signed_params;
586 opaque srp_N<1..2^16-1>;
587 opaque srp_g<1..2^16-1>;
588 opaque srp_s<1..2^8-1>
589 opaque srp_B<1..2^16-1>;
590 } ServerSRPParams; /* SRP parameters */
592 2.8.4 Client Key Exchange
594 When the value of KeyExchangeAlgorithm is set to "srp", the client's
595 public value (A) is sent in the client key exchange message, encoded
596 in an ClientSRPPublic structure.
598 An extra value, srp, has been added to the enumerated
599 KeyExchangeAlgorithm, originally defined in [TLS].
602 select (KeyExchangeAlgorithm) {
603 case rsa: EncryptedPreMasterSecret;
604 case diffie_hellman: ClientDiffieHellmanPublic;
605 case srp: ClientSRPPublic; /* new entry */
609 enum { rsa, diffie_hellman, srp } KeyExchangeAlgorithm;
615 Taylor, et al. Expires July 27, 2004 [Page 11]
617 Internet-Draft Using SRP for TLS Authentication January 2004
620 opaque srp_A<1..2^16-1>;
625 Two new error alerts are defined:
627 o "unknown_srp_username" (120) - this alert MAY be sent by a server
628 that receives an unknown user name. This message is always fatal.
630 o "missing_srp_username" (121) - this alert MAY be sent by a server
631 which would like to select an offered SRP ciphersuite, if the SRP
632 extension is absent from the client's hello message. This alert
633 is always a warning. Upon receiving this alert, the client MAY
634 send a new hello message on the same connection, this time
635 including the SRP extension. See Section 2.5.1 for more details.
671 Taylor, et al. Expires July 27, 2004 [Page 12]
673 Internet-Draft Using SRP for TLS Authentication January 2004
676 3. Security Considerations
678 If an attacker is able to steal the SRP verifier file, the attacker
679 can masquerade as the real server, and can also use dictionary
680 attacks to recover client passwords. Filesystem based X.509
681 certificate installations are vulnerable to a similar attack unless
682 the server's certificate is issued from a PKI that maintains
683 revocation lists, and the client TLS code can both contact the PKI
684 and make use of the revocation list.
686 The client's user name is sent in the clear in the Client Hello
687 message. To avoid sending the user name in the clear, the client
688 could first open a conventional anonymous, or server-authenticated
689 session, then renegotiate an SRP-authenticated session with the
690 handshake protected by the first session.
692 The checks described in Section 2.5.3 and Section 2.5.4 on the
693 received values for A and B are crucial for security and MUST be
696 The private values a and b SHOULD be at least 256 bit random numbers,
697 to give approximately 128 bits of security against certain methods of
698 calculating discrete logarithms.
700 If the client receives a missing_srp_username alert, the client
701 should be aware that unless the handshake protocol is run to
702 completion, this alert may have been inserted by an attacker. If the
703 handshake protocol is not run to completion, the client should not
704 make any decisions, nor form any assumptions, based on receiving this
707 It is possible to choose a (user name, password) pair such that the
708 resulting verifier will also match other, related, (user name,
709 password) pairs. Thus, anyone using verifiers should be careful not
710 to assume that only a single (user name, password) pair matches the
727 Taylor, et al. Expires July 27, 2004 [Page 13]
729 Internet-Draft Using SRP for TLS Authentication January 2004
734 [TLS] Dierks, T. and C. Allen, "The TLS Protocol", RFC 2246,
737 [SRP-6] Wu, T., "SRP-6: Improvements and Refinements to the Secure
738 Remote Password Protocol", October 2002, <http://
739 srp.stanford.edu/srp6.ps>.
741 [TLSEXT] Blake-Wilson, S., Nystrom, M., Hopwood, D., Mikkelsen, J.
742 and T. Wright, "TLS Extensions", RFC 3546, June 2003.
745 Hoffman, P. and M. Blanchet, "Preparation of
746 Internationalized Strings ("stringprep")", RFC 3454,
750 Zeilenga, K., "SASLprep: Stringprep profile for user names
751 and passwords", draft-ietf-sasl-saslprep-04 (work in
752 progress), October 2003.
754 [RFC2945] Wu, T., "The SRP Authentication and Key Exchange System",
755 RFC 2945, September 2000.
757 [SHA1] "Announcing the Secure Hash Standard", FIPS 180-1,
760 [HMAC] Krawczyk, H., Bellare, M. and R. Canetti, "HMAC:
761 Keyed-Hashing for Message Authentication", RFC 2104,
764 [RFC3268] Chown, P., "Advanced Encryption Standard (AES)
765 Ciphersuites for Transport Layer Security (TLS)", RFC
768 [MODP] Kivinen, T. and M. Kojo, "More Modular Exponentiation
769 (MODP) Diffie-Hellman groups for Internet Key Exchange
770 (IKE)", RFC 3526, May 2003.
783 Taylor, et al. Expires July 27, 2004 [Page 14]
785 Internet-Draft Using SRP for TLS Authentication January 2004
788 Informative References
790 [IMAP] Newman, C., "Using TLS with IMAP, POP3 and ACAP", RFC 2595,
793 [FTP] Ford-Hutchinson, P., Carpenter, M., Hudson, T., Murray, E.
794 and V. Wiegand, "Securing FTP with TLS",
795 draft-murray-auth-ftp-ssl-12 (work in progress), August 2003.
797 [SRP] Wu, T., "The Secure Remote Password Protocol", Proceedings of
798 the 1998 Internet Society Network and Distributed System
799 Security Symposium pp. 97-111, March 1998.
805 Forge Research Pty Ltd
807 EMail: DavidTaylor@forge.com.au
808 URI: http://www.forge.com.au/
815 URI: http://www.arcot.com/
818 Nikos Mavroyanopoulos
820 EMail: nmav@gnutls.org
821 URI: http://www.gnutls.org/
826 EMail: trevp@trevp.net
827 URI: http://trevp.net/
839 Taylor, et al. Expires July 27, 2004 [Page 15]
841 Internet-Draft Using SRP for TLS Authentication January 2004
844 Appendix A. SRP Group Parameters
846 The 1024, 1536, and 2048-bit groups are taken from software developed
847 by Tom Wu and Eugene Jhong for the Stanford SRP distribution, and
848 subsequently proven to be prime. The larger primes are taken from
849 [MODP], but generators have been calculated that are primitive roots
850 of N, unlike the generators in [MODP].
852 The 1024-bit and 1536-bit groups MUST be supported.
856 The hexadecimal value is:
858 EEAF0AB9 ADB38DD6 9C33F80A FA8FC5E8 60726187 75FF3C0B 9EA2314C
859 9C256576 D674DF74 96EA81D3 383B4813 D692C6E0 E0D5D8E2 50B98BE4
860 8E495C1D 6089DAD1 5DC7D7B4 6154D6B6 CE8EF4AD 69B15D49 82559B29
861 7BCF1885 C529F566 660E57EC 68EDBC3C 05726CC0 2FD4CBF4 976EAA9A
862 FD5138FE 8376435B 9FC61D2F C0EB06E3
868 The hexadecimal value is:
870 9DEF3CAF B939277A B1F12A86 17A47BBB DBA51DF4 99AC4C80 BEEEA961
871 4B19CC4D 5F4F5F55 6E27CBDE 51C6A94B E4607A29 1558903B A0D0F843
872 80B655BB 9A22E8DC DF028A7C EC67F0D0 8134B1C8 B9798914 9B609E0B
873 E3BAB63D 47548381 DBC5B1FC 764E3F4B 53DD9DA1 158BFD3E 2B9C8CF5
874 6EDF0195 39349627 DB2FD53D 24B7C486 65772E43 7D6C7F8C E442734A
875 F7CCB7AE 837C264A E3A9BEB8 7F8A2FE9 B8B5292E 5A021FFF 5E91479E
876 8CE7A28C 2442C6F3 15180F93 499A234D CF76E3FE D135F9BB
882 The hexadecimal value is:
884 AC6BDB41 324A9A9B F166DE5E 1389582F AF72B665 1987EE07 FC319294
885 3DB56050 A37329CB B4A099ED 8193E075 7767A13D D52312AB 4B03310D
886 CD7F48A9 DA04FD50 E8083969 EDB767B0 CF609517 9A163AB3 661A05FB
887 D5FAAAE8 2918A996 2F0B93B8 55F97993 EC975EEA A80D740A DBF4FF74
888 7359D041 D5C33EA7 1D281E44 6B14773B CA97B43A 23FB8016 76BD207A
889 436C6481 F1D2B907 8717461A 5B9D32E6 88F87748 544523B5 24B0D57D
890 5EA77A27 75D2ECFA 032CFBDB F52FB378 61602790 04E57AE6 AF874E73
891 03CE5329 9CCC041C 7BC308D8 2A5698F3 A8D0C382 71AE35F8 E9DBFBB6
895 Taylor, et al. Expires July 27, 2004 [Page 16]
897 Internet-Draft Using SRP for TLS Authentication January 2004
900 94B5C803 D89F7AE4 35DE236D 525F5475 9B65E372 FCD68EF2 0FA7111F
907 This prime is: 2^3072 - 2^3008 - 1 + 2^64 * { [2^2942 pi] +
910 Its hexadecimal value is:
912 FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1 29024E08
913 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD EF9519B3 CD3A431B
914 302B0A6D F25F1437 4FE1356D 6D51C245 E485B576 625E7EC6 F44C42E9
915 A637ED6B 0BFF5CB6 F406B7ED EE386BFB 5A899FA5 AE9F2411 7C4B1FE6
916 49286651 ECE45B3D C2007CB8 A163BF05 98DA4836 1C55D39A 69163FA8
917 FD24CF5F 83655D23 DCA3AD96 1C62F356 208552BB 9ED52907 7096966D
918 670C354E 4ABC9804 F1746C08 CA18217C 32905E46 2E36CE3B E39E772C
919 180E8603 9B2783A2 EC07A28F B5C55DF0 6F4C52C9 DE2BCBF6 95581718
920 3995497C EA956AE5 15D22618 98FA0510 15728E5A 8AAAC42D AD33170D
921 04507A33 A85521AB DF1CBA64 ECFB8504 58DBEF0A 8AEA7157 5D060C7D
922 B3970F85 A6E1E4C7 ABF5AE8C DB0933D7 1E8C94E0 4A25619D CEE3D226
923 1AD2EE6B F12FFA06 D98A0864 D8760273 3EC86A64 521F2B18 177B200C
924 BBE11757 7A615D6C 770988C0 BAD946E2 08E24FA0 74E5AB31 43DB5BFC
925 E0FD108E 4B82D120 A93AD2CA FFFFFFFF FFFFFFFF
931 This prime is: 2^4096 - 2^4032 - 1 + 2^64 * { [2^3966 pi] +
934 Its hexadecimal value is:
936 FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1 29024E08
937 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD EF9519B3 CD3A431B
938 302B0A6D F25F1437 4FE1356D 6D51C245 E485B576 625E7EC6 F44C42E9
939 A637ED6B 0BFF5CB6 F406B7ED EE386BFB 5A899FA5 AE9F2411 7C4B1FE6
940 49286651 ECE45B3D C2007CB8 A163BF05 98DA4836 1C55D39A 69163FA8
941 FD24CF5F 83655D23 DCA3AD96 1C62F356 208552BB 9ED52907 7096966D
942 670C354E 4ABC9804 F1746C08 CA18217C 32905E46 2E36CE3B E39E772C
943 180E8603 9B2783A2 EC07A28F B5C55DF0 6F4C52C9 DE2BCBF6 95581718
944 3995497C EA956AE5 15D22618 98FA0510 15728E5A 8AAAC42D AD33170D
945 04507A33 A85521AB DF1CBA64 ECFB8504 58DBEF0A 8AEA7157 5D060C7D
946 B3970F85 A6E1E4C7 ABF5AE8C DB0933D7 1E8C94E0 4A25619D CEE3D226
947 1AD2EE6B F12FFA06 D98A0864 D8760273 3EC86A64 521F2B18 177B200C
951 Taylor, et al. Expires July 27, 2004 [Page 17]
953 Internet-Draft Using SRP for TLS Authentication January 2004
956 BBE11757 7A615D6C 770988C0 BAD946E2 08E24FA0 74E5AB31 43DB5BFC
957 E0FD108E 4B82D120 A9210801 1A723C12 A787E6D7 88719A10 BDBA5B26
958 99C32718 6AF4E23C 1A946834 B6150BDA 2583E9CA 2AD44CE8 DBBBC2DB
959 04DE8EF9 2E8EFC14 1FBECAA6 287C5947 4E6BC05D 99B2964F A090C3A2
960 233BA186 515BE7ED 1F612970 CEE2D7AF B81BDD76 2170481C D0069127
961 D5B05AA9 93B4EA98 8D8FDDC1 86FFB7DC 90A6C08F 4DF435C9 34063199
968 This prime is: 2^6144 - 2^6080 - 1 + 2^64 * { [2^6014 pi] +
971 Its hexadecimal value is:
973 FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1 29024E08
974 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD EF9519B3 CD3A431B
975 302B0A6D F25F1437 4FE1356D 6D51C245 E485B576 625E7EC6 F44C42E9
976 A637ED6B 0BFF5CB6 F406B7ED EE386BFB 5A899FA5 AE9F2411 7C4B1FE6
977 49286651 ECE45B3D C2007CB8 A163BF05 98DA4836 1C55D39A 69163FA8
978 FD24CF5F 83655D23 DCA3AD96 1C62F356 208552BB 9ED52907 7096966D
979 670C354E 4ABC9804 F1746C08 CA18217C 32905E46 2E36CE3B E39E772C
980 180E8603 9B2783A2 EC07A28F B5C55DF0 6F4C52C9 DE2BCBF6 95581718
981 3995497C EA956AE5 15D22618 98FA0510 15728E5A 8AAAC42D AD33170D
982 04507A33 A85521AB DF1CBA64 ECFB8504 58DBEF0A 8AEA7157 5D060C7D
983 B3970F85 A6E1E4C7 ABF5AE8C DB0933D7 1E8C94E0 4A25619D CEE3D226
984 1AD2EE6B F12FFA06 D98A0864 D8760273 3EC86A64 521F2B18 177B200C
985 BBE11757 7A615D6C 770988C0 BAD946E2 08E24FA0 74E5AB31 43DB5BFC
986 E0FD108E 4B82D120 A9210801 1A723C12 A787E6D7 88719A10 BDBA5B26
987 99C32718 6AF4E23C 1A946834 B6150BDA 2583E9CA 2AD44CE8 DBBBC2DB
988 04DE8EF9 2E8EFC14 1FBECAA6 287C5947 4E6BC05D 99B2964F A090C3A2
989 233BA186 515BE7ED 1F612970 CEE2D7AF B81BDD76 2170481C D0069127
990 D5B05AA9 93B4EA98 8D8FDDC1 86FFB7DC 90A6C08F 4DF435C9 34028492
991 36C3FAB4 D27C7026 C1D4DCB2 602646DE C9751E76 3DBA37BD F8FF9406
992 AD9E530E E5DB382F 413001AE B06A53ED 9027D831 179727B0 865A8918
993 DA3EDBEB CF9B14ED 44CE6CBA CED4BB1B DB7F1447 E6CC254B 33205151
994 2BD7AF42 6FB8F401 378CD2BF 5983CA01 C64B92EC F032EA15 D1721D03
995 F482D7CE 6E74FEF6 D55E702F 46980C82 B5A84031 900B1C9E 59E7C97F
996 BEC7E8F3 23A97A7E 36CC88BE 0F1D45B7 FF585AC5 4BD407B2 2B4154AA
997 CC8F6D7E BF48E1D8 14CC5ED2 0F8037E0 A79715EE F29BE328 06A1D58B
998 B7C5DA76 F550AA3D 8A1FBFF0 EB19CCB1 A313D55C DA56C9EC 2EF29632
999 387FE8D7 6E3C0468 043E8F66 3F4860EE 12BF2D5B 0B7474D6 E694F91E
1000 6DCC4024 FFFFFFFF FFFFFFFF
1002 The generator is: 5.
1007 Taylor, et al. Expires July 27, 2004 [Page 18]
1009 Internet-Draft Using SRP for TLS Authentication January 2004
1014 This prime is: 2^8192 - 2^8128 - 1 + 2^64 * { [2^8062 pi] +
1017 Its hexadecimal value is:
1019 FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1 29024E08
1020 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD EF9519B3 CD3A431B
1021 302B0A6D F25F1437 4FE1356D 6D51C245 E485B576 625E7EC6 F44C42E9
1022 A637ED6B 0BFF5CB6 F406B7ED EE386BFB 5A899FA5 AE9F2411 7C4B1FE6
1023 49286651 ECE45B3D C2007CB8 A163BF05 98DA4836 1C55D39A 69163FA8
1024 FD24CF5F 83655D23 DCA3AD96 1C62F356 208552BB 9ED52907 7096966D
1025 670C354E 4ABC9804 F1746C08 CA18217C 32905E46 2E36CE3B E39E772C
1026 180E8603 9B2783A2 EC07A28F B5C55DF0 6F4C52C9 DE2BCBF6 95581718
1027 3995497C EA956AE5 15D22618 98FA0510 15728E5A 8AAAC42D AD33170D
1028 04507A33 A85521AB DF1CBA64 ECFB8504 58DBEF0A 8AEA7157 5D060C7D
1029 B3970F85 A6E1E4C7 ABF5AE8C DB0933D7 1E8C94E0 4A25619D CEE3D226
1030 1AD2EE6B F12FFA06 D98A0864 D8760273 3EC86A64 521F2B18 177B200C
1031 BBE11757 7A615D6C 770988C0 BAD946E2 08E24FA0 74E5AB31 43DB5BFC
1032 E0FD108E 4B82D120 A9210801 1A723C12 A787E6D7 88719A10 BDBA5B26
1033 99C32718 6AF4E23C 1A946834 B6150BDA 2583E9CA 2AD44CE8 DBBBC2DB
1034 04DE8EF9 2E8EFC14 1FBECAA6 287C5947 4E6BC05D 99B2964F A090C3A2
1035 233BA186 515BE7ED 1F612970 CEE2D7AF B81BDD76 2170481C D0069127
1036 D5B05AA9 93B4EA98 8D8FDDC1 86FFB7DC 90A6C08F 4DF435C9 34028492
1037 36C3FAB4 D27C7026 C1D4DCB2 602646DE C9751E76 3DBA37BD F8FF9406
1038 AD9E530E E5DB382F 413001AE B06A53ED 9027D831 179727B0 865A8918
1039 DA3EDBEB CF9B14ED 44CE6CBA CED4BB1B DB7F1447 E6CC254B 33205151
1040 2BD7AF42 6FB8F401 378CD2BF 5983CA01 C64B92EC F032EA15 D1721D03
1041 F482D7CE 6E74FEF6 D55E702F 46980C82 B5A84031 900B1C9E 59E7C97F
1042 BEC7E8F3 23A97A7E 36CC88BE 0F1D45B7 FF585AC5 4BD407B2 2B4154AA
1043 CC8F6D7E BF48E1D8 14CC5ED2 0F8037E0 A79715EE F29BE328 06A1D58B
1044 B7C5DA76 F550AA3D 8A1FBFF0 EB19CCB1 A313D55C DA56C9EC 2EF29632
1045 387FE8D7 6E3C0468 043E8F66 3F4860EE 12BF2D5B 0B7474D6 E694F91E
1046 6DBE1159 74A3926F 12FEE5E4 38777CB6 A932DF8C D8BEC4D0 73B931BA
1047 3BC832B6 8D9DD300 741FA7BF 8AFC47ED 2576F693 6BA42466 3AAB639C
1048 5AE4F568 3423B474 2BF1C978 238F16CB E39D652D E3FDB8BE FC848AD9
1049 22222E04 A4037C07 13EB57A8 1A23F0C7 3473FC64 6CEA306B 4BCBC886
1050 2F8385DD FA9D4B7F A2C087E8 79683303 ED5BDD3A 062B3CF5 B3A278A6
1051 6D2A13F8 3F44F82D DF310EE0 74AB6A36 4597E899 A0255DC1 64F31CC5
1052 0846851D F9AB4819 5DED7EA1 B1D510BD 7EE74D73 FAF36BC3 1ECFA268
1053 359046F4 EB879F92 4009438B 481C6CD7 889A002E D5EE382B C9190DA6
1054 FC026E47 9558E447 5677E9AA 9E3050E2 765694DF C81F56E8 80B96E71
1055 60C980DD 98EDD3DF FFFFFFFF FFFFFFFF
1057 The generator is: 19 (decimal).
1063 Taylor, et al. Expires July 27, 2004 [Page 19]
1065 Internet-Draft Using SRP for TLS Authentication January 2004
1068 Appendix B. Acknowledgements
1070 Thanks to all on the IETF tls mailing list for ideas and analysis.
1119 Taylor, et al. Expires July 27, 2004 [Page 20]
1121 Internet-Draft Using SRP for TLS Authentication January 2004
1124 Intellectual Property Statement
1126 The IETF takes no position regarding the validity or scope of any
1127 intellectual property or other rights that might be claimed to
1128 pertain to the implementation or use of the technology described in
1129 this document or the extent to which any license under such rights
1130 might or might not be available; neither does it represent that it
1131 has made any effort to identify any such rights. Information on the
1132 IETF's procedures with respect to rights in standards-track and
1133 standards-related documentation can be found in BCP-11. Copies of
1134 claims of rights made available for publication and any assurances of
1135 licenses to be made available, or the result of an attempt made to
1136 obtain a general license or permission for the use of such
1137 proprietary rights by implementors or users of this specification can
1138 be obtained from the IETF Secretariat.
1140 The IETF invites any interested party to bring to its attention any
1141 copyrights, patents or patent applications, or other proprietary
1142 rights which may cover technology that may be required to practice
1143 this standard. Please address the information to the IETF Executive
1147 Full Copyright Statement
1149 Copyright (C) The Internet Society (2004). All Rights Reserved.
1151 This document and translations of it may be copied and furnished to
1152 others, and derivative works that comment on or otherwise explain it
1153 or assist in its implementation may be prepared, copied, published
1154 and distributed, in whole or in part, without restriction of any
1155 kind, provided that the above copyright notice and this paragraph are
1156 included on all such copies and derivative works. However, this
1157 document itself may not be modified in any way, such as by removing
1158 the copyright notice or references to the Internet Society or other
1159 Internet organizations, except as needed for the purpose of
1160 developing Internet standards in which case the procedures for
1161 copyrights defined in the Internet Standards process must be
1162 followed, or as required to translate it into languages other than
1165 The limited permissions granted above are perpetual and will not be
1166 revoked by the Internet Society or its successors or assignees.
1168 This document and the information contained herein is provided on an
1169 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
1170 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
1171 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
1175 Taylor, et al. Expires July 27, 2004 [Page 21]
1177 Internet-Draft Using SRP for TLS Authentication January 2004
1180 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
1181 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
1186 Funding for the RFC Editor function is currently provided by the
1231 Taylor, et al. Expires July 27, 2004 [Page 22]