Fix dangling/unused bindings in `(gnutls)'.
[gnutls.git] / lgl / vasnprintf.c
blob6c8d5dcbdc6a18b67d3cca1d4d77a3675a9047dd
1 /* vsprintf with automatic memory allocation.
2 Copyright (C) 1999, 2002-2007 Free Software Foundation, Inc.
4 This program is free software; you can redistribute it and/or modify
5 it under the terms of the GNU Lesser General Public License as published by
6 the Free Software Foundation; either version 2.1, or (at your option)
7 any later version.
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 GNU Lesser General Public License for more details.
14 You should have received a copy of the GNU Lesser General Public License along
15 with this program; if not, write to the Free Software Foundation,
16 Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */
18 /* This file can be parametrized with the following macros:
19 VASNPRINTF The name of the function being defined.
20 FCHAR_T The element type of the format string.
21 DCHAR_T The element type of the destination (result) string.
22 FCHAR_T_ONLY_ASCII Set to 1 to enable verification that all characters
23 in the format string are ASCII. MUST be set if
24 FCHAR_T and DCHAR_T are not the same type.
25 DIRECTIVE Structure denoting a format directive.
26 Depends on FCHAR_T.
27 DIRECTIVES Structure denoting the set of format directives of a
28 format string. Depends on FCHAR_T.
29 PRINTF_PARSE Function that parses a format string.
30 Depends on FCHAR_T.
31 DCHAR_CPY memcpy like function for DCHAR_T[] arrays.
32 DCHAR_SET memset like function for DCHAR_T[] arrays.
33 DCHAR_MBSNLEN mbsnlen like function for DCHAR_T[] arrays.
34 SNPRINTF The system's snprintf (or similar) function.
35 This may be either snprintf or swprintf.
36 TCHAR_T The element type of the argument and result string
37 of the said SNPRINTF function. This may be either
38 char or wchar_t. The code exploits that
39 sizeof (TCHAR_T) | sizeof (DCHAR_T) and
40 alignof (TCHAR_T) <= alignof (DCHAR_T).
41 DCHAR_IS_TCHAR Set to 1 if DCHAR_T and TCHAR_T are the same type.
42 DCHAR_CONV_FROM_ENCODING A function to convert from char[] to DCHAR[].
43 DCHAR_IS_UINT8_T Set to 1 if DCHAR_T is uint8_t.
44 DCHAR_IS_UINT16_T Set to 1 if DCHAR_T is uint16_t.
45 DCHAR_IS_UINT32_T Set to 1 if DCHAR_T is uint32_t. */
47 /* Tell glibc's <stdio.h> to provide a prototype for snprintf().
48 This must come before <config.h> because <config.h> may include
49 <features.h>, and once <features.h> has been included, it's too late. */
50 #ifndef _GNU_SOURCE
51 # define _GNU_SOURCE 1
52 #endif
54 #ifndef VASNPRINTF
55 # include <config.h>
56 #endif
57 #ifndef IN_LIBINTL
58 # include <alloca.h>
59 #endif
61 /* Specification. */
62 #ifndef VASNPRINTF
63 # if WIDE_CHAR_VERSION
64 # include "vasnwprintf.h"
65 # else
66 # include "vasnprintf.h"
67 # endif
68 #endif
70 #include <locale.h> /* localeconv() */
71 #include <stdio.h> /* snprintf(), sprintf() */
72 #include <stdlib.h> /* abort(), malloc(), realloc(), free() */
73 #include <string.h> /* memcpy(), strlen() */
74 #include <errno.h> /* errno */
75 #include <limits.h> /* CHAR_BIT */
76 #include <float.h> /* DBL_MAX_EXP, LDBL_MAX_EXP */
77 #if HAVE_NL_LANGINFO
78 # include <langinfo.h>
79 #endif
80 #ifndef VASNPRINTF
81 # if WIDE_CHAR_VERSION
82 # include "wprintf-parse.h"
83 # else
84 # include "printf-parse.h"
85 # endif
86 #endif
88 /* Checked size_t computations. */
89 #include "xsize.h"
91 #if (NEED_PRINTF_DOUBLE || NEED_PRINTF_LONG_DOUBLE) && !defined IN_LIBINTL
92 # include <math.h>
93 # include "float+.h"
94 #endif
96 #if (NEED_PRINTF_DOUBLE || NEED_PRINTF_INFINITE_DOUBLE) && !defined IN_LIBINTL
97 # include <math.h>
98 # include "isnan.h"
99 #endif
101 #if (NEED_PRINTF_LONG_DOUBLE || NEED_PRINTF_INFINITE_LONG_DOUBLE) && !defined IN_LIBINTL
102 # include <math.h>
103 # include "isnanl-nolibm.h"
104 # include "fpucw.h"
105 #endif
107 #if (NEED_PRINTF_DIRECTIVE_A || NEED_PRINTF_DOUBLE) && !defined IN_LIBINTL
108 # include <math.h>
109 # include "isnan.h"
110 # include "printf-frexp.h"
111 #endif
113 #if (NEED_PRINTF_DIRECTIVE_A || NEED_PRINTF_LONG_DOUBLE) && !defined IN_LIBINTL
114 # include <math.h>
115 # include "isnanl-nolibm.h"
116 # include "printf-frexpl.h"
117 # include "fpucw.h"
118 #endif
120 /* Some systems, like OSF/1 4.0 and Woe32, don't have EOVERFLOW. */
121 #ifndef EOVERFLOW
122 # define EOVERFLOW E2BIG
123 #endif
125 #if HAVE_WCHAR_T
126 # if HAVE_WCSLEN
127 # define local_wcslen wcslen
128 # else
129 /* Solaris 2.5.1 has wcslen() in a separate library libw.so. To avoid
130 a dependency towards this library, here is a local substitute.
131 Define this substitute only once, even if this file is included
132 twice in the same compilation unit. */
133 # ifndef local_wcslen_defined
134 # define local_wcslen_defined 1
135 static size_t
136 local_wcslen (const wchar_t *s)
138 const wchar_t *ptr;
140 for (ptr = s; *ptr != (wchar_t) 0; ptr++)
142 return ptr - s;
144 # endif
145 # endif
146 #endif
148 /* Default parameters. */
149 #ifndef VASNPRINTF
150 # if WIDE_CHAR_VERSION
151 # define VASNPRINTF vasnwprintf
152 # define FCHAR_T wchar_t
153 # define DCHAR_T wchar_t
154 # define TCHAR_T wchar_t
155 # define DCHAR_IS_TCHAR 1
156 # define DIRECTIVE wchar_t_directive
157 # define DIRECTIVES wchar_t_directives
158 # define PRINTF_PARSE wprintf_parse
159 # define DCHAR_CPY wmemcpy
160 # else
161 # define VASNPRINTF vasnprintf
162 # define FCHAR_T char
163 # define DCHAR_T char
164 # define TCHAR_T char
165 # define DCHAR_IS_TCHAR 1
166 # define DIRECTIVE char_directive
167 # define DIRECTIVES char_directives
168 # define PRINTF_PARSE printf_parse
169 # define DCHAR_CPY memcpy
170 # endif
171 #endif
172 #if WIDE_CHAR_VERSION
173 /* TCHAR_T is wchar_t. */
174 # define USE_SNPRINTF 1
175 # if HAVE_DECL__SNWPRINTF
176 /* On Windows, the function swprintf() has a different signature than
177 on Unix; we use the _snwprintf() function instead. */
178 # define SNPRINTF _snwprintf
179 # else
180 /* Unix. */
181 # define SNPRINTF swprintf
182 # endif
183 #else
184 /* TCHAR_T is char. */
185 # /* Use snprintf if it exists under the name 'snprintf' or '_snprintf'.
186 But don't use it on BeOS, since BeOS snprintf produces no output if the
187 size argument is >= 0x3000000. */
188 # if (HAVE_DECL__SNPRINTF || HAVE_SNPRINTF) && !defined __BEOS__
189 # define USE_SNPRINTF 1
190 # else
191 # define USE_SNPRINTF 0
192 # endif
193 # if HAVE_DECL__SNPRINTF
194 /* Windows. */
195 # define SNPRINTF _snprintf
196 # else
197 /* Unix. */
198 # define SNPRINTF snprintf
199 /* Here we need to call the native snprintf, not rpl_snprintf. */
200 # undef snprintf
201 # endif
202 #endif
203 /* Here we need to call the native sprintf, not rpl_sprintf. */
204 #undef sprintf
206 #if (NEED_PRINTF_DIRECTIVE_A || NEED_PRINTF_LONG_DOUBLE || NEED_PRINTF_DOUBLE || NEED_PRINTF_INFINITE_DOUBLE) && !defined IN_LIBINTL
207 /* Determine the decimal-point character according to the current locale. */
208 # ifndef decimal_point_char_defined
209 # define decimal_point_char_defined 1
210 static char
211 decimal_point_char ()
213 const char *point;
214 /* Determine it in a multithread-safe way. We know nl_langinfo is
215 multithread-safe on glibc systems, but is not required to be multithread-
216 safe by POSIX. sprintf(), however, is multithread-safe. localeconv()
217 is rarely multithread-safe. */
218 # if HAVE_NL_LANGINFO && __GLIBC__
219 point = nl_langinfo (RADIXCHAR);
220 # elif 1
221 char pointbuf[5];
222 sprintf (pointbuf, "%#.0f", 1.0);
223 point = &pointbuf[1];
224 # else
225 point = localeconv () -> decimal_point;
226 # endif
227 /* The decimal point is always a single byte: either '.' or ','. */
228 return (point[0] != '\0' ? point[0] : '.');
230 # endif
231 #endif
233 #if NEED_PRINTF_INFINITE_DOUBLE && !NEED_PRINTF_DOUBLE && !defined IN_LIBINTL
235 /* Equivalent to !isfinite(x) || x == 0, but does not require libm. */
236 static int
237 is_infinite_or_zero (double x)
239 return isnan (x) || x + x == x;
242 #endif
244 #if NEED_PRINTF_INFINITE_LONG_DOUBLE && !NEED_PRINTF_LONG_DOUBLE && !defined IN_LIBINTL
246 /* Equivalent to !isfinite(x), but does not require libm. */
247 static int
248 is_infinitel (long double x)
250 return isnanl (x) || (x + x == x && x != 0.0L);
253 #endif
255 #if (NEED_PRINTF_LONG_DOUBLE || NEED_PRINTF_DOUBLE) && !defined IN_LIBINTL
257 /* Converting 'long double' to decimal without rare rounding bugs requires
258 real bignums. We use the naming conventions of GNU gmp, but vastly simpler
259 (and slower) algorithms. */
261 typedef unsigned int mp_limb_t;
262 # define GMP_LIMB_BITS 32
263 typedef int mp_limb_verify[2 * (sizeof (mp_limb_t) * CHAR_BIT == GMP_LIMB_BITS) - 1];
265 typedef unsigned long long mp_twolimb_t;
266 # define GMP_TWOLIMB_BITS 64
267 typedef int mp_twolimb_verify[2 * (sizeof (mp_twolimb_t) * CHAR_BIT == GMP_TWOLIMB_BITS) - 1];
269 /* Representation of a bignum >= 0. */
270 typedef struct
272 size_t nlimbs;
273 mp_limb_t *limbs; /* Bits in little-endian order, allocated with malloc(). */
274 } mpn_t;
276 /* Compute the product of two bignums >= 0.
277 Return the allocated memory in case of success, NULL in case of memory
278 allocation failure. */
279 static void *
280 multiply (mpn_t src1, mpn_t src2, mpn_t *dest)
282 const mp_limb_t *p1;
283 const mp_limb_t *p2;
284 size_t len1;
285 size_t len2;
287 if (src1.nlimbs <= src2.nlimbs)
289 len1 = src1.nlimbs;
290 p1 = src1.limbs;
291 len2 = src2.nlimbs;
292 p2 = src2.limbs;
294 else
296 len1 = src2.nlimbs;
297 p1 = src2.limbs;
298 len2 = src1.nlimbs;
299 p2 = src1.limbs;
301 /* Now 0 <= len1 <= len2. */
302 if (len1 == 0)
304 /* src1 or src2 is zero. */
305 dest->nlimbs = 0;
306 dest->limbs = (mp_limb_t *) malloc (1);
308 else
310 /* Here 1 <= len1 <= len2. */
311 size_t dlen;
312 mp_limb_t *dp;
313 size_t k, i, j;
315 dlen = len1 + len2;
316 dp = (mp_limb_t *) malloc (dlen * sizeof (mp_limb_t));
317 if (dp == NULL)
318 return NULL;
319 for (k = len2; k > 0; )
320 dp[--k] = 0;
321 for (i = 0; i < len1; i++)
323 mp_limb_t digit1 = p1[i];
324 mp_twolimb_t carry = 0;
325 for (j = 0; j < len2; j++)
327 mp_limb_t digit2 = p2[j];
328 carry += (mp_twolimb_t) digit1 * (mp_twolimb_t) digit2;
329 carry += dp[i + j];
330 dp[i + j] = (mp_limb_t) carry;
331 carry = carry >> GMP_LIMB_BITS;
333 dp[i + len2] = (mp_limb_t) carry;
335 /* Normalise. */
336 while (dlen > 0 && dp[dlen - 1] == 0)
337 dlen--;
338 dest->nlimbs = dlen;
339 dest->limbs = dp;
341 return dest->limbs;
344 /* Compute the quotient of a bignum a >= 0 and a bignum b > 0.
345 a is written as a = q * b + r with 0 <= r < b. q is the quotient, r
346 the remainder.
347 Finally, round-to-even is performed: If r > b/2 or if r = b/2 and q is odd,
348 q is incremented.
349 Return the allocated memory in case of success, NULL in case of memory
350 allocation failure. */
351 static void *
352 divide (mpn_t a, mpn_t b, mpn_t *q)
354 /* Algorithm:
355 First normalise a and b: a=[a[m-1],...,a[0]], b=[b[n-1],...,b[0]]
356 with m>=0 and n>0 (in base beta = 2^GMP_LIMB_BITS).
357 If m<n, then q:=0 and r:=a.
358 If m>=n=1, perform a single-precision division:
359 r:=0, j:=m,
360 while j>0 do
361 {Here (q[m-1]*beta^(m-1)+...+q[j]*beta^j) * b[0] + r*beta^j =
362 = a[m-1]*beta^(m-1)+...+a[j]*beta^j und 0<=r<b[0]<beta}
363 j:=j-1, r:=r*beta+a[j], q[j]:=floor(r/b[0]), r:=r-b[0]*q[j].
364 Normalise [q[m-1],...,q[0]], yields q.
365 If m>=n>1, perform a multiple-precision division:
366 We have a/b < beta^(m-n+1).
367 s:=intDsize-1-(hightest bit in b[n-1]), 0<=s<intDsize.
368 Shift a and b left by s bits, copying them. r:=a.
369 r=[r[m],...,r[0]], b=[b[n-1],...,b[0]] with b[n-1]>=beta/2.
370 For j=m-n,...,0: {Here 0 <= r < b*beta^(j+1).}
371 Compute q* :
372 q* := floor((r[j+n]*beta+r[j+n-1])/b[n-1]).
373 In case of overflow (q* >= beta) set q* := beta-1.
374 Compute c2 := ((r[j+n]*beta+r[j+n-1]) - q* * b[n-1])*beta + r[j+n-2]
375 and c3 := b[n-2] * q*.
376 {We have 0 <= c2 < 2*beta^2, even 0 <= c2 < beta^2 if no overflow
377 occurred. Furthermore 0 <= c3 < beta^2.
378 If there was overflow and
379 r[j+n]*beta+r[j+n-1] - q* * b[n-1] >= beta, i.e. c2 >= beta^2,
380 the next test can be skipped.}
381 While c3 > c2, {Here 0 <= c2 < c3 < beta^2}
382 Put q* := q* - 1, c2 := c2 + b[n-1]*beta, c3 := c3 - b[n-2].
383 If q* > 0:
384 Put r := r - b * q* * beta^j. In detail:
385 [r[n+j],...,r[j]] := [r[n+j],...,r[j]] - q* * [b[n-1],...,b[0]].
386 hence: u:=0, for i:=0 to n-1 do
387 u := u + q* * b[i],
388 r[j+i]:=r[j+i]-(u mod beta) (+ beta, if carry),
389 u:=u div beta (+ 1, if carry in subtraction)
390 r[n+j]:=r[n+j]-u.
391 {Since always u = (q* * [b[i-1],...,b[0]] div beta^i) + 1
392 < q* + 1 <= beta,
393 the carry u does not overflow.}
394 If a negative carry occurs, put q* := q* - 1
395 and [r[n+j],...,r[j]] := [r[n+j],...,r[j]] + [0,b[n-1],...,b[0]].
396 Set q[j] := q*.
397 Normalise [q[m-n],..,q[0]]; this yields the quotient q.
398 Shift [r[n-1],...,r[0]] right by s bits and normalise; this yields the
399 rest r.
400 The room for q[j] can be allocated at the memory location of r[n+j].
401 Finally, round-to-even:
402 Shift r left by 1 bit.
403 If r > b or if r = b and q[0] is odd, q := q+1.
405 const mp_limb_t *a_ptr = a.limbs;
406 size_t a_len = a.nlimbs;
407 const mp_limb_t *b_ptr = b.limbs;
408 size_t b_len = b.nlimbs;
409 mp_limb_t *roomptr;
410 mp_limb_t *tmp_roomptr = NULL;
411 mp_limb_t *q_ptr;
412 size_t q_len;
413 mp_limb_t *r_ptr;
414 size_t r_len;
416 /* Allocate room for a_len+2 digits.
417 (Need a_len+1 digits for the real division and 1 more digit for the
418 final rounding of q.) */
419 roomptr = (mp_limb_t *) malloc ((a_len + 2) * sizeof (mp_limb_t));
420 if (roomptr == NULL)
421 return NULL;
423 /* Normalise a. */
424 while (a_len > 0 && a_ptr[a_len - 1] == 0)
425 a_len--;
427 /* Normalise b. */
428 for (;;)
430 if (b_len == 0)
431 /* Division by zero. */
432 abort ();
433 if (b_ptr[b_len - 1] == 0)
434 b_len--;
435 else
436 break;
439 /* Here m = a_len >= 0 and n = b_len > 0. */
441 if (a_len < b_len)
443 /* m<n: trivial case. q=0, r := copy of a. */
444 r_ptr = roomptr;
445 r_len = a_len;
446 memcpy (r_ptr, a_ptr, a_len * sizeof (mp_limb_t));
447 q_ptr = roomptr + a_len;
448 q_len = 0;
450 else if (b_len == 1)
452 /* n=1: single precision division.
453 beta^(m-1) <= a < beta^m ==> beta^(m-2) <= a/b < beta^m */
454 r_ptr = roomptr;
455 q_ptr = roomptr + 1;
457 mp_limb_t den = b_ptr[0];
458 mp_limb_t remainder = 0;
459 const mp_limb_t *sourceptr = a_ptr + a_len;
460 mp_limb_t *destptr = q_ptr + a_len;
461 size_t count;
462 for (count = a_len; count > 0; count--)
464 mp_twolimb_t num =
465 ((mp_twolimb_t) remainder << GMP_LIMB_BITS) | *--sourceptr;
466 *--destptr = num / den;
467 remainder = num % den;
469 /* Normalise and store r. */
470 if (remainder > 0)
472 r_ptr[0] = remainder;
473 r_len = 1;
475 else
476 r_len = 0;
477 /* Normalise q. */
478 q_len = a_len;
479 if (q_ptr[q_len - 1] == 0)
480 q_len--;
483 else
485 /* n>1: multiple precision division.
486 beta^(m-1) <= a < beta^m, beta^(n-1) <= b < beta^n ==>
487 beta^(m-n-1) <= a/b < beta^(m-n+1). */
488 /* Determine s. */
489 size_t s;
491 mp_limb_t msd = b_ptr[b_len - 1]; /* = b[n-1], > 0 */
492 s = 31;
493 if (msd >= 0x10000)
495 msd = msd >> 16;
496 s -= 16;
498 if (msd >= 0x100)
500 msd = msd >> 8;
501 s -= 8;
503 if (msd >= 0x10)
505 msd = msd >> 4;
506 s -= 4;
508 if (msd >= 0x4)
510 msd = msd >> 2;
511 s -= 2;
513 if (msd >= 0x2)
515 msd = msd >> 1;
516 s -= 1;
519 /* 0 <= s < GMP_LIMB_BITS.
520 Copy b, shifting it left by s bits. */
521 if (s > 0)
523 tmp_roomptr = (mp_limb_t *) malloc (b_len * sizeof (mp_limb_t));
524 if (tmp_roomptr == NULL)
526 free (roomptr);
527 return NULL;
530 const mp_limb_t *sourceptr = b_ptr;
531 mp_limb_t *destptr = tmp_roomptr;
532 mp_twolimb_t accu = 0;
533 size_t count;
534 for (count = b_len; count > 0; count--)
536 accu += (mp_twolimb_t) *sourceptr++ << s;
537 *destptr++ = (mp_limb_t) accu;
538 accu = accu >> GMP_LIMB_BITS;
540 /* accu must be zero, since that was how s was determined. */
541 if (accu != 0)
542 abort ();
544 b_ptr = tmp_roomptr;
546 /* Copy a, shifting it left by s bits, yields r.
547 Memory layout:
548 At the beginning: r = roomptr[0..a_len],
549 at the end: r = roomptr[0..b_len-1], q = roomptr[b_len..a_len] */
550 r_ptr = roomptr;
551 if (s == 0)
553 memcpy (r_ptr, a_ptr, a_len * sizeof (mp_limb_t));
554 r_ptr[a_len] = 0;
556 else
558 const mp_limb_t *sourceptr = a_ptr;
559 mp_limb_t *destptr = r_ptr;
560 mp_twolimb_t accu = 0;
561 size_t count;
562 for (count = a_len; count > 0; count--)
564 accu += (mp_twolimb_t) *sourceptr++ << s;
565 *destptr++ = (mp_limb_t) accu;
566 accu = accu >> GMP_LIMB_BITS;
568 *destptr++ = (mp_limb_t) accu;
570 q_ptr = roomptr + b_len;
571 q_len = a_len - b_len + 1; /* q will have m-n+1 limbs */
573 size_t j = a_len - b_len; /* m-n */
574 mp_limb_t b_msd = b_ptr[b_len - 1]; /* b[n-1] */
575 mp_limb_t b_2msd = b_ptr[b_len - 2]; /* b[n-2] */
576 mp_twolimb_t b_msdd = /* b[n-1]*beta+b[n-2] */
577 ((mp_twolimb_t) b_msd << GMP_LIMB_BITS) | b_2msd;
578 /* Division loop, traversed m-n+1 times.
579 j counts down, b is unchanged, beta/2 <= b[n-1] < beta. */
580 for (;;)
582 mp_limb_t q_star;
583 mp_limb_t c1;
584 if (r_ptr[j + b_len] < b_msd) /* r[j+n] < b[n-1] ? */
586 /* Divide r[j+n]*beta+r[j+n-1] by b[n-1], no overflow. */
587 mp_twolimb_t num =
588 ((mp_twolimb_t) r_ptr[j + b_len] << GMP_LIMB_BITS)
589 | r_ptr[j + b_len - 1];
590 q_star = num / b_msd;
591 c1 = num % b_msd;
593 else
595 /* Overflow, hence r[j+n]*beta+r[j+n-1] >= beta*b[n-1]. */
596 q_star = (mp_limb_t)~(mp_limb_t)0; /* q* = beta-1 */
597 /* Test whether r[j+n]*beta+r[j+n-1] - (beta-1)*b[n-1] >= beta
598 <==> r[j+n]*beta+r[j+n-1] + b[n-1] >= beta*b[n-1]+beta
599 <==> b[n-1] < floor((r[j+n]*beta+r[j+n-1]+b[n-1])/beta)
600 {<= beta !}.
601 If yes, jump directly to the subtraction loop.
602 (Otherwise, r[j+n]*beta+r[j+n-1] - (beta-1)*b[n-1] < beta
603 <==> floor((r[j+n]*beta+r[j+n-1]+b[n-1])/beta) = b[n-1] ) */
604 if (r_ptr[j + b_len] > b_msd
605 || (c1 = r_ptr[j + b_len - 1] + b_msd) < b_msd)
606 /* r[j+n] >= b[n-1]+1 or
607 r[j+n] = b[n-1] and the addition r[j+n-1]+b[n-1] gives a
608 carry. */
609 goto subtract;
611 /* q_star = q*,
612 c1 = (r[j+n]*beta+r[j+n-1]) - q* * b[n-1] (>=0, <beta). */
614 mp_twolimb_t c2 = /* c1*beta+r[j+n-2] */
615 ((mp_twolimb_t) c1 << GMP_LIMB_BITS) | r_ptr[j + b_len - 2];
616 mp_twolimb_t c3 = /* b[n-2] * q* */
617 (mp_twolimb_t) b_2msd * (mp_twolimb_t) q_star;
618 /* While c2 < c3, increase c2 and decrease c3.
619 Consider c3-c2. While it is > 0, decrease it by
620 b[n-1]*beta+b[n-2]. Because of b[n-1]*beta+b[n-2] >= beta^2/2
621 this can happen only twice. */
622 if (c3 > c2)
624 q_star = q_star - 1; /* q* := q* - 1 */
625 if (c3 - c2 > b_msdd)
626 q_star = q_star - 1; /* q* := q* - 1 */
629 if (q_star > 0)
630 subtract:
632 /* Subtract r := r - b * q* * beta^j. */
633 mp_limb_t cr;
635 const mp_limb_t *sourceptr = b_ptr;
636 mp_limb_t *destptr = r_ptr + j;
637 mp_twolimb_t carry = 0;
638 size_t count;
639 for (count = b_len; count > 0; count--)
641 /* Here 0 <= carry <= q*. */
642 carry =
643 carry
644 + (mp_twolimb_t) q_star * (mp_twolimb_t) *sourceptr++
645 + (mp_limb_t) ~(*destptr);
646 /* Here 0 <= carry <= beta*q* + beta-1. */
647 *destptr++ = ~(mp_limb_t) carry;
648 carry = carry >> GMP_LIMB_BITS; /* <= q* */
650 cr = (mp_limb_t) carry;
652 /* Subtract cr from r_ptr[j + b_len], then forget about
653 r_ptr[j + b_len]. */
654 if (cr > r_ptr[j + b_len])
656 /* Subtraction gave a carry. */
657 q_star = q_star - 1; /* q* := q* - 1 */
658 /* Add b back. */
660 const mp_limb_t *sourceptr = b_ptr;
661 mp_limb_t *destptr = r_ptr + j;
662 mp_limb_t carry = 0;
663 size_t count;
664 for (count = b_len; count > 0; count--)
666 mp_limb_t source1 = *sourceptr++;
667 mp_limb_t source2 = *destptr;
668 *destptr++ = source1 + source2 + carry;
669 carry =
670 (carry
671 ? source1 >= (mp_limb_t) ~source2
672 : source1 > (mp_limb_t) ~source2);
675 /* Forget about the carry and about r[j+n]. */
678 /* q* is determined. Store it as q[j]. */
679 q_ptr[j] = q_star;
680 if (j == 0)
681 break;
682 j--;
685 r_len = b_len;
686 /* Normalise q. */
687 if (q_ptr[q_len - 1] == 0)
688 q_len--;
689 # if 0 /* Not needed here, since we need r only to compare it with b/2, and
690 b is shifted left by s bits. */
691 /* Shift r right by s bits. */
692 if (s > 0)
694 mp_limb_t ptr = r_ptr + r_len;
695 mp_twolimb_t accu = 0;
696 size_t count;
697 for (count = r_len; count > 0; count--)
699 accu = (mp_twolimb_t) (mp_limb_t) accu << GMP_LIMB_BITS;
700 accu += (mp_twolimb_t) *--ptr << (GMP_LIMB_BITS - s);
701 *ptr = (mp_limb_t) (accu >> GMP_LIMB_BITS);
704 # endif
705 /* Normalise r. */
706 while (r_len > 0 && r_ptr[r_len - 1] == 0)
707 r_len--;
709 /* Compare r << 1 with b. */
710 if (r_len > b_len)
711 goto increment_q;
713 size_t i;
714 for (i = b_len;;)
716 mp_limb_t r_i =
717 (i <= r_len && i > 0 ? r_ptr[i - 1] >> (GMP_LIMB_BITS - 1) : 0)
718 | (i < r_len ? r_ptr[i] << 1 : 0);
719 mp_limb_t b_i = (i < b_len ? b_ptr[i] : 0);
720 if (r_i > b_i)
721 goto increment_q;
722 if (r_i < b_i)
723 goto keep_q;
724 if (i == 0)
725 break;
726 i--;
729 if (q_len > 0 && ((q_ptr[0] & 1) != 0))
730 /* q is odd. */
731 increment_q:
733 size_t i;
734 for (i = 0; i < q_len; i++)
735 if (++(q_ptr[i]) != 0)
736 goto keep_q;
737 q_ptr[q_len++] = 1;
739 keep_q:
740 if (tmp_roomptr != NULL)
741 free (tmp_roomptr);
742 q->limbs = q_ptr;
743 q->nlimbs = q_len;
744 return roomptr;
747 /* Convert a bignum a >= 0, multiplied with 10^extra_zeroes, to decimal
748 representation.
749 Destroys the contents of a.
750 Return the allocated memory - containing the decimal digits in low-to-high
751 order, terminated with a NUL character - in case of success, NULL in case
752 of memory allocation failure. */
753 static char *
754 convert_to_decimal (mpn_t a, size_t extra_zeroes)
756 mp_limb_t *a_ptr = a.limbs;
757 size_t a_len = a.nlimbs;
758 /* 0.03345 is slightly larger than log(2)/(9*log(10)). */
759 size_t c_len = 9 * ((size_t)(a_len * (GMP_LIMB_BITS * 0.03345f)) + 1);
760 char *c_ptr = (char *) malloc (xsum (c_len, extra_zeroes));
761 if (c_ptr != NULL)
763 char *d_ptr = c_ptr;
764 for (; extra_zeroes > 0; extra_zeroes--)
765 *d_ptr++ = '0';
766 while (a_len > 0)
768 /* Divide a by 10^9, in-place. */
769 mp_limb_t remainder = 0;
770 mp_limb_t *ptr = a_ptr + a_len;
771 size_t count;
772 for (count = a_len; count > 0; count--)
774 mp_twolimb_t num =
775 ((mp_twolimb_t) remainder << GMP_LIMB_BITS) | *--ptr;
776 *ptr = num / 1000000000;
777 remainder = num % 1000000000;
779 /* Store the remainder as 9 decimal digits. */
780 for (count = 9; count > 0; count--)
782 *d_ptr++ = '0' + (remainder % 10);
783 remainder = remainder / 10;
785 /* Normalize a. */
786 if (a_ptr[a_len - 1] == 0)
787 a_len--;
789 /* Remove leading zeroes. */
790 while (d_ptr > c_ptr && d_ptr[-1] == '0')
791 d_ptr--;
792 /* But keep at least one zero. */
793 if (d_ptr == c_ptr)
794 *d_ptr++ = '0';
795 /* Terminate the string. */
796 *d_ptr = '\0';
798 return c_ptr;
801 # if NEED_PRINTF_LONG_DOUBLE
803 /* Assuming x is finite and >= 0:
804 write x as x = 2^e * m, where m is a bignum.
805 Return the allocated memory in case of success, NULL in case of memory
806 allocation failure. */
807 static void *
808 decode_long_double (long double x, int *ep, mpn_t *mp)
810 mpn_t m;
811 int exp;
812 long double y;
813 size_t i;
815 /* Allocate memory for result. */
816 m.nlimbs = (LDBL_MANT_BIT + GMP_LIMB_BITS - 1) / GMP_LIMB_BITS;
817 m.limbs = (mp_limb_t *) malloc (m.nlimbs * sizeof (mp_limb_t));
818 if (m.limbs == NULL)
819 return NULL;
820 /* Split into exponential part and mantissa. */
821 y = frexpl (x, &exp);
822 if (!(y >= 0.0L && y < 1.0L))
823 abort ();
824 /* x = 2^exp * y = 2^(exp - LDBL_MANT_BIT) * (y * LDBL_MANT_BIT), and the
825 latter is an integer. */
826 /* Convert the mantissa (y * LDBL_MANT_BIT) to a sequence of limbs.
827 I'm not sure whether it's safe to cast a 'long double' value between
828 2^31 and 2^32 to 'unsigned int', therefore play safe and cast only
829 'long double' values between 0 and 2^16 (to 'unsigned int' or 'int',
830 doesn't matter). */
831 # if (LDBL_MANT_BIT % GMP_LIMB_BITS) != 0
832 # if (LDBL_MANT_BIT % GMP_LIMB_BITS) > GMP_LIMB_BITS / 2
834 mp_limb_t hi, lo;
835 y *= (mp_limb_t) 1 << (LDBL_MANT_BIT % (GMP_LIMB_BITS / 2));
836 hi = (int) y;
837 y -= hi;
838 if (!(y >= 0.0L && y < 1.0L))
839 abort ();
840 y *= (mp_limb_t) 1 << (GMP_LIMB_BITS / 2);
841 lo = (int) y;
842 y -= lo;
843 if (!(y >= 0.0L && y < 1.0L))
844 abort ();
845 m.limbs[LDBL_MANT_BIT / GMP_LIMB_BITS] = (hi << (GMP_LIMB_BITS / 2)) | lo;
847 # else
849 mp_limb_t d;
850 y *= (mp_limb_t) 1 << (LDBL_MANT_BIT % GMP_LIMB_BITS);
851 d = (int) y;
852 y -= d;
853 if (!(y >= 0.0L && y < 1.0L))
854 abort ();
855 m.limbs[LDBL_MANT_BIT / GMP_LIMB_BITS] = d;
857 # endif
858 # endif
859 for (i = LDBL_MANT_BIT / GMP_LIMB_BITS; i > 0; )
861 mp_limb_t hi, lo;
862 y *= (mp_limb_t) 1 << (GMP_LIMB_BITS / 2);
863 hi = (int) y;
864 y -= hi;
865 if (!(y >= 0.0L && y < 1.0L))
866 abort ();
867 y *= (mp_limb_t) 1 << (GMP_LIMB_BITS / 2);
868 lo = (int) y;
869 y -= lo;
870 if (!(y >= 0.0L && y < 1.0L))
871 abort ();
872 m.limbs[--i] = (hi << (GMP_LIMB_BITS / 2)) | lo;
874 #if 0 /* On FreeBSD 6.1/x86, 'long double' numbers sometimes have excess
875 precision. */
876 if (!(y == 0.0L))
877 abort ();
878 #endif
879 /* Normalise. */
880 while (m.nlimbs > 0 && m.limbs[m.nlimbs - 1] == 0)
881 m.nlimbs--;
882 *mp = m;
883 *ep = exp - LDBL_MANT_BIT;
884 return m.limbs;
887 # endif
889 # if NEED_PRINTF_DOUBLE
891 /* Assuming x is finite and >= 0:
892 write x as x = 2^e * m, where m is a bignum.
893 Return the allocated memory in case of success, NULL in case of memory
894 allocation failure. */
895 static void *
896 decode_double (double x, int *ep, mpn_t *mp)
898 mpn_t m;
899 int exp;
900 double y;
901 size_t i;
903 /* Allocate memory for result. */
904 m.nlimbs = (DBL_MANT_BIT + GMP_LIMB_BITS - 1) / GMP_LIMB_BITS;
905 m.limbs = (mp_limb_t *) malloc (m.nlimbs * sizeof (mp_limb_t));
906 if (m.limbs == NULL)
907 return NULL;
908 /* Split into exponential part and mantissa. */
909 y = frexp (x, &exp);
910 if (!(y >= 0.0 && y < 1.0))
911 abort ();
912 /* x = 2^exp * y = 2^(exp - DBL_MANT_BIT) * (y * DBL_MANT_BIT), and the
913 latter is an integer. */
914 /* Convert the mantissa (y * DBL_MANT_BIT) to a sequence of limbs.
915 I'm not sure whether it's safe to cast a 'double' value between
916 2^31 and 2^32 to 'unsigned int', therefore play safe and cast only
917 'double' values between 0 and 2^16 (to 'unsigned int' or 'int',
918 doesn't matter). */
919 # if (DBL_MANT_BIT % GMP_LIMB_BITS) != 0
920 # if (DBL_MANT_BIT % GMP_LIMB_BITS) > GMP_LIMB_BITS / 2
922 mp_limb_t hi, lo;
923 y *= (mp_limb_t) 1 << (DBL_MANT_BIT % (GMP_LIMB_BITS / 2));
924 hi = (int) y;
925 y -= hi;
926 if (!(y >= 0.0 && y < 1.0))
927 abort ();
928 y *= (mp_limb_t) 1 << (GMP_LIMB_BITS / 2);
929 lo = (int) y;
930 y -= lo;
931 if (!(y >= 0.0 && y < 1.0))
932 abort ();
933 m.limbs[DBL_MANT_BIT / GMP_LIMB_BITS] = (hi << (GMP_LIMB_BITS / 2)) | lo;
935 # else
937 mp_limb_t d;
938 y *= (mp_limb_t) 1 << (DBL_MANT_BIT % GMP_LIMB_BITS);
939 d = (int) y;
940 y -= d;
941 if (!(y >= 0.0 && y < 1.0))
942 abort ();
943 m.limbs[DBL_MANT_BIT / GMP_LIMB_BITS] = d;
945 # endif
946 # endif
947 for (i = DBL_MANT_BIT / GMP_LIMB_BITS; i > 0; )
949 mp_limb_t hi, lo;
950 y *= (mp_limb_t) 1 << (GMP_LIMB_BITS / 2);
951 hi = (int) y;
952 y -= hi;
953 if (!(y >= 0.0 && y < 1.0))
954 abort ();
955 y *= (mp_limb_t) 1 << (GMP_LIMB_BITS / 2);
956 lo = (int) y;
957 y -= lo;
958 if (!(y >= 0.0 && y < 1.0))
959 abort ();
960 m.limbs[--i] = (hi << (GMP_LIMB_BITS / 2)) | lo;
962 if (!(y == 0.0))
963 abort ();
964 /* Normalise. */
965 while (m.nlimbs > 0 && m.limbs[m.nlimbs - 1] == 0)
966 m.nlimbs--;
967 *mp = m;
968 *ep = exp - DBL_MANT_BIT;
969 return m.limbs;
972 # endif
974 /* Assuming x = 2^e * m is finite and >= 0, and n is an integer:
975 Returns the decimal representation of round (x * 10^n).
976 Return the allocated memory - containing the decimal digits in low-to-high
977 order, terminated with a NUL character - in case of success, NULL in case
978 of memory allocation failure. */
979 static char *
980 scale10_round_decimal_decoded (int e, mpn_t m, void *memory, int n)
982 int s;
983 size_t extra_zeroes;
984 unsigned int abs_n;
985 unsigned int abs_s;
986 mp_limb_t *pow5_ptr;
987 size_t pow5_len;
988 unsigned int s_limbs;
989 unsigned int s_bits;
990 mpn_t pow5;
991 mpn_t z;
992 void *z_memory;
993 char *digits;
995 if (memory == NULL)
996 return NULL;
997 /* x = 2^e * m, hence
998 y = round (2^e * 10^n * m) = round (2^(e+n) * 5^n * m)
999 = round (2^s * 5^n * m). */
1000 s = e + n;
1001 extra_zeroes = 0;
1002 /* Factor out a common power of 10 if possible. */
1003 if (s > 0 && n > 0)
1005 extra_zeroes = (s < n ? s : n);
1006 s -= extra_zeroes;
1007 n -= extra_zeroes;
1009 /* Here y = round (2^s * 5^n * m) * 10^extra_zeroes.
1010 Before converting to decimal, we need to compute
1011 z = round (2^s * 5^n * m). */
1012 /* Compute 5^|n|, possibly shifted by |s| bits if n and s have the same
1013 sign. 2.322 is slightly larger than log(5)/log(2). */
1014 abs_n = (n >= 0 ? n : -n);
1015 abs_s = (s >= 0 ? s : -s);
1016 pow5_ptr = (mp_limb_t *) malloc (((int)(abs_n * (2.322f / GMP_LIMB_BITS)) + 1
1017 + abs_s / GMP_LIMB_BITS + 1)
1018 * sizeof (mp_limb_t));
1019 if (pow5_ptr == NULL)
1021 free (memory);
1022 return NULL;
1024 /* Initialize with 1. */
1025 pow5_ptr[0] = 1;
1026 pow5_len = 1;
1027 /* Multiply with 5^|n|. */
1028 if (abs_n > 0)
1030 static mp_limb_t const small_pow5[13 + 1] =
1032 1, 5, 25, 125, 625, 3125, 15625, 78125, 390625, 1953125, 9765625,
1033 48828125, 244140625, 1220703125
1035 unsigned int n13;
1036 for (n13 = 0; n13 <= abs_n; n13 += 13)
1038 mp_limb_t digit1 = small_pow5[n13 + 13 <= abs_n ? 13 : abs_n - n13];
1039 size_t j;
1040 mp_twolimb_t carry = 0;
1041 for (j = 0; j < pow5_len; j++)
1043 mp_limb_t digit2 = pow5_ptr[j];
1044 carry += (mp_twolimb_t) digit1 * (mp_twolimb_t) digit2;
1045 pow5_ptr[j] = (mp_limb_t) carry;
1046 carry = carry >> GMP_LIMB_BITS;
1048 if (carry > 0)
1049 pow5_ptr[pow5_len++] = (mp_limb_t) carry;
1052 s_limbs = abs_s / GMP_LIMB_BITS;
1053 s_bits = abs_s % GMP_LIMB_BITS;
1054 if (n >= 0 ? s >= 0 : s <= 0)
1056 /* Multiply with 2^|s|. */
1057 if (s_bits > 0)
1059 mp_limb_t *ptr = pow5_ptr;
1060 mp_twolimb_t accu = 0;
1061 size_t count;
1062 for (count = pow5_len; count > 0; count--)
1064 accu += (mp_twolimb_t) *ptr << s_bits;
1065 *ptr++ = (mp_limb_t) accu;
1066 accu = accu >> GMP_LIMB_BITS;
1068 if (accu > 0)
1070 *ptr = (mp_limb_t) accu;
1071 pow5_len++;
1074 if (s_limbs > 0)
1076 size_t count;
1077 for (count = pow5_len; count > 0;)
1079 count--;
1080 pow5_ptr[s_limbs + count] = pow5_ptr[count];
1082 for (count = s_limbs; count > 0;)
1084 count--;
1085 pow5_ptr[count] = 0;
1087 pow5_len += s_limbs;
1089 pow5.limbs = pow5_ptr;
1090 pow5.nlimbs = pow5_len;
1091 if (n >= 0)
1093 /* Multiply m with pow5. No division needed. */
1094 z_memory = multiply (m, pow5, &z);
1096 else
1098 /* Divide m by pow5 and round. */
1099 z_memory = divide (m, pow5, &z);
1102 else
1104 pow5.limbs = pow5_ptr;
1105 pow5.nlimbs = pow5_len;
1106 if (n >= 0)
1108 /* n >= 0, s < 0.
1109 Multiply m with pow5, then divide by 2^|s|. */
1110 mpn_t numerator;
1111 mpn_t denominator;
1112 void *tmp_memory;
1113 tmp_memory = multiply (m, pow5, &numerator);
1114 if (tmp_memory == NULL)
1116 free (pow5_ptr);
1117 free (memory);
1118 return NULL;
1120 /* Construct 2^|s|. */
1122 mp_limb_t *ptr = pow5_ptr + pow5_len;
1123 size_t i;
1124 for (i = 0; i < s_limbs; i++)
1125 ptr[i] = 0;
1126 ptr[s_limbs] = (mp_limb_t) 1 << s_bits;
1127 denominator.limbs = ptr;
1128 denominator.nlimbs = s_limbs + 1;
1130 z_memory = divide (numerator, denominator, &z);
1131 free (tmp_memory);
1133 else
1135 /* n < 0, s > 0.
1136 Multiply m with 2^s, then divide by pow5. */
1137 mpn_t numerator;
1138 mp_limb_t *num_ptr;
1139 num_ptr = (mp_limb_t *) malloc ((m.nlimbs + s_limbs + 1)
1140 * sizeof (mp_limb_t));
1141 if (num_ptr == NULL)
1143 free (pow5_ptr);
1144 free (memory);
1145 return NULL;
1148 mp_limb_t *destptr = num_ptr;
1150 size_t i;
1151 for (i = 0; i < s_limbs; i++)
1152 *destptr++ = 0;
1154 if (s_bits > 0)
1156 const mp_limb_t *sourceptr = m.limbs;
1157 mp_twolimb_t accu = 0;
1158 size_t count;
1159 for (count = m.nlimbs; count > 0; count--)
1161 accu += (mp_twolimb_t) *sourceptr++ << s_bits;
1162 *destptr++ = (mp_limb_t) accu;
1163 accu = accu >> GMP_LIMB_BITS;
1165 if (accu > 0)
1166 *destptr++ = (mp_limb_t) accu;
1168 else
1170 const mp_limb_t *sourceptr = m.limbs;
1171 size_t count;
1172 for (count = m.nlimbs; count > 0; count--)
1173 *destptr++ = *sourceptr++;
1175 numerator.limbs = num_ptr;
1176 numerator.nlimbs = destptr - num_ptr;
1178 z_memory = divide (numerator, pow5, &z);
1179 free (num_ptr);
1182 free (pow5_ptr);
1183 free (memory);
1185 /* Here y = round (x * 10^n) = z * 10^extra_zeroes. */
1187 if (z_memory == NULL)
1188 return NULL;
1189 digits = convert_to_decimal (z, extra_zeroes);
1190 free (z_memory);
1191 return digits;
1194 # if NEED_PRINTF_LONG_DOUBLE
1196 /* Assuming x is finite and >= 0, and n is an integer:
1197 Returns the decimal representation of round (x * 10^n).
1198 Return the allocated memory - containing the decimal digits in low-to-high
1199 order, terminated with a NUL character - in case of success, NULL in case
1200 of memory allocation failure. */
1201 static char *
1202 scale10_round_decimal_long_double (long double x, int n)
1204 int e;
1205 mpn_t m;
1206 void *memory = decode_long_double (x, &e, &m);
1207 return scale10_round_decimal_decoded (e, m, memory, n);
1210 # endif
1212 # if NEED_PRINTF_DOUBLE
1214 /* Assuming x is finite and >= 0, and n is an integer:
1215 Returns the decimal representation of round (x * 10^n).
1216 Return the allocated memory - containing the decimal digits in low-to-high
1217 order, terminated with a NUL character - in case of success, NULL in case
1218 of memory allocation failure. */
1219 static char *
1220 scale10_round_decimal_double (double x, int n)
1222 int e;
1223 mpn_t m;
1224 void *memory = decode_double (x, &e, &m);
1225 return scale10_round_decimal_decoded (e, m, memory, n);
1228 # endif
1230 # if NEED_PRINTF_LONG_DOUBLE
1232 /* Assuming x is finite and > 0:
1233 Return an approximation for n with 10^n <= x < 10^(n+1).
1234 The approximation is usually the right n, but may be off by 1 sometimes. */
1235 static int
1236 floorlog10l (long double x)
1238 int exp;
1239 long double y;
1240 double z;
1241 double l;
1243 /* Split into exponential part and mantissa. */
1244 y = frexpl (x, &exp);
1245 if (!(y >= 0.0L && y < 1.0L))
1246 abort ();
1247 if (y == 0.0L)
1248 return INT_MIN;
1249 if (y < 0.5L)
1251 while (y < (1.0L / (1 << (GMP_LIMB_BITS / 2)) / (1 << (GMP_LIMB_BITS / 2))))
1253 y *= 1.0L * (1 << (GMP_LIMB_BITS / 2)) * (1 << (GMP_LIMB_BITS / 2));
1254 exp -= GMP_LIMB_BITS;
1256 if (y < (1.0L / (1 << 16)))
1258 y *= 1.0L * (1 << 16);
1259 exp -= 16;
1261 if (y < (1.0L / (1 << 8)))
1263 y *= 1.0L * (1 << 8);
1264 exp -= 8;
1266 if (y < (1.0L / (1 << 4)))
1268 y *= 1.0L * (1 << 4);
1269 exp -= 4;
1271 if (y < (1.0L / (1 << 2)))
1273 y *= 1.0L * (1 << 2);
1274 exp -= 2;
1276 if (y < (1.0L / (1 << 1)))
1278 y *= 1.0L * (1 << 1);
1279 exp -= 1;
1282 if (!(y >= 0.5L && y < 1.0L))
1283 abort ();
1284 /* Compute an approximation for l = log2(x) = exp + log2(y). */
1285 l = exp;
1286 z = y;
1287 if (z < 0.70710678118654752444)
1289 z *= 1.4142135623730950488;
1290 l -= 0.5;
1292 if (z < 0.8408964152537145431)
1294 z *= 1.1892071150027210667;
1295 l -= 0.25;
1297 if (z < 0.91700404320467123175)
1299 z *= 1.0905077326652576592;
1300 l -= 0.125;
1302 if (z < 0.9576032806985736469)
1304 z *= 1.0442737824274138403;
1305 l -= 0.0625;
1307 /* Now 0.95 <= z <= 1.01. */
1308 z = 1 - z;
1309 /* log(1-z) = - z - z^2/2 - z^3/3 - z^4/4 - ...
1310 Four terms are enough to get an approximation with error < 10^-7. */
1311 l -= z * (1.0 + z * (0.5 + z * ((1.0 / 3) + z * 0.25)));
1312 /* Finally multiply with log(2)/log(10), yields an approximation for
1313 log10(x). */
1314 l *= 0.30102999566398119523;
1315 /* Round down to the next integer. */
1316 return (int) l + (l < 0 ? -1 : 0);
1319 # endif
1321 # if NEED_PRINTF_DOUBLE
1323 /* Assuming x is finite and > 0:
1324 Return an approximation for n with 10^n <= x < 10^(n+1).
1325 The approximation is usually the right n, but may be off by 1 sometimes. */
1326 static int
1327 floorlog10 (double x)
1329 int exp;
1330 double y;
1331 double z;
1332 double l;
1334 /* Split into exponential part and mantissa. */
1335 y = frexp (x, &exp);
1336 if (!(y >= 0.0 && y < 1.0))
1337 abort ();
1338 if (y == 0.0)
1339 return INT_MIN;
1340 if (y < 0.5)
1342 while (y < (1.0 / (1 << (GMP_LIMB_BITS / 2)) / (1 << (GMP_LIMB_BITS / 2))))
1344 y *= 1.0 * (1 << (GMP_LIMB_BITS / 2)) * (1 << (GMP_LIMB_BITS / 2));
1345 exp -= GMP_LIMB_BITS;
1347 if (y < (1.0 / (1 << 16)))
1349 y *= 1.0 * (1 << 16);
1350 exp -= 16;
1352 if (y < (1.0 / (1 << 8)))
1354 y *= 1.0 * (1 << 8);
1355 exp -= 8;
1357 if (y < (1.0 / (1 << 4)))
1359 y *= 1.0 * (1 << 4);
1360 exp -= 4;
1362 if (y < (1.0 / (1 << 2)))
1364 y *= 1.0 * (1 << 2);
1365 exp -= 2;
1367 if (y < (1.0 / (1 << 1)))
1369 y *= 1.0 * (1 << 1);
1370 exp -= 1;
1373 if (!(y >= 0.5 && y < 1.0))
1374 abort ();
1375 /* Compute an approximation for l = log2(x) = exp + log2(y). */
1376 l = exp;
1377 z = y;
1378 if (z < 0.70710678118654752444)
1380 z *= 1.4142135623730950488;
1381 l -= 0.5;
1383 if (z < 0.8408964152537145431)
1385 z *= 1.1892071150027210667;
1386 l -= 0.25;
1388 if (z < 0.91700404320467123175)
1390 z *= 1.0905077326652576592;
1391 l -= 0.125;
1393 if (z < 0.9576032806985736469)
1395 z *= 1.0442737824274138403;
1396 l -= 0.0625;
1398 /* Now 0.95 <= z <= 1.01. */
1399 z = 1 - z;
1400 /* log(1-z) = - z - z^2/2 - z^3/3 - z^4/4 - ...
1401 Four terms are enough to get an approximation with error < 10^-7. */
1402 l -= z * (1.0 + z * (0.5 + z * ((1.0 / 3) + z * 0.25)));
1403 /* Finally multiply with log(2)/log(10), yields an approximation for
1404 log10(x). */
1405 l *= 0.30102999566398119523;
1406 /* Round down to the next integer. */
1407 return (int) l + (l < 0 ? -1 : 0);
1410 # endif
1412 #endif
1414 DCHAR_T *
1415 VASNPRINTF (DCHAR_T *resultbuf, size_t *lengthp,
1416 const FCHAR_T *format, va_list args)
1418 DIRECTIVES d;
1419 arguments a;
1421 if (PRINTF_PARSE (format, &d, &a) < 0)
1422 /* errno is already set. */
1423 return NULL;
1425 #define CLEANUP() \
1426 free (d.dir); \
1427 if (a.arg) \
1428 free (a.arg);
1430 if (PRINTF_FETCHARGS (args, &a) < 0)
1432 CLEANUP ();
1433 errno = EINVAL;
1434 return NULL;
1438 size_t buf_neededlength;
1439 TCHAR_T *buf;
1440 TCHAR_T *buf_malloced;
1441 const FCHAR_T *cp;
1442 size_t i;
1443 DIRECTIVE *dp;
1444 /* Output string accumulator. */
1445 DCHAR_T *result;
1446 size_t allocated;
1447 size_t length;
1449 /* Allocate a small buffer that will hold a directive passed to
1450 sprintf or snprintf. */
1451 buf_neededlength =
1452 xsum4 (7, d.max_width_length, d.max_precision_length, 6);
1453 #if HAVE_ALLOCA
1454 if (buf_neededlength < 4000 / sizeof (TCHAR_T))
1456 buf = (TCHAR_T *) alloca (buf_neededlength * sizeof (TCHAR_T));
1457 buf_malloced = NULL;
1459 else
1460 #endif
1462 size_t buf_memsize = xtimes (buf_neededlength, sizeof (TCHAR_T));
1463 if (size_overflow_p (buf_memsize))
1464 goto out_of_memory_1;
1465 buf = (TCHAR_T *) malloc (buf_memsize);
1466 if (buf == NULL)
1467 goto out_of_memory_1;
1468 buf_malloced = buf;
1471 if (resultbuf != NULL)
1473 result = resultbuf;
1474 allocated = *lengthp;
1476 else
1478 result = NULL;
1479 allocated = 0;
1481 length = 0;
1482 /* Invariants:
1483 result is either == resultbuf or == NULL or malloc-allocated.
1484 If length > 0, then result != NULL. */
1486 /* Ensures that allocated >= needed. Aborts through a jump to
1487 out_of_memory if needed is SIZE_MAX or otherwise too big. */
1488 #define ENSURE_ALLOCATION(needed) \
1489 if ((needed) > allocated) \
1491 size_t memory_size; \
1492 DCHAR_T *memory; \
1494 allocated = (allocated > 0 ? xtimes (allocated, 2) : 12); \
1495 if ((needed) > allocated) \
1496 allocated = (needed); \
1497 memory_size = xtimes (allocated, sizeof (DCHAR_T)); \
1498 if (size_overflow_p (memory_size)) \
1499 goto out_of_memory; \
1500 if (result == resultbuf || result == NULL) \
1501 memory = (DCHAR_T *) malloc (memory_size); \
1502 else \
1503 memory = (DCHAR_T *) realloc (result, memory_size); \
1504 if (memory == NULL) \
1505 goto out_of_memory; \
1506 if (result == resultbuf && length > 0) \
1507 DCHAR_CPY (memory, result, length); \
1508 result = memory; \
1511 for (cp = format, i = 0, dp = &d.dir[0]; ; cp = dp->dir_end, i++, dp++)
1513 if (cp != dp->dir_start)
1515 size_t n = dp->dir_start - cp;
1516 size_t augmented_length = xsum (length, n);
1518 ENSURE_ALLOCATION (augmented_length);
1519 /* This copies a piece of FCHAR_T[] into a DCHAR_T[]. Here we
1520 need that the format string contains only ASCII characters
1521 if FCHAR_T and DCHAR_T are not the same type. */
1522 if (sizeof (FCHAR_T) == sizeof (DCHAR_T))
1524 DCHAR_CPY (result + length, (const DCHAR_T *) cp, n);
1525 length = augmented_length;
1527 else
1530 result[length++] = (unsigned char) *cp++;
1531 while (--n > 0);
1534 if (i == d.count)
1535 break;
1537 /* Execute a single directive. */
1538 if (dp->conversion == '%')
1540 size_t augmented_length;
1542 if (!(dp->arg_index == ARG_NONE))
1543 abort ();
1544 augmented_length = xsum (length, 1);
1545 ENSURE_ALLOCATION (augmented_length);
1546 result[length] = '%';
1547 length = augmented_length;
1549 else
1551 if (!(dp->arg_index != ARG_NONE))
1552 abort ();
1554 if (dp->conversion == 'n')
1556 switch (a.arg[dp->arg_index].type)
1558 case TYPE_COUNT_SCHAR_POINTER:
1559 *a.arg[dp->arg_index].a.a_count_schar_pointer = length;
1560 break;
1561 case TYPE_COUNT_SHORT_POINTER:
1562 *a.arg[dp->arg_index].a.a_count_short_pointer = length;
1563 break;
1564 case TYPE_COUNT_INT_POINTER:
1565 *a.arg[dp->arg_index].a.a_count_int_pointer = length;
1566 break;
1567 case TYPE_COUNT_LONGINT_POINTER:
1568 *a.arg[dp->arg_index].a.a_count_longint_pointer = length;
1569 break;
1570 #if HAVE_LONG_LONG_INT
1571 case TYPE_COUNT_LONGLONGINT_POINTER:
1572 *a.arg[dp->arg_index].a.a_count_longlongint_pointer = length;
1573 break;
1574 #endif
1575 default:
1576 abort ();
1579 #if ENABLE_UNISTDIO
1580 /* The unistdio extensions. */
1581 else if (dp->conversion == 'U')
1583 arg_type type = a.arg[dp->arg_index].type;
1584 int flags = dp->flags;
1585 int has_width;
1586 size_t width;
1587 int has_precision;
1588 size_t precision;
1590 has_width = 0;
1591 width = 0;
1592 if (dp->width_start != dp->width_end)
1594 if (dp->width_arg_index != ARG_NONE)
1596 int arg;
1598 if (!(a.arg[dp->width_arg_index].type == TYPE_INT))
1599 abort ();
1600 arg = a.arg[dp->width_arg_index].a.a_int;
1601 if (arg < 0)
1603 /* "A negative field width is taken as a '-' flag
1604 followed by a positive field width." */
1605 flags |= FLAG_LEFT;
1606 width = (unsigned int) (-arg);
1608 else
1609 width = arg;
1611 else
1613 const FCHAR_T *digitp = dp->width_start;
1616 width = xsum (xtimes (width, 10), *digitp++ - '0');
1617 while (digitp != dp->width_end);
1619 has_width = 1;
1622 has_precision = 0;
1623 precision = 0;
1624 if (dp->precision_start != dp->precision_end)
1626 if (dp->precision_arg_index != ARG_NONE)
1628 int arg;
1630 if (!(a.arg[dp->precision_arg_index].type == TYPE_INT))
1631 abort ();
1632 arg = a.arg[dp->precision_arg_index].a.a_int;
1633 /* "A negative precision is taken as if the precision
1634 were omitted." */
1635 if (arg >= 0)
1637 precision = arg;
1638 has_precision = 1;
1641 else
1643 const FCHAR_T *digitp = dp->precision_start + 1;
1645 precision = 0;
1646 while (digitp != dp->precision_end)
1647 precision = xsum (xtimes (precision, 10), *digitp++ - '0');
1648 has_precision = 1;
1652 switch (type)
1654 case TYPE_U8_STRING:
1656 const uint8_t *arg = a.arg[dp->arg_index].a.a_u8_string;
1657 const uint8_t *arg_end;
1658 size_t characters;
1660 if (has_precision)
1662 /* Use only PRECISION characters, from the left. */
1663 arg_end = arg;
1664 characters = 0;
1665 for (; precision > 0; precision--)
1667 int count = u8_strmblen (arg_end);
1668 if (count == 0)
1669 break;
1670 if (count < 0)
1672 if (!(result == resultbuf || result == NULL))
1673 free (result);
1674 if (buf_malloced != NULL)
1675 free (buf_malloced);
1676 CLEANUP ();
1677 errno = EILSEQ;
1678 return NULL;
1680 arg_end += count;
1681 characters++;
1684 else if (has_width)
1686 /* Use the entire string, and count the number of
1687 characters. */
1688 arg_end = arg;
1689 characters = 0;
1690 for (;;)
1692 int count = u8_strmblen (arg_end);
1693 if (count == 0)
1694 break;
1695 if (count < 0)
1697 if (!(result == resultbuf || result == NULL))
1698 free (result);
1699 if (buf_malloced != NULL)
1700 free (buf_malloced);
1701 CLEANUP ();
1702 errno = EILSEQ;
1703 return NULL;
1705 arg_end += count;
1706 characters++;
1709 else
1711 /* Use the entire string. */
1712 arg_end = arg + u8_strlen (arg);
1713 /* The number of characters doesn't matter. */
1714 characters = 0;
1717 if (has_width && width > characters
1718 && !(dp->flags & FLAG_LEFT))
1720 size_t n = width - characters;
1721 ENSURE_ALLOCATION (xsum (length, n));
1722 DCHAR_SET (result + length, ' ', n);
1723 length += n;
1726 # if DCHAR_IS_UINT8_T
1728 size_t n = arg_end - arg;
1729 ENSURE_ALLOCATION (xsum (length, n));
1730 DCHAR_CPY (result + length, arg, n);
1731 length += n;
1733 # else
1734 { /* Convert. */
1735 DCHAR_T *converted = result + length;
1736 size_t converted_len = allocated - length;
1737 # if DCHAR_IS_TCHAR
1738 /* Convert from UTF-8 to locale encoding. */
1739 if (u8_conv_to_encoding (locale_charset (),
1740 iconveh_question_mark,
1741 arg, arg_end - arg, NULL,
1742 &converted, &converted_len)
1743 < 0)
1744 # else
1745 /* Convert from UTF-8 to UTF-16/UTF-32. */
1746 converted =
1747 U8_TO_DCHAR (arg, arg_end - arg,
1748 converted, &converted_len);
1749 if (converted == NULL)
1750 # endif
1752 int saved_errno = errno;
1753 if (!(result == resultbuf || result == NULL))
1754 free (result);
1755 if (buf_malloced != NULL)
1756 free (buf_malloced);
1757 CLEANUP ();
1758 errno = saved_errno;
1759 return NULL;
1761 if (converted != result + length)
1763 ENSURE_ALLOCATION (xsum (length, converted_len));
1764 DCHAR_CPY (result + length, converted, converted_len);
1765 free (converted);
1767 length += converted_len;
1769 # endif
1771 if (has_width && width > characters
1772 && (dp->flags & FLAG_LEFT))
1774 size_t n = width - characters;
1775 ENSURE_ALLOCATION (xsum (length, n));
1776 DCHAR_SET (result + length, ' ', n);
1777 length += n;
1780 break;
1782 case TYPE_U16_STRING:
1784 const uint16_t *arg = a.arg[dp->arg_index].a.a_u16_string;
1785 const uint16_t *arg_end;
1786 size_t characters;
1788 if (has_precision)
1790 /* Use only PRECISION characters, from the left. */
1791 arg_end = arg;
1792 characters = 0;
1793 for (; precision > 0; precision--)
1795 int count = u16_strmblen (arg_end);
1796 if (count == 0)
1797 break;
1798 if (count < 0)
1800 if (!(result == resultbuf || result == NULL))
1801 free (result);
1802 if (buf_malloced != NULL)
1803 free (buf_malloced);
1804 CLEANUP ();
1805 errno = EILSEQ;
1806 return NULL;
1808 arg_end += count;
1809 characters++;
1812 else if (has_width)
1814 /* Use the entire string, and count the number of
1815 characters. */
1816 arg_end = arg;
1817 characters = 0;
1818 for (;;)
1820 int count = u16_strmblen (arg_end);
1821 if (count == 0)
1822 break;
1823 if (count < 0)
1825 if (!(result == resultbuf || result == NULL))
1826 free (result);
1827 if (buf_malloced != NULL)
1828 free (buf_malloced);
1829 CLEANUP ();
1830 errno = EILSEQ;
1831 return NULL;
1833 arg_end += count;
1834 characters++;
1837 else
1839 /* Use the entire string. */
1840 arg_end = arg + u16_strlen (arg);
1841 /* The number of characters doesn't matter. */
1842 characters = 0;
1845 if (has_width && width > characters
1846 && !(dp->flags & FLAG_LEFT))
1848 size_t n = width - characters;
1849 ENSURE_ALLOCATION (xsum (length, n));
1850 DCHAR_SET (result + length, ' ', n);
1851 length += n;
1854 # if DCHAR_IS_UINT16_T
1856 size_t n = arg_end - arg;
1857 ENSURE_ALLOCATION (xsum (length, n));
1858 DCHAR_CPY (result + length, arg, n);
1859 length += n;
1861 # else
1862 { /* Convert. */
1863 DCHAR_T *converted = result + length;
1864 size_t converted_len = allocated - length;
1865 # if DCHAR_IS_TCHAR
1866 /* Convert from UTF-16 to locale encoding. */
1867 if (u16_conv_to_encoding (locale_charset (),
1868 iconveh_question_mark,
1869 arg, arg_end - arg, NULL,
1870 &converted, &converted_len)
1871 < 0)
1872 # else
1873 /* Convert from UTF-16 to UTF-8/UTF-32. */
1874 converted =
1875 U16_TO_DCHAR (arg, arg_end - arg,
1876 converted, &converted_len);
1877 if (converted == NULL)
1878 # endif
1880 int saved_errno = errno;
1881 if (!(result == resultbuf || result == NULL))
1882 free (result);
1883 if (buf_malloced != NULL)
1884 free (buf_malloced);
1885 CLEANUP ();
1886 errno = saved_errno;
1887 return NULL;
1889 if (converted != result + length)
1891 ENSURE_ALLOCATION (xsum (length, converted_len));
1892 DCHAR_CPY (result + length, converted, converted_len);
1893 free (converted);
1895 length += converted_len;
1897 # endif
1899 if (has_width && width > characters
1900 && (dp->flags & FLAG_LEFT))
1902 size_t n = width - characters;
1903 ENSURE_ALLOCATION (xsum (length, n));
1904 DCHAR_SET (result + length, ' ', n);
1905 length += n;
1908 break;
1910 case TYPE_U32_STRING:
1912 const uint32_t *arg = a.arg[dp->arg_index].a.a_u32_string;
1913 const uint32_t *arg_end;
1914 size_t characters;
1916 if (has_precision)
1918 /* Use only PRECISION characters, from the left. */
1919 arg_end = arg;
1920 characters = 0;
1921 for (; precision > 0; precision--)
1923 int count = u32_strmblen (arg_end);
1924 if (count == 0)
1925 break;
1926 if (count < 0)
1928 if (!(result == resultbuf || result == NULL))
1929 free (result);
1930 if (buf_malloced != NULL)
1931 free (buf_malloced);
1932 CLEANUP ();
1933 errno = EILSEQ;
1934 return NULL;
1936 arg_end += count;
1937 characters++;
1940 else if (has_width)
1942 /* Use the entire string, and count the number of
1943 characters. */
1944 arg_end = arg;
1945 characters = 0;
1946 for (;;)
1948 int count = u32_strmblen (arg_end);
1949 if (count == 0)
1950 break;
1951 if (count < 0)
1953 if (!(result == resultbuf || result == NULL))
1954 free (result);
1955 if (buf_malloced != NULL)
1956 free (buf_malloced);
1957 CLEANUP ();
1958 errno = EILSEQ;
1959 return NULL;
1961 arg_end += count;
1962 characters++;
1965 else
1967 /* Use the entire string. */
1968 arg_end = arg + u32_strlen (arg);
1969 /* The number of characters doesn't matter. */
1970 characters = 0;
1973 if (has_width && width > characters
1974 && !(dp->flags & FLAG_LEFT))
1976 size_t n = width - characters;
1977 ENSURE_ALLOCATION (xsum (length, n));
1978 DCHAR_SET (result + length, ' ', n);
1979 length += n;
1982 # if DCHAR_IS_UINT32_T
1984 size_t n = arg_end - arg;
1985 ENSURE_ALLOCATION (xsum (length, n));
1986 DCHAR_CPY (result + length, arg, n);
1987 length += n;
1989 # else
1990 { /* Convert. */
1991 DCHAR_T *converted = result + length;
1992 size_t converted_len = allocated - length;
1993 # if DCHAR_IS_TCHAR
1994 /* Convert from UTF-32 to locale encoding. */
1995 if (u32_conv_to_encoding (locale_charset (),
1996 iconveh_question_mark,
1997 arg, arg_end - arg, NULL,
1998 &converted, &converted_len)
1999 < 0)
2000 # else
2001 /* Convert from UTF-32 to UTF-8/UTF-16. */
2002 converted =
2003 U32_TO_DCHAR (arg, arg_end - arg,
2004 converted, &converted_len);
2005 if (converted == NULL)
2006 # endif
2008 int saved_errno = errno;
2009 if (!(result == resultbuf || result == NULL))
2010 free (result);
2011 if (buf_malloced != NULL)
2012 free (buf_malloced);
2013 CLEANUP ();
2014 errno = saved_errno;
2015 return NULL;
2017 if (converted != result + length)
2019 ENSURE_ALLOCATION (xsum (length, converted_len));
2020 DCHAR_CPY (result + length, converted, converted_len);
2021 free (converted);
2023 length += converted_len;
2025 # endif
2027 if (has_width && width > characters
2028 && (dp->flags & FLAG_LEFT))
2030 size_t n = width - characters;
2031 ENSURE_ALLOCATION (xsum (length, n));
2032 DCHAR_SET (result + length, ' ', n);
2033 length += n;
2036 break;
2038 default:
2039 abort ();
2042 #endif
2043 #if (NEED_PRINTF_DIRECTIVE_A || NEED_PRINTF_LONG_DOUBLE || NEED_PRINTF_DOUBLE) && !defined IN_LIBINTL
2044 else if ((dp->conversion == 'a' || dp->conversion == 'A')
2045 # if !(NEED_PRINTF_DIRECTIVE_A || (NEED_PRINTF_LONG_DOUBLE && NEED_PRINTF_DOUBLE))
2046 && (0
2047 # if NEED_PRINTF_DOUBLE
2048 || a.arg[dp->arg_index].type == TYPE_DOUBLE
2049 # endif
2050 # if NEED_PRINTF_LONG_DOUBLE
2051 || a.arg[dp->arg_index].type == TYPE_LONGDOUBLE
2052 # endif
2054 # endif
2057 arg_type type = a.arg[dp->arg_index].type;
2058 int flags = dp->flags;
2059 int has_width;
2060 size_t width;
2061 int has_precision;
2062 size_t precision;
2063 size_t tmp_length;
2064 DCHAR_T tmpbuf[700];
2065 DCHAR_T *tmp;
2066 DCHAR_T *pad_ptr;
2067 DCHAR_T *p;
2069 has_width = 0;
2070 width = 0;
2071 if (dp->width_start != dp->width_end)
2073 if (dp->width_arg_index != ARG_NONE)
2075 int arg;
2077 if (!(a.arg[dp->width_arg_index].type == TYPE_INT))
2078 abort ();
2079 arg = a.arg[dp->width_arg_index].a.a_int;
2080 if (arg < 0)
2082 /* "A negative field width is taken as a '-' flag
2083 followed by a positive field width." */
2084 flags |= FLAG_LEFT;
2085 width = (unsigned int) (-arg);
2087 else
2088 width = arg;
2090 else
2092 const FCHAR_T *digitp = dp->width_start;
2095 width = xsum (xtimes (width, 10), *digitp++ - '0');
2096 while (digitp != dp->width_end);
2098 has_width = 1;
2101 has_precision = 0;
2102 precision = 0;
2103 if (dp->precision_start != dp->precision_end)
2105 if (dp->precision_arg_index != ARG_NONE)
2107 int arg;
2109 if (!(a.arg[dp->precision_arg_index].type == TYPE_INT))
2110 abort ();
2111 arg = a.arg[dp->precision_arg_index].a.a_int;
2112 /* "A negative precision is taken as if the precision
2113 were omitted." */
2114 if (arg >= 0)
2116 precision = arg;
2117 has_precision = 1;
2120 else
2122 const FCHAR_T *digitp = dp->precision_start + 1;
2124 precision = 0;
2125 while (digitp != dp->precision_end)
2126 precision = xsum (xtimes (precision, 10), *digitp++ - '0');
2127 has_precision = 1;
2131 /* Allocate a temporary buffer of sufficient size. */
2132 if (type == TYPE_LONGDOUBLE)
2133 tmp_length =
2134 (unsigned int) ((LDBL_DIG + 1)
2135 * 0.831 /* decimal -> hexadecimal */
2137 + 1; /* turn floor into ceil */
2138 else
2139 tmp_length =
2140 (unsigned int) ((DBL_DIG + 1)
2141 * 0.831 /* decimal -> hexadecimal */
2143 + 1; /* turn floor into ceil */
2144 if (tmp_length < precision)
2145 tmp_length = precision;
2146 /* Account for sign, decimal point etc. */
2147 tmp_length = xsum (tmp_length, 12);
2149 if (tmp_length < width)
2150 tmp_length = width;
2152 tmp_length = xsum (tmp_length, 1); /* account for trailing NUL */
2154 if (tmp_length <= sizeof (tmpbuf) / sizeof (DCHAR_T))
2155 tmp = tmpbuf;
2156 else
2158 size_t tmp_memsize = xtimes (tmp_length, sizeof (DCHAR_T));
2160 if (size_overflow_p (tmp_memsize))
2161 /* Overflow, would lead to out of memory. */
2162 goto out_of_memory;
2163 tmp = (DCHAR_T *) malloc (tmp_memsize);
2164 if (tmp == NULL)
2165 /* Out of memory. */
2166 goto out_of_memory;
2169 pad_ptr = NULL;
2170 p = tmp;
2171 if (type == TYPE_LONGDOUBLE)
2173 # if NEED_PRINTF_DIRECTIVE_A || NEED_PRINTF_LONG_DOUBLE
2174 long double arg = a.arg[dp->arg_index].a.a_longdouble;
2176 if (isnanl (arg))
2178 if (dp->conversion == 'A')
2180 *p++ = 'N'; *p++ = 'A'; *p++ = 'N';
2182 else
2184 *p++ = 'n'; *p++ = 'a'; *p++ = 'n';
2187 else
2189 int sign = 0;
2190 DECL_LONG_DOUBLE_ROUNDING
2192 BEGIN_LONG_DOUBLE_ROUNDING ();
2194 if (signbit (arg)) /* arg < 0.0L or negative zero */
2196 sign = -1;
2197 arg = -arg;
2200 if (sign < 0)
2201 *p++ = '-';
2202 else if (flags & FLAG_SHOWSIGN)
2203 *p++ = '+';
2204 else if (flags & FLAG_SPACE)
2205 *p++ = ' ';
2207 if (arg > 0.0L && arg + arg == arg)
2209 if (dp->conversion == 'A')
2211 *p++ = 'I'; *p++ = 'N'; *p++ = 'F';
2213 else
2215 *p++ = 'i'; *p++ = 'n'; *p++ = 'f';
2218 else
2220 int exponent;
2221 long double mantissa;
2223 if (arg > 0.0L)
2224 mantissa = printf_frexpl (arg, &exponent);
2225 else
2227 exponent = 0;
2228 mantissa = 0.0L;
2231 if (has_precision
2232 && precision < (unsigned int) ((LDBL_DIG + 1) * 0.831) + 1)
2234 /* Round the mantissa. */
2235 long double tail = mantissa;
2236 size_t q;
2238 for (q = precision; ; q--)
2240 int digit = (int) tail;
2241 tail -= digit;
2242 if (q == 0)
2244 if (digit & 1 ? tail >= 0.5L : tail > 0.5L)
2245 tail = 1 - tail;
2246 else
2247 tail = - tail;
2248 break;
2250 tail *= 16.0L;
2252 if (tail != 0.0L)
2253 for (q = precision; q > 0; q--)
2254 tail *= 0.0625L;
2255 mantissa += tail;
2258 *p++ = '0';
2259 *p++ = dp->conversion - 'A' + 'X';
2260 pad_ptr = p;
2262 int digit;
2264 digit = (int) mantissa;
2265 mantissa -= digit;
2266 *p++ = '0' + digit;
2267 if ((flags & FLAG_ALT)
2268 || mantissa > 0.0L || precision > 0)
2270 *p++ = decimal_point_char ();
2271 /* This loop terminates because we assume
2272 that FLT_RADIX is a power of 2. */
2273 while (mantissa > 0.0L)
2275 mantissa *= 16.0L;
2276 digit = (int) mantissa;
2277 mantissa -= digit;
2278 *p++ = digit
2279 + (digit < 10
2280 ? '0'
2281 : dp->conversion - 10);
2282 if (precision > 0)
2283 precision--;
2285 while (precision > 0)
2287 *p++ = '0';
2288 precision--;
2292 *p++ = dp->conversion - 'A' + 'P';
2293 # if WIDE_CHAR_VERSION
2295 static const wchar_t decimal_format[] =
2296 { '%', '+', 'd', '\0' };
2297 SNPRINTF (p, 6 + 1, decimal_format, exponent);
2299 while (*p != '\0')
2300 p++;
2301 # else
2302 if (sizeof (DCHAR_T) == 1)
2304 sprintf ((char *) p, "%+d", exponent);
2305 while (*p != '\0')
2306 p++;
2308 else
2310 char expbuf[6 + 1];
2311 const char *ep;
2312 sprintf (expbuf, "%+d", exponent);
2313 for (ep = expbuf; (*p = *ep) != '\0'; ep++)
2314 p++;
2316 # endif
2319 END_LONG_DOUBLE_ROUNDING ();
2321 # else
2322 abort ();
2323 # endif
2325 else
2327 # if NEED_PRINTF_DIRECTIVE_A || NEED_PRINTF_DOUBLE
2328 double arg = a.arg[dp->arg_index].a.a_double;
2330 if (isnan (arg))
2332 if (dp->conversion == 'A')
2334 *p++ = 'N'; *p++ = 'A'; *p++ = 'N';
2336 else
2338 *p++ = 'n'; *p++ = 'a'; *p++ = 'n';
2341 else
2343 int sign = 0;
2345 if (signbit (arg)) /* arg < 0.0 or negative zero */
2347 sign = -1;
2348 arg = -arg;
2351 if (sign < 0)
2352 *p++ = '-';
2353 else if (flags & FLAG_SHOWSIGN)
2354 *p++ = '+';
2355 else if (flags & FLAG_SPACE)
2356 *p++ = ' ';
2358 if (arg > 0.0 && arg + arg == arg)
2360 if (dp->conversion == 'A')
2362 *p++ = 'I'; *p++ = 'N'; *p++ = 'F';
2364 else
2366 *p++ = 'i'; *p++ = 'n'; *p++ = 'f';
2369 else
2371 int exponent;
2372 double mantissa;
2374 if (arg > 0.0)
2375 mantissa = printf_frexp (arg, &exponent);
2376 else
2378 exponent = 0;
2379 mantissa = 0.0;
2382 if (has_precision
2383 && precision < (unsigned int) ((DBL_DIG + 1) * 0.831) + 1)
2385 /* Round the mantissa. */
2386 double tail = mantissa;
2387 size_t q;
2389 for (q = precision; ; q--)
2391 int digit = (int) tail;
2392 tail -= digit;
2393 if (q == 0)
2395 if (digit & 1 ? tail >= 0.5 : tail > 0.5)
2396 tail = 1 - tail;
2397 else
2398 tail = - tail;
2399 break;
2401 tail *= 16.0;
2403 if (tail != 0.0)
2404 for (q = precision; q > 0; q--)
2405 tail *= 0.0625;
2406 mantissa += tail;
2409 *p++ = '0';
2410 *p++ = dp->conversion - 'A' + 'X';
2411 pad_ptr = p;
2413 int digit;
2415 digit = (int) mantissa;
2416 mantissa -= digit;
2417 *p++ = '0' + digit;
2418 if ((flags & FLAG_ALT)
2419 || mantissa > 0.0 || precision > 0)
2421 *p++ = decimal_point_char ();
2422 /* This loop terminates because we assume
2423 that FLT_RADIX is a power of 2. */
2424 while (mantissa > 0.0)
2426 mantissa *= 16.0;
2427 digit = (int) mantissa;
2428 mantissa -= digit;
2429 *p++ = digit
2430 + (digit < 10
2431 ? '0'
2432 : dp->conversion - 10);
2433 if (precision > 0)
2434 precision--;
2436 while (precision > 0)
2438 *p++ = '0';
2439 precision--;
2443 *p++ = dp->conversion - 'A' + 'P';
2444 # if WIDE_CHAR_VERSION
2446 static const wchar_t decimal_format[] =
2447 { '%', '+', 'd', '\0' };
2448 SNPRINTF (p, 6 + 1, decimal_format, exponent);
2450 while (*p != '\0')
2451 p++;
2452 # else
2453 if (sizeof (DCHAR_T) == 1)
2455 sprintf ((char *) p, "%+d", exponent);
2456 while (*p != '\0')
2457 p++;
2459 else
2461 char expbuf[6 + 1];
2462 const char *ep;
2463 sprintf (expbuf, "%+d", exponent);
2464 for (ep = expbuf; (*p = *ep) != '\0'; ep++)
2465 p++;
2467 # endif
2470 # else
2471 abort ();
2472 # endif
2474 /* The generated string now extends from tmp to p, with the
2475 zero padding insertion point being at pad_ptr. */
2476 if (has_width && p - tmp < width)
2478 size_t pad = width - (p - tmp);
2479 DCHAR_T *end = p + pad;
2481 if (flags & FLAG_LEFT)
2483 /* Pad with spaces on the right. */
2484 for (; pad > 0; pad--)
2485 *p++ = ' ';
2487 else if ((flags & FLAG_ZERO) && pad_ptr != NULL)
2489 /* Pad with zeroes. */
2490 DCHAR_T *q = end;
2492 while (p > pad_ptr)
2493 *--q = *--p;
2494 for (; pad > 0; pad--)
2495 *p++ = '0';
2497 else
2499 /* Pad with spaces on the left. */
2500 DCHAR_T *q = end;
2502 while (p > tmp)
2503 *--q = *--p;
2504 for (; pad > 0; pad--)
2505 *p++ = ' ';
2508 p = end;
2512 size_t count = p - tmp;
2514 if (count >= tmp_length)
2515 /* tmp_length was incorrectly calculated - fix the
2516 code above! */
2517 abort ();
2519 /* Make room for the result. */
2520 if (count >= allocated - length)
2522 size_t n = xsum (length, count);
2524 ENSURE_ALLOCATION (n);
2527 /* Append the result. */
2528 memcpy (result + length, tmp, count * sizeof (DCHAR_T));
2529 if (tmp != tmpbuf)
2530 free (tmp);
2531 length += count;
2534 #endif
2535 #if (NEED_PRINTF_INFINITE_DOUBLE || NEED_PRINTF_DOUBLE || NEED_PRINTF_INFINITE_LONG_DOUBLE || NEED_PRINTF_LONG_DOUBLE) && !defined IN_LIBINTL
2536 else if ((dp->conversion == 'f' || dp->conversion == 'F'
2537 || dp->conversion == 'e' || dp->conversion == 'E'
2538 || dp->conversion == 'g' || dp->conversion == 'G'
2539 || dp->conversion == 'a' || dp->conversion == 'A')
2540 && (0
2541 # if NEED_PRINTF_DOUBLE
2542 || a.arg[dp->arg_index].type == TYPE_DOUBLE
2543 # elif NEED_PRINTF_INFINITE_DOUBLE
2544 || (a.arg[dp->arg_index].type == TYPE_DOUBLE
2545 /* The systems (mingw) which produce wrong output
2546 for Inf, -Inf, and NaN also do so for -0.0.
2547 Therefore we treat this case here as well. */
2548 && is_infinite_or_zero (a.arg[dp->arg_index].a.a_double))
2549 # endif
2550 # if NEED_PRINTF_LONG_DOUBLE
2551 || a.arg[dp->arg_index].type == TYPE_LONGDOUBLE
2552 # elif NEED_PRINTF_INFINITE_LONG_DOUBLE
2553 || (a.arg[dp->arg_index].type == TYPE_LONGDOUBLE
2554 /* Some systems produce wrong output for Inf,
2555 -Inf, and NaN. */
2556 && is_infinitel (a.arg[dp->arg_index].a.a_longdouble))
2557 # endif
2560 # if (NEED_PRINTF_DOUBLE || NEED_PRINTF_INFINITE_DOUBLE) && (NEED_PRINTF_LONG_DOUBLE || NEED_PRINTF_INFINITE_LONG_DOUBLE)
2561 arg_type type = a.arg[dp->arg_index].type;
2562 # endif
2563 int flags = dp->flags;
2564 int has_width;
2565 size_t width;
2566 int has_precision;
2567 size_t precision;
2568 size_t tmp_length;
2569 DCHAR_T tmpbuf[700];
2570 DCHAR_T *tmp;
2571 DCHAR_T *pad_ptr;
2572 DCHAR_T *p;
2574 has_width = 0;
2575 width = 0;
2576 if (dp->width_start != dp->width_end)
2578 if (dp->width_arg_index != ARG_NONE)
2580 int arg;
2582 if (!(a.arg[dp->width_arg_index].type == TYPE_INT))
2583 abort ();
2584 arg = a.arg[dp->width_arg_index].a.a_int;
2585 if (arg < 0)
2587 /* "A negative field width is taken as a '-' flag
2588 followed by a positive field width." */
2589 flags |= FLAG_LEFT;
2590 width = (unsigned int) (-arg);
2592 else
2593 width = arg;
2595 else
2597 const FCHAR_T *digitp = dp->width_start;
2600 width = xsum (xtimes (width, 10), *digitp++ - '0');
2601 while (digitp != dp->width_end);
2603 has_width = 1;
2606 has_precision = 0;
2607 precision = 0;
2608 if (dp->precision_start != dp->precision_end)
2610 if (dp->precision_arg_index != ARG_NONE)
2612 int arg;
2614 if (!(a.arg[dp->precision_arg_index].type == TYPE_INT))
2615 abort ();
2616 arg = a.arg[dp->precision_arg_index].a.a_int;
2617 /* "A negative precision is taken as if the precision
2618 were omitted." */
2619 if (arg >= 0)
2621 precision = arg;
2622 has_precision = 1;
2625 else
2627 const FCHAR_T *digitp = dp->precision_start + 1;
2629 precision = 0;
2630 while (digitp != dp->precision_end)
2631 precision = xsum (xtimes (precision, 10), *digitp++ - '0');
2632 has_precision = 1;
2636 /* POSIX specifies the default precision to be 6 for %f, %F,
2637 %e, %E, but not for %g, %G. Implementations appear to use
2638 the same default precision also for %g, %G. */
2639 if (!has_precision)
2640 precision = 6;
2642 /* Allocate a temporary buffer of sufficient size. */
2643 # if NEED_PRINTF_DOUBLE && NEED_PRINTF_LONG_DOUBLE
2644 tmp_length = (type == TYPE_LONGDOUBLE ? LDBL_DIG + 1 : DBL_DIG + 1);
2645 # elif NEED_PRINTF_INFINITE_DOUBLE && NEED_PRINTF_LONG_DOUBLE
2646 tmp_length = (type == TYPE_LONGDOUBLE ? LDBL_DIG + 1 : 0);
2647 # elif NEED_PRINTF_LONG_DOUBLE
2648 tmp_length = LDBL_DIG + 1;
2649 # elif NEED_PRINTF_DOUBLE
2650 tmp_length = DBL_DIG + 1;
2651 # else
2652 tmp_length = 0;
2653 # endif
2654 if (tmp_length < precision)
2655 tmp_length = precision;
2656 # if NEED_PRINTF_LONG_DOUBLE
2657 # if NEED_PRINTF_DOUBLE || NEED_PRINTF_INFINITE_DOUBLE
2658 if (type == TYPE_LONGDOUBLE)
2659 # endif
2660 if (dp->conversion == 'f' || dp->conversion == 'F')
2662 long double arg = a.arg[dp->arg_index].a.a_longdouble;
2663 if (!(isnanl (arg) || arg + arg == arg))
2665 /* arg is finite and nonzero. */
2666 int exponent = floorlog10l (arg < 0 ? -arg : arg);
2667 if (exponent >= 0 && tmp_length < exponent + precision)
2668 tmp_length = exponent + precision;
2671 # endif
2672 # if NEED_PRINTF_DOUBLE
2673 # if NEED_PRINTF_LONG_DOUBLE || NEED_PRINTF_INFINITE_LONG_DOUBLE
2674 if (type == TYPE_DOUBLE)
2675 # endif
2676 if (dp->conversion == 'f' || dp->conversion == 'F')
2678 double arg = a.arg[dp->arg_index].a.a_double;
2679 if (!(isnan (arg) || arg + arg == arg))
2681 /* arg is finite and nonzero. */
2682 int exponent = floorlog10 (arg < 0 ? -arg : arg);
2683 if (exponent >= 0 && tmp_length < exponent + precision)
2684 tmp_length = exponent + precision;
2687 # endif
2688 /* Account for sign, decimal point etc. */
2689 tmp_length = xsum (tmp_length, 12);
2691 if (tmp_length < width)
2692 tmp_length = width;
2694 tmp_length = xsum (tmp_length, 1); /* account for trailing NUL */
2696 if (tmp_length <= sizeof (tmpbuf) / sizeof (DCHAR_T))
2697 tmp = tmpbuf;
2698 else
2700 size_t tmp_memsize = xtimes (tmp_length, sizeof (DCHAR_T));
2702 if (size_overflow_p (tmp_memsize))
2703 /* Overflow, would lead to out of memory. */
2704 goto out_of_memory;
2705 tmp = (DCHAR_T *) malloc (tmp_memsize);
2706 if (tmp == NULL)
2707 /* Out of memory. */
2708 goto out_of_memory;
2711 pad_ptr = NULL;
2712 p = tmp;
2714 # if NEED_PRINTF_LONG_DOUBLE || NEED_PRINTF_INFINITE_LONG_DOUBLE
2715 # if NEED_PRINTF_DOUBLE || NEED_PRINTF_INFINITE_DOUBLE
2716 if (type == TYPE_LONGDOUBLE)
2717 # endif
2719 long double arg = a.arg[dp->arg_index].a.a_longdouble;
2721 if (isnanl (arg))
2723 if (dp->conversion >= 'A' && dp->conversion <= 'Z')
2725 *p++ = 'N'; *p++ = 'A'; *p++ = 'N';
2727 else
2729 *p++ = 'n'; *p++ = 'a'; *p++ = 'n';
2732 else
2734 int sign = 0;
2735 DECL_LONG_DOUBLE_ROUNDING
2737 BEGIN_LONG_DOUBLE_ROUNDING ();
2739 if (signbit (arg)) /* arg < 0.0L or negative zero */
2741 sign = -1;
2742 arg = -arg;
2745 if (sign < 0)
2746 *p++ = '-';
2747 else if (flags & FLAG_SHOWSIGN)
2748 *p++ = '+';
2749 else if (flags & FLAG_SPACE)
2750 *p++ = ' ';
2752 if (arg > 0.0L && arg + arg == arg)
2754 if (dp->conversion >= 'A' && dp->conversion <= 'Z')
2756 *p++ = 'I'; *p++ = 'N'; *p++ = 'F';
2758 else
2760 *p++ = 'i'; *p++ = 'n'; *p++ = 'f';
2763 else
2765 # if NEED_PRINTF_LONG_DOUBLE
2766 pad_ptr = p;
2768 if (dp->conversion == 'f' || dp->conversion == 'F')
2770 char *digits;
2771 size_t ndigits;
2773 digits =
2774 scale10_round_decimal_long_double (arg, precision);
2775 if (digits == NULL)
2777 END_LONG_DOUBLE_ROUNDING ();
2778 goto out_of_memory;
2780 ndigits = strlen (digits);
2782 if (ndigits > precision)
2785 --ndigits;
2786 *p++ = digits[ndigits];
2788 while (ndigits > precision);
2789 else
2790 *p++ = '0';
2791 /* Here ndigits <= precision. */
2792 if ((flags & FLAG_ALT) || precision > 0)
2794 *p++ = decimal_point_char ();
2795 for (; precision > ndigits; precision--)
2796 *p++ = '0';
2797 while (ndigits > 0)
2799 --ndigits;
2800 *p++ = digits[ndigits];
2804 free (digits);
2806 else if (dp->conversion == 'e' || dp->conversion == 'E')
2808 int exponent;
2810 if (arg == 0.0L)
2812 exponent = 0;
2813 *p++ = '0';
2814 if ((flags & FLAG_ALT) || precision > 0)
2816 *p++ = decimal_point_char ();
2817 for (; precision > 0; precision--)
2818 *p++ = '0';
2821 else
2823 /* arg > 0.0L. */
2824 int adjusted;
2825 char *digits;
2826 size_t ndigits;
2828 exponent = floorlog10l (arg);
2829 adjusted = 0;
2830 for (;;)
2832 digits =
2833 scale10_round_decimal_long_double (arg,
2834 (int)precision - exponent);
2835 if (digits == NULL)
2837 END_LONG_DOUBLE_ROUNDING ();
2838 goto out_of_memory;
2840 ndigits = strlen (digits);
2842 if (ndigits == precision + 1)
2843 break;
2844 if (ndigits < precision
2845 || ndigits > precision + 2)
2846 /* The exponent was not guessed
2847 precisely enough. */
2848 abort ();
2849 if (adjusted)
2850 /* None of two values of exponent is
2851 the right one. Prevent an endless
2852 loop. */
2853 abort ();
2854 free (digits);
2855 if (ndigits == precision)
2856 exponent -= 1;
2857 else
2858 exponent += 1;
2859 adjusted = 1;
2862 /* Here ndigits = precision+1. */
2863 *p++ = digits[--ndigits];
2864 if ((flags & FLAG_ALT) || precision > 0)
2866 *p++ = decimal_point_char ();
2867 while (ndigits > 0)
2869 --ndigits;
2870 *p++ = digits[ndigits];
2874 free (digits);
2877 *p++ = dp->conversion; /* 'e' or 'E' */
2878 # if WIDE_CHAR_VERSION
2880 static const wchar_t decimal_format[] =
2881 { '%', '+', '.', '2', 'd', '\0' };
2882 SNPRINTF (p, 6 + 1, decimal_format, exponent);
2884 while (*p != '\0')
2885 p++;
2886 # else
2887 if (sizeof (DCHAR_T) == 1)
2889 sprintf ((char *) p, "%+.2d", exponent);
2890 while (*p != '\0')
2891 p++;
2893 else
2895 char expbuf[6 + 1];
2896 const char *ep;
2897 sprintf (expbuf, "%+.2d", exponent);
2898 for (ep = expbuf; (*p = *ep) != '\0'; ep++)
2899 p++;
2901 # endif
2903 else if (dp->conversion == 'g' || dp->conversion == 'G')
2905 if (precision == 0)
2906 precision = 1;
2907 /* precision >= 1. */
2909 if (arg == 0.0L)
2910 /* The exponent is 0, >= -4, < precision.
2911 Use fixed-point notation. */
2913 size_t ndigits = precision;
2914 /* Number of trailing zeroes that have to be
2915 dropped. */
2916 size_t nzeroes =
2917 (flags & FLAG_ALT ? 0 : precision - 1);
2919 --ndigits;
2920 *p++ = '0';
2921 if ((flags & FLAG_ALT) || ndigits > nzeroes)
2923 *p++ = decimal_point_char ();
2924 while (ndigits > nzeroes)
2926 --ndigits;
2927 *p++ = '0';
2931 else
2933 /* arg > 0.0L. */
2934 int exponent;
2935 int adjusted;
2936 char *digits;
2937 size_t ndigits;
2938 size_t nzeroes;
2940 exponent = floorlog10l (arg);
2941 adjusted = 0;
2942 for (;;)
2944 digits =
2945 scale10_round_decimal_long_double (arg,
2946 (int)(precision - 1) - exponent);
2947 if (digits == NULL)
2949 END_LONG_DOUBLE_ROUNDING ();
2950 goto out_of_memory;
2952 ndigits = strlen (digits);
2954 if (ndigits == precision)
2955 break;
2956 if (ndigits < precision - 1
2957 || ndigits > precision + 1)
2958 /* The exponent was not guessed
2959 precisely enough. */
2960 abort ();
2961 if (adjusted)
2962 /* None of two values of exponent is
2963 the right one. Prevent an endless
2964 loop. */
2965 abort ();
2966 free (digits);
2967 if (ndigits < precision)
2968 exponent -= 1;
2969 else
2970 exponent += 1;
2971 adjusted = 1;
2973 /* Here ndigits = precision. */
2975 /* Determine the number of trailing zeroes
2976 that have to be dropped. */
2977 nzeroes = 0;
2978 if ((flags & FLAG_ALT) == 0)
2979 while (nzeroes < ndigits
2980 && digits[nzeroes] == '0')
2981 nzeroes++;
2983 /* The exponent is now determined. */
2984 if (exponent >= -4
2985 && exponent < (long)precision)
2987 /* Fixed-point notation:
2988 max(exponent,0)+1 digits, then the
2989 decimal point, then the remaining
2990 digits without trailing zeroes. */
2991 if (exponent >= 0)
2993 size_t count = exponent + 1;
2994 /* Note: count <= precision = ndigits. */
2995 for (; count > 0; count--)
2996 *p++ = digits[--ndigits];
2997 if ((flags & FLAG_ALT) || ndigits > nzeroes)
2999 *p++ = decimal_point_char ();
3000 while (ndigits > nzeroes)
3002 --ndigits;
3003 *p++ = digits[ndigits];
3007 else
3009 size_t count = -exponent - 1;
3010 *p++ = '0';
3011 *p++ = decimal_point_char ();
3012 for (; count > 0; count--)
3013 *p++ = '0';
3014 while (ndigits > nzeroes)
3016 --ndigits;
3017 *p++ = digits[ndigits];
3021 else
3023 /* Exponential notation. */
3024 *p++ = digits[--ndigits];
3025 if ((flags & FLAG_ALT) || ndigits > nzeroes)
3027 *p++ = decimal_point_char ();
3028 while (ndigits > nzeroes)
3030 --ndigits;
3031 *p++ = digits[ndigits];
3034 *p++ = dp->conversion - 'G' + 'E'; /* 'e' or 'E' */
3035 # if WIDE_CHAR_VERSION
3037 static const wchar_t decimal_format[] =
3038 { '%', '+', '.', '2', 'd', '\0' };
3039 SNPRINTF (p, 6 + 1, decimal_format, exponent);
3041 while (*p != '\0')
3042 p++;
3043 # else
3044 if (sizeof (DCHAR_T) == 1)
3046 sprintf ((char *) p, "%+.2d", exponent);
3047 while (*p != '\0')
3048 p++;
3050 else
3052 char expbuf[6 + 1];
3053 const char *ep;
3054 sprintf (expbuf, "%+.2d", exponent);
3055 for (ep = expbuf; (*p = *ep) != '\0'; ep++)
3056 p++;
3058 # endif
3061 free (digits);
3064 else
3065 abort ();
3066 # else
3067 /* arg is finite. */
3068 abort ();
3069 # endif
3072 END_LONG_DOUBLE_ROUNDING ();
3075 # if NEED_PRINTF_DOUBLE || NEED_PRINTF_INFINITE_DOUBLE
3076 else
3077 # endif
3078 # endif
3079 # if NEED_PRINTF_DOUBLE || NEED_PRINTF_INFINITE_DOUBLE
3081 double arg = a.arg[dp->arg_index].a.a_double;
3083 if (isnan (arg))
3085 if (dp->conversion >= 'A' && dp->conversion <= 'Z')
3087 *p++ = 'N'; *p++ = 'A'; *p++ = 'N';
3089 else
3091 *p++ = 'n'; *p++ = 'a'; *p++ = 'n';
3094 else
3096 int sign = 0;
3098 if (signbit (arg)) /* arg < 0.0 or negative zero */
3100 sign = -1;
3101 arg = -arg;
3104 if (sign < 0)
3105 *p++ = '-';
3106 else if (flags & FLAG_SHOWSIGN)
3107 *p++ = '+';
3108 else if (flags & FLAG_SPACE)
3109 *p++ = ' ';
3111 if (arg > 0.0 && arg + arg == arg)
3113 if (dp->conversion >= 'A' && dp->conversion <= 'Z')
3115 *p++ = 'I'; *p++ = 'N'; *p++ = 'F';
3117 else
3119 *p++ = 'i'; *p++ = 'n'; *p++ = 'f';
3122 else
3124 # if NEED_PRINTF_DOUBLE
3125 pad_ptr = p;
3127 if (dp->conversion == 'f' || dp->conversion == 'F')
3129 char *digits;
3130 size_t ndigits;
3132 digits =
3133 scale10_round_decimal_double (arg, precision);
3134 if (digits == NULL)
3135 goto out_of_memory;
3136 ndigits = strlen (digits);
3138 if (ndigits > precision)
3141 --ndigits;
3142 *p++ = digits[ndigits];
3144 while (ndigits > precision);
3145 else
3146 *p++ = '0';
3147 /* Here ndigits <= precision. */
3148 if ((flags & FLAG_ALT) || precision > 0)
3150 *p++ = decimal_point_char ();
3151 for (; precision > ndigits; precision--)
3152 *p++ = '0';
3153 while (ndigits > 0)
3155 --ndigits;
3156 *p++ = digits[ndigits];
3160 free (digits);
3162 else if (dp->conversion == 'e' || dp->conversion == 'E')
3164 int exponent;
3166 if (arg == 0.0)
3168 exponent = 0;
3169 *p++ = '0';
3170 if ((flags & FLAG_ALT) || precision > 0)
3172 *p++ = decimal_point_char ();
3173 for (; precision > 0; precision--)
3174 *p++ = '0';
3177 else
3179 /* arg > 0.0. */
3180 int adjusted;
3181 char *digits;
3182 size_t ndigits;
3184 exponent = floorlog10 (arg);
3185 adjusted = 0;
3186 for (;;)
3188 digits =
3189 scale10_round_decimal_double (arg,
3190 (int)precision - exponent);
3191 if (digits == NULL)
3192 goto out_of_memory;
3193 ndigits = strlen (digits);
3195 if (ndigits == precision + 1)
3196 break;
3197 if (ndigits < precision
3198 || ndigits > precision + 2)
3199 /* The exponent was not guessed
3200 precisely enough. */
3201 abort ();
3202 if (adjusted)
3203 /* None of two values of exponent is
3204 the right one. Prevent an endless
3205 loop. */
3206 abort ();
3207 free (digits);
3208 if (ndigits == precision)
3209 exponent -= 1;
3210 else
3211 exponent += 1;
3212 adjusted = 1;
3215 /* Here ndigits = precision+1. */
3216 *p++ = digits[--ndigits];
3217 if ((flags & FLAG_ALT) || precision > 0)
3219 *p++ = decimal_point_char ();
3220 while (ndigits > 0)
3222 --ndigits;
3223 *p++ = digits[ndigits];
3227 free (digits);
3230 *p++ = dp->conversion; /* 'e' or 'E' */
3231 # if WIDE_CHAR_VERSION
3233 static const wchar_t decimal_format[] =
3234 /* Produce the same number of exponent digits
3235 as the native printf implementation. */
3236 # if (defined _WIN32 || defined __WIN32__) && ! defined __CYGWIN__
3237 { '%', '+', '.', '3', 'd', '\0' };
3238 # else
3239 { '%', '+', '.', '2', 'd', '\0' };
3240 # endif
3241 SNPRINTF (p, 6 + 1, decimal_format, exponent);
3243 while (*p != '\0')
3244 p++;
3245 # else
3247 static const char decimal_format[] =
3248 /* Produce the same number of exponent digits
3249 as the native printf implementation. */
3250 # if (defined _WIN32 || defined __WIN32__) && ! defined __CYGWIN__
3251 "%+.3d";
3252 # else
3253 "%+.2d";
3254 # endif
3255 if (sizeof (DCHAR_T) == 1)
3257 sprintf ((char *) p, decimal_format, exponent);
3258 while (*p != '\0')
3259 p++;
3261 else
3263 char expbuf[6 + 1];
3264 const char *ep;
3265 sprintf (expbuf, decimal_format, exponent);
3266 for (ep = expbuf; (*p = *ep) != '\0'; ep++)
3267 p++;
3270 # endif
3272 else if (dp->conversion == 'g' || dp->conversion == 'G')
3274 if (precision == 0)
3275 precision = 1;
3276 /* precision >= 1. */
3278 if (arg == 0.0)
3279 /* The exponent is 0, >= -4, < precision.
3280 Use fixed-point notation. */
3282 size_t ndigits = precision;
3283 /* Number of trailing zeroes that have to be
3284 dropped. */
3285 size_t nzeroes =
3286 (flags & FLAG_ALT ? 0 : precision - 1);
3288 --ndigits;
3289 *p++ = '0';
3290 if ((flags & FLAG_ALT) || ndigits > nzeroes)
3292 *p++ = decimal_point_char ();
3293 while (ndigits > nzeroes)
3295 --ndigits;
3296 *p++ = '0';
3300 else
3302 /* arg > 0.0. */
3303 int exponent;
3304 int adjusted;
3305 char *digits;
3306 size_t ndigits;
3307 size_t nzeroes;
3309 exponent = floorlog10 (arg);
3310 adjusted = 0;
3311 for (;;)
3313 digits =
3314 scale10_round_decimal_double (arg,
3315 (int)(precision - 1) - exponent);
3316 if (digits == NULL)
3317 goto out_of_memory;
3318 ndigits = strlen (digits);
3320 if (ndigits == precision)
3321 break;
3322 if (ndigits < precision - 1
3323 || ndigits > precision + 1)
3324 /* The exponent was not guessed
3325 precisely enough. */
3326 abort ();
3327 if (adjusted)
3328 /* None of two values of exponent is
3329 the right one. Prevent an endless
3330 loop. */
3331 abort ();
3332 free (digits);
3333 if (ndigits < precision)
3334 exponent -= 1;
3335 else
3336 exponent += 1;
3337 adjusted = 1;
3339 /* Here ndigits = precision. */
3341 /* Determine the number of trailing zeroes
3342 that have to be dropped. */
3343 nzeroes = 0;
3344 if ((flags & FLAG_ALT) == 0)
3345 while (nzeroes < ndigits
3346 && digits[nzeroes] == '0')
3347 nzeroes++;
3349 /* The exponent is now determined. */
3350 if (exponent >= -4
3351 && exponent < (long)precision)
3353 /* Fixed-point notation:
3354 max(exponent,0)+1 digits, then the
3355 decimal point, then the remaining
3356 digits without trailing zeroes. */
3357 if (exponent >= 0)
3359 size_t count = exponent + 1;
3360 /* Note: count <= precision = ndigits. */
3361 for (; count > 0; count--)
3362 *p++ = digits[--ndigits];
3363 if ((flags & FLAG_ALT) || ndigits > nzeroes)
3365 *p++ = decimal_point_char ();
3366 while (ndigits > nzeroes)
3368 --ndigits;
3369 *p++ = digits[ndigits];
3373 else
3375 size_t count = -exponent - 1;
3376 *p++ = '0';
3377 *p++ = decimal_point_char ();
3378 for (; count > 0; count--)
3379 *p++ = '0';
3380 while (ndigits > nzeroes)
3382 --ndigits;
3383 *p++ = digits[ndigits];
3387 else
3389 /* Exponential notation. */
3390 *p++ = digits[--ndigits];
3391 if ((flags & FLAG_ALT) || ndigits > nzeroes)
3393 *p++ = decimal_point_char ();
3394 while (ndigits > nzeroes)
3396 --ndigits;
3397 *p++ = digits[ndigits];
3400 *p++ = dp->conversion - 'G' + 'E'; /* 'e' or 'E' */
3401 # if WIDE_CHAR_VERSION
3403 static const wchar_t decimal_format[] =
3404 /* Produce the same number of exponent digits
3405 as the native printf implementation. */
3406 # if (defined _WIN32 || defined __WIN32__) && ! defined __CYGWIN__
3407 { '%', '+', '.', '3', 'd', '\0' };
3408 # else
3409 { '%', '+', '.', '2', 'd', '\0' };
3410 # endif
3411 SNPRINTF (p, 6 + 1, decimal_format, exponent);
3413 while (*p != '\0')
3414 p++;
3415 # else
3417 static const char decimal_format[] =
3418 /* Produce the same number of exponent digits
3419 as the native printf implementation. */
3420 # if (defined _WIN32 || defined __WIN32__) && ! defined __CYGWIN__
3421 "%+.3d";
3422 # else
3423 "%+.2d";
3424 # endif
3425 if (sizeof (DCHAR_T) == 1)
3427 sprintf ((char *) p, decimal_format, exponent);
3428 while (*p != '\0')
3429 p++;
3431 else
3433 char expbuf[6 + 1];
3434 const char *ep;
3435 sprintf (expbuf, decimal_format, exponent);
3436 for (ep = expbuf; (*p = *ep) != '\0'; ep++)
3437 p++;
3440 # endif
3443 free (digits);
3446 else
3447 abort ();
3448 # else
3449 /* arg is finite. */
3450 if (!(arg == 0.0))
3451 abort ();
3453 pad_ptr = p;
3455 if (dp->conversion == 'f' || dp->conversion == 'F')
3457 *p++ = '0';
3458 if ((flags & FLAG_ALT) || precision > 0)
3460 *p++ = decimal_point_char ();
3461 for (; precision > 0; precision--)
3462 *p++ = '0';
3465 else if (dp->conversion == 'e' || dp->conversion == 'E')
3467 *p++ = '0';
3468 if ((flags & FLAG_ALT) || precision > 0)
3470 *p++ = decimal_point_char ();
3471 for (; precision > 0; precision--)
3472 *p++ = '0';
3474 *p++ = dp->conversion; /* 'e' or 'E' */
3475 *p++ = '+';
3476 /* Produce the same number of exponent digits as
3477 the native printf implementation. */
3478 # if (defined _WIN32 || defined __WIN32__) && ! defined __CYGWIN__
3479 *p++ = '0';
3480 # endif
3481 *p++ = '0';
3482 *p++ = '0';
3484 else if (dp->conversion == 'g' || dp->conversion == 'G')
3486 *p++ = '0';
3487 if (flags & FLAG_ALT)
3489 size_t ndigits =
3490 (precision > 0 ? precision - 1 : 0);
3491 *p++ = decimal_point_char ();
3492 for (; ndigits > 0; --ndigits)
3493 *p++ = '0';
3496 else
3497 abort ();
3498 # endif
3502 # endif
3504 /* The generated string now extends from tmp to p, with the
3505 zero padding insertion point being at pad_ptr. */
3506 if (has_width && p - tmp < width)
3508 size_t pad = width - (p - tmp);
3509 DCHAR_T *end = p + pad;
3511 if (flags & FLAG_LEFT)
3513 /* Pad with spaces on the right. */
3514 for (; pad > 0; pad--)
3515 *p++ = ' ';
3517 else if ((flags & FLAG_ZERO) && pad_ptr != NULL)
3519 /* Pad with zeroes. */
3520 DCHAR_T *q = end;
3522 while (p > pad_ptr)
3523 *--q = *--p;
3524 for (; pad > 0; pad--)
3525 *p++ = '0';
3527 else
3529 /* Pad with spaces on the left. */
3530 DCHAR_T *q = end;
3532 while (p > tmp)
3533 *--q = *--p;
3534 for (; pad > 0; pad--)
3535 *p++ = ' ';
3538 p = end;
3542 size_t count = p - tmp;
3544 if (count >= tmp_length)
3545 /* tmp_length was incorrectly calculated - fix the
3546 code above! */
3547 abort ();
3549 /* Make room for the result. */
3550 if (count >= allocated - length)
3552 size_t n = xsum (length, count);
3554 ENSURE_ALLOCATION (n);
3557 /* Append the result. */
3558 memcpy (result + length, tmp, count * sizeof (DCHAR_T));
3559 if (tmp != tmpbuf)
3560 free (tmp);
3561 length += count;
3564 #endif
3565 else
3567 arg_type type = a.arg[dp->arg_index].type;
3568 int flags = dp->flags;
3569 #if !USE_SNPRINTF || !DCHAR_IS_TCHAR || ENABLE_UNISTDIO || NEED_PRINTF_FLAG_ZERO || NEED_PRINTF_UNBOUNDED_PRECISION
3570 int has_width;
3571 size_t width;
3572 #endif
3573 #if !USE_SNPRINTF || NEED_PRINTF_UNBOUNDED_PRECISION
3574 int has_precision;
3575 size_t precision;
3576 #endif
3577 #if NEED_PRINTF_UNBOUNDED_PRECISION
3578 int prec_ourselves;
3579 #else
3580 # define prec_ourselves 0
3581 #endif
3582 #if !DCHAR_IS_TCHAR || ENABLE_UNISTDIO || NEED_PRINTF_FLAG_ZERO || NEED_PRINTF_UNBOUNDED_PRECISION
3583 int pad_ourselves;
3584 #else
3585 # define pad_ourselves 0
3586 #endif
3587 TCHAR_T *fbp;
3588 unsigned int prefix_count;
3589 int prefixes[2];
3590 #if !USE_SNPRINTF
3591 size_t tmp_length;
3592 TCHAR_T tmpbuf[700];
3593 TCHAR_T *tmp;
3594 #endif
3596 #if !USE_SNPRINTF || !DCHAR_IS_TCHAR || ENABLE_UNISTDIO || NEED_PRINTF_FLAG_ZERO || NEED_PRINTF_UNBOUNDED_PRECISION
3597 has_width = 0;
3598 width = 0;
3599 if (dp->width_start != dp->width_end)
3601 if (dp->width_arg_index != ARG_NONE)
3603 int arg;
3605 if (!(a.arg[dp->width_arg_index].type == TYPE_INT))
3606 abort ();
3607 arg = a.arg[dp->width_arg_index].a.a_int;
3608 if (arg < 0)
3610 /* "A negative field width is taken as a '-' flag
3611 followed by a positive field width." */
3612 flags |= FLAG_LEFT;
3613 width = (unsigned int) (-arg);
3615 else
3616 width = arg;
3618 else
3620 const FCHAR_T *digitp = dp->width_start;
3623 width = xsum (xtimes (width, 10), *digitp++ - '0');
3624 while (digitp != dp->width_end);
3626 has_width = 1;
3628 #endif
3630 #if !USE_SNPRINTF || NEED_PRINTF_UNBOUNDED_PRECISION
3631 has_precision = 0;
3632 precision = 6;
3633 if (dp->precision_start != dp->precision_end)
3635 if (dp->precision_arg_index != ARG_NONE)
3637 int arg;
3639 if (!(a.arg[dp->precision_arg_index].type == TYPE_INT))
3640 abort ();
3641 arg = a.arg[dp->precision_arg_index].a.a_int;
3642 /* "A negative precision is taken as if the precision
3643 were omitted." */
3644 if (arg >= 0)
3646 precision = arg;
3647 has_precision = 1;
3650 else
3652 const FCHAR_T *digitp = dp->precision_start + 1;
3654 precision = 0;
3655 while (digitp != dp->precision_end)
3656 precision = xsum (xtimes (precision, 10), *digitp++ - '0');
3657 has_precision = 1;
3660 #endif
3662 #if !USE_SNPRINTF
3663 /* Allocate a temporary buffer of sufficient size for calling
3664 sprintf. */
3666 switch (dp->conversion)
3669 case 'd': case 'i': case 'u':
3670 # if HAVE_LONG_LONG_INT
3671 if (type == TYPE_LONGLONGINT || type == TYPE_ULONGLONGINT)
3672 tmp_length =
3673 (unsigned int) (sizeof (unsigned long long) * CHAR_BIT
3674 * 0.30103 /* binary -> decimal */
3676 + 1; /* turn floor into ceil */
3677 else
3678 # endif
3679 if (type == TYPE_LONGINT || type == TYPE_ULONGINT)
3680 tmp_length =
3681 (unsigned int) (sizeof (unsigned long) * CHAR_BIT
3682 * 0.30103 /* binary -> decimal */
3684 + 1; /* turn floor into ceil */
3685 else
3686 tmp_length =
3687 (unsigned int) (sizeof (unsigned int) * CHAR_BIT
3688 * 0.30103 /* binary -> decimal */
3690 + 1; /* turn floor into ceil */
3691 if (tmp_length < precision)
3692 tmp_length = precision;
3693 /* Multiply by 2, as an estimate for FLAG_GROUP. */
3694 tmp_length = xsum (tmp_length, tmp_length);
3695 /* Add 1, to account for a leading sign. */
3696 tmp_length = xsum (tmp_length, 1);
3697 break;
3699 case 'o':
3700 # if HAVE_LONG_LONG_INT
3701 if (type == TYPE_LONGLONGINT || type == TYPE_ULONGLONGINT)
3702 tmp_length =
3703 (unsigned int) (sizeof (unsigned long long) * CHAR_BIT
3704 * 0.333334 /* binary -> octal */
3706 + 1; /* turn floor into ceil */
3707 else
3708 # endif
3709 if (type == TYPE_LONGINT || type == TYPE_ULONGINT)
3710 tmp_length =
3711 (unsigned int) (sizeof (unsigned long) * CHAR_BIT
3712 * 0.333334 /* binary -> octal */
3714 + 1; /* turn floor into ceil */
3715 else
3716 tmp_length =
3717 (unsigned int) (sizeof (unsigned int) * CHAR_BIT
3718 * 0.333334 /* binary -> octal */
3720 + 1; /* turn floor into ceil */
3721 if (tmp_length < precision)
3722 tmp_length = precision;
3723 /* Add 1, to account for a leading sign. */
3724 tmp_length = xsum (tmp_length, 1);
3725 break;
3727 case 'x': case 'X':
3728 # if HAVE_LONG_LONG_INT
3729 if (type == TYPE_LONGLONGINT || type == TYPE_ULONGLONGINT)
3730 tmp_length =
3731 (unsigned int) (sizeof (unsigned long long) * CHAR_BIT
3732 * 0.25 /* binary -> hexadecimal */
3734 + 1; /* turn floor into ceil */
3735 else
3736 # endif
3737 if (type == TYPE_LONGINT || type == TYPE_ULONGINT)
3738 tmp_length =
3739 (unsigned int) (sizeof (unsigned long) * CHAR_BIT
3740 * 0.25 /* binary -> hexadecimal */
3742 + 1; /* turn floor into ceil */
3743 else
3744 tmp_length =
3745 (unsigned int) (sizeof (unsigned int) * CHAR_BIT
3746 * 0.25 /* binary -> hexadecimal */
3748 + 1; /* turn floor into ceil */
3749 if (tmp_length < precision)
3750 tmp_length = precision;
3751 /* Add 2, to account for a leading sign or alternate form. */
3752 tmp_length = xsum (tmp_length, 2);
3753 break;
3755 case 'f': case 'F':
3756 if (type == TYPE_LONGDOUBLE)
3757 tmp_length =
3758 (unsigned int) (LDBL_MAX_EXP
3759 * 0.30103 /* binary -> decimal */
3760 * 2 /* estimate for FLAG_GROUP */
3762 + 1 /* turn floor into ceil */
3763 + 10; /* sign, decimal point etc. */
3764 else
3765 tmp_length =
3766 (unsigned int) (DBL_MAX_EXP
3767 * 0.30103 /* binary -> decimal */
3768 * 2 /* estimate for FLAG_GROUP */
3770 + 1 /* turn floor into ceil */
3771 + 10; /* sign, decimal point etc. */
3772 tmp_length = xsum (tmp_length, precision);
3773 break;
3775 case 'e': case 'E': case 'g': case 'G':
3776 tmp_length =
3777 12; /* sign, decimal point, exponent etc. */
3778 tmp_length = xsum (tmp_length, precision);
3779 break;
3781 case 'a': case 'A':
3782 if (type == TYPE_LONGDOUBLE)
3783 tmp_length =
3784 (unsigned int) (LDBL_DIG
3785 * 0.831 /* decimal -> hexadecimal */
3787 + 1; /* turn floor into ceil */
3788 else
3789 tmp_length =
3790 (unsigned int) (DBL_DIG
3791 * 0.831 /* decimal -> hexadecimal */
3793 + 1; /* turn floor into ceil */
3794 if (tmp_length < precision)
3795 tmp_length = precision;
3796 /* Account for sign, decimal point etc. */
3797 tmp_length = xsum (tmp_length, 12);
3798 break;
3800 case 'c':
3801 # if HAVE_WINT_T && !WIDE_CHAR_VERSION
3802 if (type == TYPE_WIDE_CHAR)
3803 tmp_length = MB_CUR_MAX;
3804 else
3805 # endif
3806 tmp_length = 1;
3807 break;
3809 case 's':
3810 # if HAVE_WCHAR_T
3811 if (type == TYPE_WIDE_STRING)
3813 tmp_length =
3814 local_wcslen (a.arg[dp->arg_index].a.a_wide_string);
3816 # if !WIDE_CHAR_VERSION
3817 tmp_length = xtimes (tmp_length, MB_CUR_MAX);
3818 # endif
3820 else
3821 # endif
3822 tmp_length = strlen (a.arg[dp->arg_index].a.a_string);
3823 break;
3825 case 'p':
3826 tmp_length =
3827 (unsigned int) (sizeof (void *) * CHAR_BIT
3828 * 0.25 /* binary -> hexadecimal */
3830 + 1 /* turn floor into ceil */
3831 + 2; /* account for leading 0x */
3832 break;
3834 default:
3835 abort ();
3838 # if ENABLE_UNISTDIO
3839 /* Padding considers the number of characters, therefore the
3840 number of elements after padding may be
3841 > max (tmp_length, width)
3842 but is certainly
3843 <= tmp_length + width. */
3844 tmp_length = xsum (tmp_length, width);
3845 # else
3846 /* Padding considers the number of elements, says POSIX. */
3847 if (tmp_length < width)
3848 tmp_length = width;
3849 # endif
3851 tmp_length = xsum (tmp_length, 1); /* account for trailing NUL */
3854 if (tmp_length <= sizeof (tmpbuf) / sizeof (TCHAR_T))
3855 tmp = tmpbuf;
3856 else
3858 size_t tmp_memsize = xtimes (tmp_length, sizeof (TCHAR_T));
3860 if (size_overflow_p (tmp_memsize))
3861 /* Overflow, would lead to out of memory. */
3862 goto out_of_memory;
3863 tmp = (TCHAR_T *) malloc (tmp_memsize);
3864 if (tmp == NULL)
3865 /* Out of memory. */
3866 goto out_of_memory;
3868 #endif
3870 /* Decide whether to handle the precision ourselves. */
3871 #if NEED_PRINTF_UNBOUNDED_PRECISION
3872 switch (dp->conversion)
3874 case 'd': case 'i': case 'u':
3875 case 'o':
3876 case 'x': case 'X': case 'p':
3877 prec_ourselves = has_precision && (precision > 0);
3878 break;
3879 default:
3880 prec_ourselves = 0;
3881 break;
3883 #endif
3885 /* Decide whether to perform the padding ourselves. */
3886 #if !DCHAR_IS_TCHAR || ENABLE_UNISTDIO || NEED_PRINTF_FLAG_ZERO || NEED_PRINTF_UNBOUNDED_PRECISION
3887 switch (dp->conversion)
3889 # if !DCHAR_IS_TCHAR || ENABLE_UNISTDIO
3890 /* If we need conversion from TCHAR_T[] to DCHAR_T[], we need
3891 to perform the padding after this conversion. Functions
3892 with unistdio extensions perform the padding based on
3893 character count rather than element count. */
3894 case 'c': case 's':
3895 # endif
3896 # if NEED_PRINTF_FLAG_ZERO
3897 case 'f': case 'F': case 'e': case 'E': case 'g': case 'G':
3898 case 'a': case 'A':
3899 # endif
3900 pad_ourselves = 1;
3901 break;
3902 default:
3903 pad_ourselves = prec_ourselves;
3904 break;
3906 #endif
3908 /* Construct the format string for calling snprintf or
3909 sprintf. */
3910 fbp = buf;
3911 *fbp++ = '%';
3912 #if NEED_PRINTF_FLAG_GROUPING
3913 /* The underlying implementation doesn't support the ' flag.
3914 Produce no grouping characters in this case; this is
3915 acceptable because the grouping is locale dependent. */
3916 #else
3917 if (flags & FLAG_GROUP)
3918 *fbp++ = '\'';
3919 #endif
3920 if (flags & FLAG_LEFT)
3921 *fbp++ = '-';
3922 if (flags & FLAG_SHOWSIGN)
3923 *fbp++ = '+';
3924 if (flags & FLAG_SPACE)
3925 *fbp++ = ' ';
3926 if (flags & FLAG_ALT)
3927 *fbp++ = '#';
3928 if (!pad_ourselves)
3930 if (flags & FLAG_ZERO)
3931 *fbp++ = '0';
3932 if (dp->width_start != dp->width_end)
3934 size_t n = dp->width_end - dp->width_start;
3935 /* The width specification is known to consist only
3936 of standard ASCII characters. */
3937 if (sizeof (FCHAR_T) == sizeof (TCHAR_T))
3939 memcpy (fbp, dp->width_start, n * sizeof (TCHAR_T));
3940 fbp += n;
3942 else
3944 const FCHAR_T *mp = dp->width_start;
3946 *fbp++ = (unsigned char) *mp++;
3947 while (--n > 0);
3951 if (!prec_ourselves)
3953 if (dp->precision_start != dp->precision_end)
3955 size_t n = dp->precision_end - dp->precision_start;
3956 /* The precision specification is known to consist only
3957 of standard ASCII characters. */
3958 if (sizeof (FCHAR_T) == sizeof (TCHAR_T))
3960 memcpy (fbp, dp->precision_start, n * sizeof (TCHAR_T));
3961 fbp += n;
3963 else
3965 const FCHAR_T *mp = dp->precision_start;
3967 *fbp++ = (unsigned char) *mp++;
3968 while (--n > 0);
3973 switch (type)
3975 #if HAVE_LONG_LONG_INT
3976 case TYPE_LONGLONGINT:
3977 case TYPE_ULONGLONGINT:
3978 # if (defined _WIN32 || defined __WIN32__) && ! defined __CYGWIN__
3979 *fbp++ = 'I';
3980 *fbp++ = '6';
3981 *fbp++ = '4';
3982 break;
3983 # else
3984 *fbp++ = 'l';
3985 /*FALLTHROUGH*/
3986 # endif
3987 #endif
3988 case TYPE_LONGINT:
3989 case TYPE_ULONGINT:
3990 #if HAVE_WINT_T
3991 case TYPE_WIDE_CHAR:
3992 #endif
3993 #if HAVE_WCHAR_T
3994 case TYPE_WIDE_STRING:
3995 #endif
3996 *fbp++ = 'l';
3997 break;
3998 case TYPE_LONGDOUBLE:
3999 *fbp++ = 'L';
4000 break;
4001 default:
4002 break;
4004 #if NEED_PRINTF_DIRECTIVE_F
4005 if (dp->conversion == 'F')
4006 *fbp = 'f';
4007 else
4008 #endif
4009 *fbp = dp->conversion;
4010 #if USE_SNPRINTF
4011 # if !(__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 3))
4012 fbp[1] = '%';
4013 fbp[2] = 'n';
4014 fbp[3] = '\0';
4015 # else
4016 /* On glibc2 systems from glibc >= 2.3 - probably also older
4017 ones - we know that snprintf's returns value conforms to
4018 ISO C 99: the gl_SNPRINTF_DIRECTIVE_N test passes.
4019 Therefore we can avoid using %n in this situation.
4020 On glibc2 systems from 2004-10-18 or newer, the use of %n
4021 in format strings in writable memory may crash the program
4022 (if compiled with _FORTIFY_SOURCE=2), so we should avoid it
4023 in this situation. */
4024 fbp[1] = '\0';
4025 # endif
4026 #else
4027 fbp[1] = '\0';
4028 #endif
4030 /* Construct the arguments for calling snprintf or sprintf. */
4031 prefix_count = 0;
4032 if (!pad_ourselves && dp->width_arg_index != ARG_NONE)
4034 if (!(a.arg[dp->width_arg_index].type == TYPE_INT))
4035 abort ();
4036 prefixes[prefix_count++] = a.arg[dp->width_arg_index].a.a_int;
4038 if (dp->precision_arg_index != ARG_NONE)
4040 if (!(a.arg[dp->precision_arg_index].type == TYPE_INT))
4041 abort ();
4042 prefixes[prefix_count++] = a.arg[dp->precision_arg_index].a.a_int;
4045 #if USE_SNPRINTF
4046 /* The SNPRINTF result is appended after result[0..length].
4047 The latter is an array of DCHAR_T; SNPRINTF appends an
4048 array of TCHAR_T to it. This is possible because
4049 sizeof (TCHAR_T) divides sizeof (DCHAR_T) and
4050 alignof (TCHAR_T) <= alignof (DCHAR_T). */
4051 # define TCHARS_PER_DCHAR (sizeof (DCHAR_T) / sizeof (TCHAR_T))
4052 /* Ensure that maxlen below will be >= 2. Needed on BeOS,
4053 where an snprintf() with maxlen==1 acts like sprintf(). */
4054 ENSURE_ALLOCATION (xsum (length,
4055 (2 + TCHARS_PER_DCHAR - 1)
4056 / TCHARS_PER_DCHAR));
4057 /* Prepare checking whether snprintf returns the count
4058 via %n. */
4059 *(TCHAR_T *) (result + length) = '\0';
4060 #endif
4062 for (;;)
4064 int count = -1;
4066 #if USE_SNPRINTF
4067 int retcount = 0;
4068 size_t maxlen = allocated - length;
4069 /* SNPRINTF can fail if its second argument is
4070 > INT_MAX. */
4071 if (maxlen > INT_MAX / TCHARS_PER_DCHAR)
4072 maxlen = INT_MAX / TCHARS_PER_DCHAR;
4073 maxlen = maxlen * TCHARS_PER_DCHAR;
4074 # define SNPRINTF_BUF(arg) \
4075 switch (prefix_count) \
4077 case 0: \
4078 retcount = SNPRINTF ((TCHAR_T *) (result + length), \
4079 maxlen, buf, \
4080 arg, &count); \
4081 break; \
4082 case 1: \
4083 retcount = SNPRINTF ((TCHAR_T *) (result + length), \
4084 maxlen, buf, \
4085 prefixes[0], arg, &count); \
4086 break; \
4087 case 2: \
4088 retcount = SNPRINTF ((TCHAR_T *) (result + length), \
4089 maxlen, buf, \
4090 prefixes[0], prefixes[1], arg, \
4091 &count); \
4092 break; \
4093 default: \
4094 abort (); \
4096 #else
4097 # define SNPRINTF_BUF(arg) \
4098 switch (prefix_count) \
4100 case 0: \
4101 count = sprintf (tmp, buf, arg); \
4102 break; \
4103 case 1: \
4104 count = sprintf (tmp, buf, prefixes[0], arg); \
4105 break; \
4106 case 2: \
4107 count = sprintf (tmp, buf, prefixes[0], prefixes[1],\
4108 arg); \
4109 break; \
4110 default: \
4111 abort (); \
4113 #endif
4115 switch (type)
4117 case TYPE_SCHAR:
4119 int arg = a.arg[dp->arg_index].a.a_schar;
4120 SNPRINTF_BUF (arg);
4122 break;
4123 case TYPE_UCHAR:
4125 unsigned int arg = a.arg[dp->arg_index].a.a_uchar;
4126 SNPRINTF_BUF (arg);
4128 break;
4129 case TYPE_SHORT:
4131 int arg = a.arg[dp->arg_index].a.a_short;
4132 SNPRINTF_BUF (arg);
4134 break;
4135 case TYPE_USHORT:
4137 unsigned int arg = a.arg[dp->arg_index].a.a_ushort;
4138 SNPRINTF_BUF (arg);
4140 break;
4141 case TYPE_INT:
4143 int arg = a.arg[dp->arg_index].a.a_int;
4144 SNPRINTF_BUF (arg);
4146 break;
4147 case TYPE_UINT:
4149 unsigned int arg = a.arg[dp->arg_index].a.a_uint;
4150 SNPRINTF_BUF (arg);
4152 break;
4153 case TYPE_LONGINT:
4155 long int arg = a.arg[dp->arg_index].a.a_longint;
4156 SNPRINTF_BUF (arg);
4158 break;
4159 case TYPE_ULONGINT:
4161 unsigned long int arg = a.arg[dp->arg_index].a.a_ulongint;
4162 SNPRINTF_BUF (arg);
4164 break;
4165 #if HAVE_LONG_LONG_INT
4166 case TYPE_LONGLONGINT:
4168 long long int arg = a.arg[dp->arg_index].a.a_longlongint;
4169 SNPRINTF_BUF (arg);
4171 break;
4172 case TYPE_ULONGLONGINT:
4174 unsigned long long int arg = a.arg[dp->arg_index].a.a_ulonglongint;
4175 SNPRINTF_BUF (arg);
4177 break;
4178 #endif
4179 case TYPE_DOUBLE:
4181 double arg = a.arg[dp->arg_index].a.a_double;
4182 SNPRINTF_BUF (arg);
4184 break;
4185 case TYPE_LONGDOUBLE:
4187 long double arg = a.arg[dp->arg_index].a.a_longdouble;
4188 SNPRINTF_BUF (arg);
4190 break;
4191 case TYPE_CHAR:
4193 int arg = a.arg[dp->arg_index].a.a_char;
4194 SNPRINTF_BUF (arg);
4196 break;
4197 #if HAVE_WINT_T
4198 case TYPE_WIDE_CHAR:
4200 wint_t arg = a.arg[dp->arg_index].a.a_wide_char;
4201 SNPRINTF_BUF (arg);
4203 break;
4204 #endif
4205 case TYPE_STRING:
4207 const char *arg = a.arg[dp->arg_index].a.a_string;
4208 SNPRINTF_BUF (arg);
4210 break;
4211 #if HAVE_WCHAR_T
4212 case TYPE_WIDE_STRING:
4214 const wchar_t *arg = a.arg[dp->arg_index].a.a_wide_string;
4215 SNPRINTF_BUF (arg);
4217 break;
4218 #endif
4219 case TYPE_POINTER:
4221 void *arg = a.arg[dp->arg_index].a.a_pointer;
4222 SNPRINTF_BUF (arg);
4224 break;
4225 default:
4226 abort ();
4229 #if USE_SNPRINTF
4230 /* Portability: Not all implementations of snprintf()
4231 are ISO C 99 compliant. Determine the number of
4232 bytes that snprintf() has produced or would have
4233 produced. */
4234 if (count >= 0)
4236 /* Verify that snprintf() has NUL-terminated its
4237 result. */
4238 if (count < maxlen
4239 && ((TCHAR_T *) (result + length)) [count] != '\0')
4240 abort ();
4241 /* Portability hack. */
4242 if (retcount > count)
4243 count = retcount;
4245 else
4247 /* snprintf() doesn't understand the '%n'
4248 directive. */
4249 if (fbp[1] != '\0')
4251 /* Don't use the '%n' directive; instead, look
4252 at the snprintf() return value. */
4253 fbp[1] = '\0';
4254 continue;
4256 else
4258 /* Look at the snprintf() return value. */
4259 if (retcount < 0)
4261 /* HP-UX 10.20 snprintf() is doubly deficient:
4262 It doesn't understand the '%n' directive,
4263 *and* it returns -1 (rather than the length
4264 that would have been required) when the
4265 buffer is too small. */
4266 size_t bigger_need =
4267 xsum (xtimes (allocated, 2), 12);
4268 ENSURE_ALLOCATION (bigger_need);
4269 continue;
4271 else
4272 count = retcount;
4275 #endif
4277 /* Attempt to handle failure. */
4278 if (count < 0)
4280 if (!(result == resultbuf || result == NULL))
4281 free (result);
4282 if (buf_malloced != NULL)
4283 free (buf_malloced);
4284 CLEANUP ();
4285 errno = EINVAL;
4286 return NULL;
4289 #if USE_SNPRINTF
4290 /* Handle overflow of the allocated buffer.
4291 If such an overflow occurs, a C99 compliant snprintf()
4292 returns a count >= maxlen. However, a non-compliant
4293 snprintf() function returns only count = maxlen - 1. To
4294 cover both cases, test whether count >= maxlen - 1. */
4295 if ((unsigned int) count + 1 >= maxlen)
4297 /* If maxlen already has attained its allowed maximum,
4298 allocating more memory will not increase maxlen.
4299 Instead of looping, bail out. */
4300 if (maxlen == INT_MAX / TCHARS_PER_DCHAR)
4301 goto overflow;
4302 else
4304 /* Need at least (count + 1) * sizeof (TCHAR_T)
4305 bytes. (The +1 is for the trailing NUL.)
4306 But ask for (count + 2) * sizeof (TCHAR_T)
4307 bytes, so that in the next round, we likely get
4308 maxlen > (unsigned int) count + 1
4309 and so we don't get here again.
4310 And allocate proportionally, to avoid looping
4311 eternally if snprintf() reports a too small
4312 count. */
4313 size_t n =
4314 xmax (xsum (length,
4315 ((unsigned int) count + 2
4316 + TCHARS_PER_DCHAR - 1)
4317 / TCHARS_PER_DCHAR),
4318 xtimes (allocated, 2));
4320 ENSURE_ALLOCATION (n);
4321 continue;
4324 #endif
4326 #if NEED_PRINTF_UNBOUNDED_PRECISION
4327 if (prec_ourselves)
4329 /* Handle the precision. */
4330 TCHAR_T *prec_ptr =
4331 # if USE_SNPRINTF
4332 (TCHAR_T *) (result + length);
4333 # else
4334 tmp;
4335 # endif
4336 size_t prefix_count;
4337 size_t move;
4339 prefix_count = 0;
4340 /* Put the additional zeroes after the sign. */
4341 if (count >= 1
4342 && (*prec_ptr == '-' || *prec_ptr == '+'
4343 || *prec_ptr == ' '))
4344 prefix_count = 1;
4345 /* Put the additional zeroes after the 0x prefix if
4346 (flags & FLAG_ALT) || (dp->conversion == 'p'). */
4347 else if (count >= 2
4348 && prec_ptr[0] == '0'
4349 && (prec_ptr[1] == 'x' || prec_ptr[1] == 'X'))
4350 prefix_count = 2;
4352 move = count - prefix_count;
4353 if (precision > move)
4355 /* Insert zeroes. */
4356 size_t insert = precision - move;
4357 TCHAR_T *prec_end;
4359 # if USE_SNPRINTF
4360 size_t n =
4361 xsum (length,
4362 (count + insert + TCHARS_PER_DCHAR - 1)
4363 / TCHARS_PER_DCHAR);
4364 length += (count + TCHARS_PER_DCHAR - 1) / TCHARS_PER_DCHAR;
4365 ENSURE_ALLOCATION (n);
4366 length -= (count + TCHARS_PER_DCHAR - 1) / TCHARS_PER_DCHAR;
4367 prec_ptr = (TCHAR_T *) (result + length);
4368 # endif
4370 prec_end = prec_ptr + count;
4371 prec_ptr += prefix_count;
4373 while (prec_end > prec_ptr)
4375 prec_end--;
4376 prec_end[insert] = prec_end[0];
4379 prec_end += insert;
4381 *--prec_end = '0';
4382 while (prec_end > prec_ptr);
4384 count += insert;
4387 #endif
4389 #if !DCHAR_IS_TCHAR
4390 # if !USE_SNPRINTF
4391 if (count >= tmp_length)
4392 /* tmp_length was incorrectly calculated - fix the
4393 code above! */
4394 abort ();
4395 # endif
4397 /* Convert from TCHAR_T[] to DCHAR_T[]. */
4398 if (dp->conversion == 'c' || dp->conversion == 's')
4400 /* type = TYPE_CHAR or TYPE_WIDE_CHAR or TYPE_STRING
4401 TYPE_WIDE_STRING.
4402 The result string is not certainly ASCII. */
4403 const TCHAR_T *tmpsrc;
4404 DCHAR_T *tmpdst;
4405 size_t tmpdst_len;
4406 /* This code assumes that TCHAR_T is 'char'. */
4407 typedef int TCHAR_T_verify
4408 [2 * (sizeof (TCHAR_T) == 1) - 1];
4409 # if USE_SNPRINTF
4410 tmpsrc = (TCHAR_T *) (result + length);
4411 # else
4412 tmpsrc = tmp;
4413 # endif
4414 tmpdst = NULL;
4415 tmpdst_len = 0;
4416 if (DCHAR_CONV_FROM_ENCODING (locale_charset (),
4417 iconveh_question_mark,
4418 tmpsrc, count,
4419 NULL,
4420 &tmpdst, &tmpdst_len)
4421 < 0)
4423 int saved_errno = errno;
4424 if (!(result == resultbuf || result == NULL))
4425 free (result);
4426 if (buf_malloced != NULL)
4427 free (buf_malloced);
4428 CLEANUP ();
4429 errno = saved_errno;
4430 return NULL;
4432 ENSURE_ALLOCATION (xsum (length, tmpdst_len));
4433 DCHAR_CPY (result + length, tmpdst, tmpdst_len);
4434 free (tmpdst);
4435 count = tmpdst_len;
4437 else
4439 /* The result string is ASCII.
4440 Simple 1:1 conversion. */
4441 # if USE_SNPRINTF
4442 /* If sizeof (DCHAR_T) == sizeof (TCHAR_T), it's a
4443 no-op conversion, in-place on the array starting
4444 at (result + length). */
4445 if (sizeof (DCHAR_T) != sizeof (TCHAR_T))
4446 # endif
4448 const TCHAR_T *tmpsrc;
4449 DCHAR_T *tmpdst;
4450 size_t n;
4452 # if USE_SNPRINTF
4453 if (result == resultbuf)
4455 tmpsrc = (TCHAR_T *) (result + length);
4456 /* ENSURE_ALLOCATION will not move tmpsrc
4457 (because it's part of resultbuf). */
4458 ENSURE_ALLOCATION (xsum (length, count));
4460 else
4462 /* ENSURE_ALLOCATION will move the array
4463 (because it uses realloc(). */
4464 ENSURE_ALLOCATION (xsum (length, count));
4465 tmpsrc = (TCHAR_T *) (result + length);
4467 # else
4468 tmpsrc = tmp;
4469 ENSURE_ALLOCATION (xsum (length, count));
4470 # endif
4471 tmpdst = result + length;
4472 /* Copy backwards, because of overlapping. */
4473 tmpsrc += count;
4474 tmpdst += count;
4475 for (n = count; n > 0; n--)
4476 *--tmpdst = (unsigned char) *--tmpsrc;
4479 #endif
4481 #if DCHAR_IS_TCHAR && !USE_SNPRINTF
4482 /* Make room for the result. */
4483 if (count > allocated - length)
4485 /* Need at least count elements. But allocate
4486 proportionally. */
4487 size_t n =
4488 xmax (xsum (length, count), xtimes (allocated, 2));
4490 ENSURE_ALLOCATION (n);
4492 #endif
4494 /* Here count <= allocated - length. */
4496 /* Perform padding. */
4497 #if !DCHAR_IS_TCHAR || ENABLE_UNISTDIO || NEED_PRINTF_FLAG_ZERO || NEED_PRINTF_UNBOUNDED_PRECISION
4498 if (pad_ourselves && has_width)
4500 size_t w;
4501 # if ENABLE_UNISTDIO
4502 /* Outside POSIX, it's preferrable to compare the width
4503 against the number of _characters_ of the converted
4504 value. */
4505 w = DCHAR_MBSNLEN (result + length, count);
4506 # else
4507 /* The width is compared against the number of _bytes_
4508 of the converted value, says POSIX. */
4509 w = count;
4510 # endif
4511 if (w < width)
4513 size_t pad = width - w;
4514 # if USE_SNPRINTF
4515 /* Make room for the result. */
4516 if (xsum (count, pad) > allocated - length)
4518 /* Need at least count + pad elements. But
4519 allocate proportionally. */
4520 size_t n =
4521 xmax (xsum3 (length, count, pad),
4522 xtimes (allocated, 2));
4524 length += count;
4525 ENSURE_ALLOCATION (n);
4526 length -= count;
4528 /* Here count + pad <= allocated - length. */
4529 # endif
4531 # if !DCHAR_IS_TCHAR || USE_SNPRINTF
4532 DCHAR_T * const rp = result + length;
4533 # else
4534 DCHAR_T * const rp = tmp;
4535 # endif
4536 DCHAR_T *p = rp + count;
4537 DCHAR_T *end = p + pad;
4538 # if NEED_PRINTF_FLAG_ZERO
4539 DCHAR_T *pad_ptr;
4540 # if !DCHAR_IS_TCHAR
4541 if (dp->conversion == 'c'
4542 || dp->conversion == 's')
4543 /* No zero-padding for string directives. */
4544 pad_ptr = NULL;
4545 else
4546 # endif
4548 pad_ptr = (*rp == '-' ? rp + 1 : rp);
4549 /* No zero-padding of "inf" and "nan". */
4550 if ((*pad_ptr >= 'A' && *pad_ptr <= 'Z')
4551 || (*pad_ptr >= 'a' && *pad_ptr <= 'z'))
4552 pad_ptr = NULL;
4554 # endif
4555 /* The generated string now extends from rp to p,
4556 with the zero padding insertion point being at
4557 pad_ptr. */
4559 count = count + pad; /* = end - rp */
4561 if (flags & FLAG_LEFT)
4563 /* Pad with spaces on the right. */
4564 for (; pad > 0; pad--)
4565 *p++ = ' ';
4567 # if NEED_PRINTF_FLAG_ZERO
4568 else if ((flags & FLAG_ZERO) && pad_ptr != NULL)
4570 /* Pad with zeroes. */
4571 DCHAR_T *q = end;
4573 while (p > pad_ptr)
4574 *--q = *--p;
4575 for (; pad > 0; pad--)
4576 *p++ = '0';
4578 # endif
4579 else
4581 /* Pad with spaces on the left. */
4582 DCHAR_T *q = end;
4584 while (p > rp)
4585 *--q = *--p;
4586 for (; pad > 0; pad--)
4587 *p++ = ' ';
4592 #endif
4594 #if DCHAR_IS_TCHAR && !USE_SNPRINTF
4595 if (count >= tmp_length)
4596 /* tmp_length was incorrectly calculated - fix the
4597 code above! */
4598 abort ();
4599 #endif
4601 /* Here still count <= allocated - length. */
4603 #if !DCHAR_IS_TCHAR || USE_SNPRINTF
4604 /* The snprintf() result did fit. */
4605 #else
4606 /* Append the sprintf() result. */
4607 memcpy (result + length, tmp, count * sizeof (DCHAR_T));
4608 #endif
4609 #if !USE_SNPRINTF
4610 if (tmp != tmpbuf)
4611 free (tmp);
4612 #endif
4614 #if NEED_PRINTF_DIRECTIVE_F
4615 if (dp->conversion == 'F')
4617 /* Convert the %f result to upper case for %F. */
4618 DCHAR_T *rp = result + length;
4619 size_t rc;
4620 for (rc = count; rc > 0; rc--, rp++)
4621 if (*rp >= 'a' && *rp <= 'z')
4622 *rp = *rp - 'a' + 'A';
4624 #endif
4626 length += count;
4627 break;
4633 /* Add the final NUL. */
4634 ENSURE_ALLOCATION (xsum (length, 1));
4635 result[length] = '\0';
4637 if (result != resultbuf && length + 1 < allocated)
4639 /* Shrink the allocated memory if possible. */
4640 DCHAR_T *memory;
4642 memory = (DCHAR_T *) realloc (result, (length + 1) * sizeof (DCHAR_T));
4643 if (memory != NULL)
4644 result = memory;
4647 if (buf_malloced != NULL)
4648 free (buf_malloced);
4649 CLEANUP ();
4650 *lengthp = length;
4651 /* Note that we can produce a big string of a length > INT_MAX. POSIX
4652 says that snprintf() fails with errno = EOVERFLOW in this case, but
4653 that's only because snprintf() returns an 'int'. This function does
4654 not have this limitation. */
4655 return result;
4657 overflow:
4658 if (!(result == resultbuf || result == NULL))
4659 free (result);
4660 if (buf_malloced != NULL)
4661 free (buf_malloced);
4662 CLEANUP ();
4663 errno = EOVERFLOW;
4664 return NULL;
4666 out_of_memory:
4667 if (!(result == resultbuf || result == NULL))
4668 free (result);
4669 if (buf_malloced != NULL)
4670 free (buf_malloced);
4671 out_of_memory_1:
4672 CLEANUP ();
4673 errno = ENOMEM;
4674 return NULL;
4678 #undef TCHARS_PER_DCHAR
4679 #undef SNPRINTF
4680 #undef USE_SNPRINTF
4681 #undef DCHAR_CPY
4682 #undef PRINTF_PARSE
4683 #undef DIRECTIVES
4684 #undef DIRECTIVE
4685 #undef DCHAR_IS_TCHAR
4686 #undef TCHAR_T
4687 #undef DCHAR_T
4688 #undef FCHAR_T
4689 #undef VASNPRINTF