Version 2.3.13.
[gnutls.git] / lgl / md4.c
blobe7ee9b1f6f54290201310fd898b5fa1dd82fd8d5
1 /* Functions to compute MD4 message digest of files or memory blocks.
2 according to the definition of MD4 in RFC 1320 from April 1992.
3 Copyright (C) 1995,1996,1997,1999,2000,2001,2002,2003,2005,2006,2008
4 Free Software Foundation, Inc.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms of the GNU Lesser General Public License as published by the
8 Free Software Foundation; either version 2.1, or (at your option) any
9 later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU Lesser General Public License for more details.
16 You should have received a copy of the GNU Lesser General Public License
17 along with this program; if not, write to the Free Software Foundation,
18 Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */
20 /* Adapted by Simon Josefsson from gnulib md5.? and Libgcrypt
21 cipher/md4.c . */
23 #include <config.h>
25 #include "md4.h"
27 #include <stddef.h>
28 #include <stdlib.h>
29 #include <string.h>
30 #include <sys/types.h>
32 #if USE_UNLOCKED_IO
33 # include "unlocked-io.h"
34 #endif
36 #ifdef WORDS_BIGENDIAN
37 # define SWAP(n) \
38 (((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24))
39 #else
40 # define SWAP(n) (n)
41 #endif
43 #define BLOCKSIZE 4096
44 #if BLOCKSIZE % 64 != 0
45 # error "invalid BLOCKSIZE"
46 #endif
48 /* This array contains the bytes used to pad the buffer to the next
49 64-byte boundary. (RFC 1320, 3.1: Step 1) */
50 static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ... */ };
53 /* Initialize structure containing state of computation.
54 (RFC 1320, 3.3: Step 3) */
55 void
56 md4_init_ctx (struct md4_ctx *ctx)
58 ctx->A = 0x67452301;
59 ctx->B = 0xefcdab89;
60 ctx->C = 0x98badcfe;
61 ctx->D = 0x10325476;
63 ctx->total[0] = ctx->total[1] = 0;
64 ctx->buflen = 0;
67 /* Copy the 4 byte value from v into the memory location pointed to by *cp,
68 If your architecture allows unaligned access this is equivalent to
69 * (uint32_t *) cp = v */
70 static inline void
71 set_uint32 (char *cp, uint32_t v)
73 memcpy (cp, &v, sizeof v);
76 /* Put result from CTX in first 16 bytes following RESBUF. The result
77 must be in little endian byte order. */
78 void *
79 md4_read_ctx (const struct md4_ctx *ctx, void *resbuf)
81 char *r = resbuf;
82 set_uint32 (r + 0 * sizeof ctx->A, SWAP (ctx->A));
83 set_uint32 (r + 1 * sizeof ctx->B, SWAP (ctx->B));
84 set_uint32 (r + 2 * sizeof ctx->C, SWAP (ctx->C));
85 set_uint32 (r + 3 * sizeof ctx->D, SWAP (ctx->D));
87 return resbuf;
90 /* Process the remaining bytes in the internal buffer and the usual
91 prolog according to the standard and write the result to RESBUF. */
92 void *
93 md4_finish_ctx (struct md4_ctx *ctx, void *resbuf)
95 /* Take yet unprocessed bytes into account. */
96 uint32_t bytes = ctx->buflen;
97 size_t pad;
99 /* Now count remaining bytes. */
100 ctx->total[0] += bytes;
101 if (ctx->total[0] < bytes)
102 ++ctx->total[1];
104 pad = bytes >= 56 ? 64 + 56 - bytes : 56 - bytes;
105 memcpy (&((char*)ctx->buffer)[bytes], fillbuf, pad);
107 /* Put the 64-bit file length in *bits* at the end of the buffer. */
108 ctx->buffer[(bytes + pad) / 4] = SWAP (ctx->total[0] << 3);
109 ctx->buffer[(bytes + pad) / 4 + 1] = SWAP ((ctx->total[1] << 3) |
110 (ctx->total[0] >> 29));
112 /* Process last bytes. */
113 md4_process_block (ctx->buffer, bytes + pad + 8, ctx);
115 return md4_read_ctx (ctx, resbuf);
118 /* Compute MD4 message digest for bytes read from STREAM. The
119 resulting message digest number will be written into the 16 bytes
120 beginning at RESBLOCK. */
122 md4_stream (FILE * stream, void *resblock)
124 struct md4_ctx ctx;
125 char buffer[BLOCKSIZE + 72];
126 size_t sum;
128 /* Initialize the computation context. */
129 md4_init_ctx (&ctx);
131 /* Iterate over full file contents. */
132 while (1)
134 /* We read the file in blocks of BLOCKSIZE bytes. One call of the
135 computation function processes the whole buffer so that with the
136 next round of the loop another block can be read. */
137 size_t n;
138 sum = 0;
140 /* Read block. Take care for partial reads. */
141 while (1)
143 n = fread (buffer + sum, 1, BLOCKSIZE - sum, stream);
145 sum += n;
147 if (sum == BLOCKSIZE)
148 break;
150 if (n == 0)
152 /* Check for the error flag IFF N == 0, so that we don't
153 exit the loop after a partial read due to e.g., EAGAIN
154 or EWOULDBLOCK. */
155 if (ferror (stream))
156 return 1;
157 goto process_partial_block;
160 /* We've read at least one byte, so ignore errors. But always
161 check for EOF, since feof may be true even though N > 0.
162 Otherwise, we could end up calling fread after EOF. */
163 if (feof (stream))
164 goto process_partial_block;
167 /* Process buffer with BLOCKSIZE bytes. Note that
168 BLOCKSIZE % 64 == 0
170 md4_process_block (buffer, BLOCKSIZE, &ctx);
173 process_partial_block:;
175 /* Process any remaining bytes. */
176 if (sum > 0)
177 md4_process_bytes (buffer, sum, &ctx);
179 /* Construct result in desired memory. */
180 md4_finish_ctx (&ctx, resblock);
181 return 0;
184 /* Compute MD4 message digest for LEN bytes beginning at BUFFER. The
185 result is always in little endian byte order, so that a byte-wise
186 output yields to the wanted ASCII representation of the message
187 digest. */
188 void *
189 md4_buffer (const char *buffer, size_t len, void *resblock)
191 struct md4_ctx ctx;
193 /* Initialize the computation context. */
194 md4_init_ctx (&ctx);
196 /* Process whole buffer but last len % 64 bytes. */
197 md4_process_bytes (buffer, len, &ctx);
199 /* Put result in desired memory area. */
200 return md4_finish_ctx (&ctx, resblock);
203 void
204 md4_process_bytes (const void *buffer, size_t len, struct md4_ctx *ctx)
206 /* When we already have some bits in our internal buffer concatenate
207 both inputs first. */
208 if (ctx->buflen != 0)
210 size_t left_over = ctx->buflen;
211 size_t add = 128 - left_over > len ? len : 128 - left_over;
213 memcpy (&((char*)ctx->buffer)[left_over], buffer, add);
214 ctx->buflen += add;
216 if (ctx->buflen > 64)
218 md4_process_block (ctx->buffer, ctx->buflen & ~63, ctx);
220 ctx->buflen &= 63;
221 /* The regions in the following copy operation cannot overlap. */
222 memcpy (ctx->buffer, &((char*)ctx->buffer)[(left_over + add) & ~63],
223 ctx->buflen);
226 buffer = (const char *) buffer + add;
227 len -= add;
230 /* Process available complete blocks. */
231 if (len >= 64)
233 #if !_STRING_ARCH_unaligned
234 /* To check alignment gcc has an appropriate operator. Other
235 compilers don't. */
236 # if __GNUC__ >= 2
237 # define UNALIGNED_P(p) (((uintptr_t) p) % __alignof__ (uint32_t) != 0)
238 # else
239 # define alignof(type) offsetof (struct { char c; type x; }, x)
240 # define UNALIGNED_P(p) (((size_t) p) % alignof (uint32_t) != 0)
241 # endif
242 if (UNALIGNED_P (buffer))
243 while (len > 64)
245 md4_process_block (memcpy (ctx->buffer, buffer, 64), 64, ctx);
246 buffer = (const char *) buffer + 64;
247 len -= 64;
249 else
250 #endif
252 md4_process_block (buffer, len & ~63, ctx);
253 buffer = (const char *) buffer + (len & ~63);
254 len &= 63;
258 /* Move remaining bytes in internal buffer. */
259 if (len > 0)
261 size_t left_over = ctx->buflen;
263 memcpy (&((char*)ctx->buffer)[left_over], buffer, len);
264 left_over += len;
265 if (left_over >= 64)
267 md4_process_block (ctx->buffer, 64, ctx);
268 left_over -= 64;
269 memcpy (ctx->buffer, &ctx->buffer[16], left_over);
271 ctx->buflen = left_over;
275 /* --- Code below is the primary difference between md5.c and md4.c --- */
277 /* MD4 round constants */
278 #define K1 0x5a827999
279 #define K2 0x6ed9eba1
281 /* Round functions. */
282 #define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
283 #define G(x, y, z) (((x) & (y)) | ((x) & (z)) | ((y) & (z)))
284 #define H(x, y, z) ((x) ^ (y) ^ (z))
285 #define rol(x, n) (((x) << (n)) | ((uint32_t) (x) >> (32 - (n))))
286 #define R1(a,b,c,d,k,s) a=rol(a+F(b,c,d)+x[k],s);
287 #define R2(a,b,c,d,k,s) a=rol(a+G(b,c,d)+x[k]+K1,s);
288 #define R3(a,b,c,d,k,s) a=rol(a+H(b,c,d)+x[k]+K2,s);
290 /* Process LEN bytes of BUFFER, accumulating context into CTX.
291 It is assumed that LEN % 64 == 0. */
293 void
294 md4_process_block (const void *buffer, size_t len, struct md4_ctx *ctx)
296 const uint32_t *words = buffer;
297 size_t nwords = len / sizeof (uint32_t);
298 const uint32_t *endp = words + nwords;
299 uint32_t x[16];
300 uint32_t A = ctx->A;
301 uint32_t B = ctx->B;
302 uint32_t C = ctx->C;
303 uint32_t D = ctx->D;
305 /* First increment the byte count. RFC 1320 specifies the possible
306 length of the file up to 2^64 bits. Here we only compute the
307 number of bytes. Do a double word increment. */
308 ctx->total[0] += len;
309 if (ctx->total[0] < len)
310 ++ctx->total[1];
312 /* Process all bytes in the buffer with 64 bytes in each round of
313 the loop. */
314 while (words < endp)
316 int t;
317 for (t = 0; t < 16; t++)
319 x[t] = SWAP (*words);
320 words++;
323 /* Round 1. */
324 R1 (A, B, C, D, 0, 3);
325 R1 (D, A, B, C, 1, 7);
326 R1 (C, D, A, B, 2, 11);
327 R1 (B, C, D, A, 3, 19);
328 R1 (A, B, C, D, 4, 3);
329 R1 (D, A, B, C, 5, 7);
330 R1 (C, D, A, B, 6, 11);
331 R1 (B, C, D, A, 7, 19);
332 R1 (A, B, C, D, 8, 3);
333 R1 (D, A, B, C, 9, 7);
334 R1 (C, D, A, B, 10, 11);
335 R1 (B, C, D, A, 11, 19);
336 R1 (A, B, C, D, 12, 3);
337 R1 (D, A, B, C, 13, 7);
338 R1 (C, D, A, B, 14, 11);
339 R1 (B, C, D, A, 15, 19);
341 /* Round 2. */
342 R2 (A, B, C, D, 0, 3);
343 R2 (D, A, B, C, 4, 5);
344 R2 (C, D, A, B, 8, 9);
345 R2 (B, C, D, A, 12, 13);
346 R2 (A, B, C, D, 1, 3);
347 R2 (D, A, B, C, 5, 5);
348 R2 (C, D, A, B, 9, 9);
349 R2 (B, C, D, A, 13, 13);
350 R2 (A, B, C, D, 2, 3);
351 R2 (D, A, B, C, 6, 5);
352 R2 (C, D, A, B, 10, 9);
353 R2 (B, C, D, A, 14, 13);
354 R2 (A, B, C, D, 3, 3);
355 R2 (D, A, B, C, 7, 5);
356 R2 (C, D, A, B, 11, 9);
357 R2 (B, C, D, A, 15, 13);
359 /* Round 3. */
360 R3 (A, B, C, D, 0, 3);
361 R3 (D, A, B, C, 8, 9);
362 R3 (C, D, A, B, 4, 11);
363 R3 (B, C, D, A, 12, 15);
364 R3 (A, B, C, D, 2, 3);
365 R3 (D, A, B, C, 10, 9);
366 R3 (C, D, A, B, 6, 11);
367 R3 (B, C, D, A, 14, 15);
368 R3 (A, B, C, D, 1, 3);
369 R3 (D, A, B, C, 9, 9);
370 R3 (C, D, A, B, 5, 11);
371 R3 (B, C, D, A, 13, 15);
372 R3 (A, B, C, D, 3, 3);
373 R3 (D, A, B, C, 11, 9);
374 R3 (C, D, A, B, 7, 11);
375 R3 (B, C, D, A, 15, 15);
377 A = ctx->A += A;
378 B = ctx->B += B;
379 C = ctx->C += C;
380 D = ctx->D += D;