Use libtasn1 v2.4.
[gnutls.git] / libextra / gl / md5.c
blob912738a50046f7e64f83fcc5e785cf67f5029a66
1 /* Functions to compute MD5 message digest of files or memory blocks.
2 according to the definition of MD5 in RFC 1321 from April 1992.
3 Copyright (C) 1995, 1996, 1997, 1999, 2000, 2001, 2005, 2006, 2008, 2009,
4 2010 Free Software Foundation, Inc.
5 This file is part of the GNU C Library.
7 This program is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software Foundation,
19 Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */
21 /* Written by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1995. */
23 #include <config.h>
25 #include "md5.h"
27 #include <stddef.h>
28 #include <stdlib.h>
29 #include <string.h>
30 #include <sys/types.h>
32 #if USE_UNLOCKED_IO
33 # include "unlocked-io.h"
34 #endif
36 #ifdef _LIBC
37 # include <endian.h>
38 # if __BYTE_ORDER == __BIG_ENDIAN
39 # define WORDS_BIGENDIAN 1
40 # endif
41 /* We need to keep the namespace clean so define the MD5 function
42 protected using leading __ . */
43 # define md5_init_ctx __md5_init_ctx
44 # define md5_process_block __md5_process_block
45 # define md5_process_bytes __md5_process_bytes
46 # define md5_finish_ctx __md5_finish_ctx
47 # define md5_read_ctx __md5_read_ctx
48 # define md5_stream __md5_stream
49 # define md5_buffer __md5_buffer
50 #endif
52 #ifdef WORDS_BIGENDIAN
53 # define SWAP(n) \
54 (((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24))
55 #else
56 # define SWAP(n) (n)
57 #endif
59 #define BLOCKSIZE 32768
60 #if BLOCKSIZE % 64 != 0
61 # error "invalid BLOCKSIZE"
62 #endif
64 /* This array contains the bytes used to pad the buffer to the next
65 64-byte boundary. (RFC 1321, 3.1: Step 1) */
66 static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ... */ };
69 /* Initialize structure containing state of computation.
70 (RFC 1321, 3.3: Step 3) */
71 void
72 md5_init_ctx (struct md5_ctx *ctx)
74 ctx->A = 0x67452301;
75 ctx->B = 0xefcdab89;
76 ctx->C = 0x98badcfe;
77 ctx->D = 0x10325476;
79 ctx->total[0] = ctx->total[1] = 0;
80 ctx->buflen = 0;
83 /* Copy the 4 byte value from v into the memory location pointed to by *cp,
84 If your architecture allows unaligned access this is equivalent to
85 * (uint32_t *) cp = v */
86 static inline void
87 set_uint32 (char *cp, uint32_t v)
89 memcpy (cp, &v, sizeof v);
92 /* Put result from CTX in first 16 bytes following RESBUF. The result
93 must be in little endian byte order. */
94 void *
95 md5_read_ctx (const struct md5_ctx *ctx, void *resbuf)
97 char *r = resbuf;
98 set_uint32 (r + 0 * sizeof ctx->A, SWAP (ctx->A));
99 set_uint32 (r + 1 * sizeof ctx->B, SWAP (ctx->B));
100 set_uint32 (r + 2 * sizeof ctx->C, SWAP (ctx->C));
101 set_uint32 (r + 3 * sizeof ctx->D, SWAP (ctx->D));
103 return resbuf;
106 /* Process the remaining bytes in the internal buffer and the usual
107 prolog according to the standard and write the result to RESBUF. */
108 void *
109 md5_finish_ctx (struct md5_ctx *ctx, void *resbuf)
111 /* Take yet unprocessed bytes into account. */
112 uint32_t bytes = ctx->buflen;
113 size_t size = (bytes < 56) ? 64 / 4 : 64 * 2 / 4;
115 /* Now count remaining bytes. */
116 ctx->total[0] += bytes;
117 if (ctx->total[0] < bytes)
118 ++ctx->total[1];
120 /* Put the 64-bit file length in *bits* at the end of the buffer. */
121 ctx->buffer[size - 2] = SWAP (ctx->total[0] << 3);
122 ctx->buffer[size - 1] = SWAP ((ctx->total[1] << 3) | (ctx->total[0] >> 29));
124 memcpy (&((char *) ctx->buffer)[bytes], fillbuf, (size - 2) * 4 - bytes);
126 /* Process last bytes. */
127 md5_process_block (ctx->buffer, size * 4, ctx);
129 return md5_read_ctx (ctx, resbuf);
132 #if 0 /* Not needed by GnuTLS, and it has a large stack frame. */
134 /* Compute MD5 message digest for bytes read from STREAM. The
135 resulting message digest number will be written into the 16 bytes
136 beginning at RESBLOCK. */
138 md5_stream (FILE *stream, void *resblock)
140 struct md5_ctx ctx;
141 size_t sum;
143 char *buffer = malloc (BLOCKSIZE + 72);
144 if (!buffer)
145 return 1;
147 /* Initialize the computation context. */
148 md5_init_ctx (&ctx);
150 /* Iterate over full file contents. */
151 while (1)
153 /* We read the file in blocks of BLOCKSIZE bytes. One call of the
154 computation function processes the whole buffer so that with the
155 next round of the loop another block can be read. */
156 size_t n;
157 sum = 0;
159 /* Read block. Take care for partial reads. */
160 while (1)
162 n = fread (buffer + sum, 1, BLOCKSIZE - sum, stream);
164 sum += n;
166 if (sum == BLOCKSIZE)
167 break;
169 if (n == 0)
171 /* Check for the error flag IFF N == 0, so that we don't
172 exit the loop after a partial read due to e.g., EAGAIN
173 or EWOULDBLOCK. */
174 if (ferror (stream))
176 free (buffer);
177 return 1;
179 goto process_partial_block;
182 /* We've read at least one byte, so ignore errors. But always
183 check for EOF, since feof may be true even though N > 0.
184 Otherwise, we could end up calling fread after EOF. */
185 if (feof (stream))
186 goto process_partial_block;
189 /* Process buffer with BLOCKSIZE bytes. Note that
190 BLOCKSIZE % 64 == 0
192 md5_process_block (buffer, BLOCKSIZE, &ctx);
195 process_partial_block:
197 /* Process any remaining bytes. */
198 if (sum > 0)
199 md5_process_bytes (buffer, sum, &ctx);
201 /* Construct result in desired memory. */
202 md5_finish_ctx (&ctx, resblock);
203 free (buffer);
204 return 0;
206 #endif
208 /* Compute MD5 message digest for LEN bytes beginning at BUFFER. The
209 result is always in little endian byte order, so that a byte-wise
210 output yields to the wanted ASCII representation of the message
211 digest. */
212 void *
213 md5_buffer (const char *buffer, size_t len, void *resblock)
215 struct md5_ctx ctx;
217 /* Initialize the computation context. */
218 md5_init_ctx (&ctx);
220 /* Process whole buffer but last len % 64 bytes. */
221 md5_process_bytes (buffer, len, &ctx);
223 /* Put result in desired memory area. */
224 return md5_finish_ctx (&ctx, resblock);
228 void
229 md5_process_bytes (const void *buffer, size_t len, struct md5_ctx *ctx)
231 /* When we already have some bits in our internal buffer concatenate
232 both inputs first. */
233 if (ctx->buflen != 0)
235 size_t left_over = ctx->buflen;
236 size_t add = 128 - left_over > len ? len : 128 - left_over;
238 memcpy (&((char *) ctx->buffer)[left_over], buffer, add);
239 ctx->buflen += add;
241 if (ctx->buflen > 64)
243 md5_process_block (ctx->buffer, ctx->buflen & ~63, ctx);
245 ctx->buflen &= 63;
246 /* The regions in the following copy operation cannot overlap. */
247 memcpy (ctx->buffer,
248 &((char *) ctx->buffer)[(left_over + add) & ~63],
249 ctx->buflen);
252 buffer = (const char *) buffer + add;
253 len -= add;
256 /* Process available complete blocks. */
257 if (len >= 64)
259 #if !_STRING_ARCH_unaligned
260 # define alignof(type) offsetof (struct { char c; type x; }, x)
261 # define UNALIGNED_P(p) (((size_t) p) % alignof (uint32_t) != 0)
262 if (UNALIGNED_P (buffer))
263 while (len > 64)
265 md5_process_block (memcpy (ctx->buffer, buffer, 64), 64, ctx);
266 buffer = (const char *) buffer + 64;
267 len -= 64;
269 else
270 #endif
272 md5_process_block (buffer, len & ~63, ctx);
273 buffer = (const char *) buffer + (len & ~63);
274 len &= 63;
278 /* Move remaining bytes in internal buffer. */
279 if (len > 0)
281 size_t left_over = ctx->buflen;
283 memcpy (&((char *) ctx->buffer)[left_over], buffer, len);
284 left_over += len;
285 if (left_over >= 64)
287 md5_process_block (ctx->buffer, 64, ctx);
288 left_over -= 64;
289 memcpy (ctx->buffer, &ctx->buffer[16], left_over);
291 ctx->buflen = left_over;
296 /* These are the four functions used in the four steps of the MD5 algorithm
297 and defined in the RFC 1321. The first function is a little bit optimized
298 (as found in Colin Plumbs public domain implementation). */
299 /* #define FF(b, c, d) ((b & c) | (~b & d)) */
300 #define FF(b, c, d) (d ^ (b & (c ^ d)))
301 #define FG(b, c, d) FF (d, b, c)
302 #define FH(b, c, d) (b ^ c ^ d)
303 #define FI(b, c, d) (c ^ (b | ~d))
305 /* Process LEN bytes of BUFFER, accumulating context into CTX.
306 It is assumed that LEN % 64 == 0. */
308 void
309 md5_process_block (const void *buffer, size_t len, struct md5_ctx *ctx)
311 uint32_t correct_words[16];
312 const uint32_t *words = buffer;
313 size_t nwords = len / sizeof (uint32_t);
314 const uint32_t *endp = words + nwords;
315 uint32_t A = ctx->A;
316 uint32_t B = ctx->B;
317 uint32_t C = ctx->C;
318 uint32_t D = ctx->D;
320 /* First increment the byte count. RFC 1321 specifies the possible
321 length of the file up to 2^64 bits. Here we only compute the
322 number of bytes. Do a double word increment. */
323 ctx->total[0] += len;
324 if (ctx->total[0] < len)
325 ++ctx->total[1];
327 /* Process all bytes in the buffer with 64 bytes in each round of
328 the loop. */
329 while (words < endp)
331 uint32_t *cwp = correct_words;
332 uint32_t A_save = A;
333 uint32_t B_save = B;
334 uint32_t C_save = C;
335 uint32_t D_save = D;
337 /* First round: using the given function, the context and a constant
338 the next context is computed. Because the algorithms processing
339 unit is a 32-bit word and it is determined to work on words in
340 little endian byte order we perhaps have to change the byte order
341 before the computation. To reduce the work for the next steps
342 we store the swapped words in the array CORRECT_WORDS. */
344 #define OP(a, b, c, d, s, T) \
345 do \
347 a += FF (b, c, d) + (*cwp++ = SWAP (*words)) + T; \
348 ++words; \
349 CYCLIC (a, s); \
350 a += b; \
352 while (0)
354 /* It is unfortunate that C does not provide an operator for
355 cyclic rotation. Hope the C compiler is smart enough. */
356 #define CYCLIC(w, s) (w = (w << s) | (w >> (32 - s)))
358 /* Before we start, one word to the strange constants.
359 They are defined in RFC 1321 as
361 T[i] = (int) (4294967296.0 * fabs (sin (i))), i=1..64
363 Here is an equivalent invocation using Perl:
365 perl -e 'foreach(1..64){printf "0x%08x\n", int (4294967296 * abs (sin $_))}'
368 /* Round 1. */
369 OP (A, B, C, D, 7, 0xd76aa478);
370 OP (D, A, B, C, 12, 0xe8c7b756);
371 OP (C, D, A, B, 17, 0x242070db);
372 OP (B, C, D, A, 22, 0xc1bdceee);
373 OP (A, B, C, D, 7, 0xf57c0faf);
374 OP (D, A, B, C, 12, 0x4787c62a);
375 OP (C, D, A, B, 17, 0xa8304613);
376 OP (B, C, D, A, 22, 0xfd469501);
377 OP (A, B, C, D, 7, 0x698098d8);
378 OP (D, A, B, C, 12, 0x8b44f7af);
379 OP (C, D, A, B, 17, 0xffff5bb1);
380 OP (B, C, D, A, 22, 0x895cd7be);
381 OP (A, B, C, D, 7, 0x6b901122);
382 OP (D, A, B, C, 12, 0xfd987193);
383 OP (C, D, A, B, 17, 0xa679438e);
384 OP (B, C, D, A, 22, 0x49b40821);
386 /* For the second to fourth round we have the possibly swapped words
387 in CORRECT_WORDS. Redefine the macro to take an additional first
388 argument specifying the function to use. */
389 #undef OP
390 #define OP(f, a, b, c, d, k, s, T) \
391 do \
393 a += f (b, c, d) + correct_words[k] + T; \
394 CYCLIC (a, s); \
395 a += b; \
397 while (0)
399 /* Round 2. */
400 OP (FG, A, B, C, D, 1, 5, 0xf61e2562);
401 OP (FG, D, A, B, C, 6, 9, 0xc040b340);
402 OP (FG, C, D, A, B, 11, 14, 0x265e5a51);
403 OP (FG, B, C, D, A, 0, 20, 0xe9b6c7aa);
404 OP (FG, A, B, C, D, 5, 5, 0xd62f105d);
405 OP (FG, D, A, B, C, 10, 9, 0x02441453);
406 OP (FG, C, D, A, B, 15, 14, 0xd8a1e681);
407 OP (FG, B, C, D, A, 4, 20, 0xe7d3fbc8);
408 OP (FG, A, B, C, D, 9, 5, 0x21e1cde6);
409 OP (FG, D, A, B, C, 14, 9, 0xc33707d6);
410 OP (FG, C, D, A, B, 3, 14, 0xf4d50d87);
411 OP (FG, B, C, D, A, 8, 20, 0x455a14ed);
412 OP (FG, A, B, C, D, 13, 5, 0xa9e3e905);
413 OP (FG, D, A, B, C, 2, 9, 0xfcefa3f8);
414 OP (FG, C, D, A, B, 7, 14, 0x676f02d9);
415 OP (FG, B, C, D, A, 12, 20, 0x8d2a4c8a);
417 /* Round 3. */
418 OP (FH, A, B, C, D, 5, 4, 0xfffa3942);
419 OP (FH, D, A, B, C, 8, 11, 0x8771f681);
420 OP (FH, C, D, A, B, 11, 16, 0x6d9d6122);
421 OP (FH, B, C, D, A, 14, 23, 0xfde5380c);
422 OP (FH, A, B, C, D, 1, 4, 0xa4beea44);
423 OP (FH, D, A, B, C, 4, 11, 0x4bdecfa9);
424 OP (FH, C, D, A, B, 7, 16, 0xf6bb4b60);
425 OP (FH, B, C, D, A, 10, 23, 0xbebfbc70);
426 OP (FH, A, B, C, D, 13, 4, 0x289b7ec6);
427 OP (FH, D, A, B, C, 0, 11, 0xeaa127fa);
428 OP (FH, C, D, A, B, 3, 16, 0xd4ef3085);
429 OP (FH, B, C, D, A, 6, 23, 0x04881d05);
430 OP (FH, A, B, C, D, 9, 4, 0xd9d4d039);
431 OP (FH, D, A, B, C, 12, 11, 0xe6db99e5);
432 OP (FH, C, D, A, B, 15, 16, 0x1fa27cf8);
433 OP (FH, B, C, D, A, 2, 23, 0xc4ac5665);
435 /* Round 4. */
436 OP (FI, A, B, C, D, 0, 6, 0xf4292244);
437 OP (FI, D, A, B, C, 7, 10, 0x432aff97);
438 OP (FI, C, D, A, B, 14, 15, 0xab9423a7);
439 OP (FI, B, C, D, A, 5, 21, 0xfc93a039);
440 OP (FI, A, B, C, D, 12, 6, 0x655b59c3);
441 OP (FI, D, A, B, C, 3, 10, 0x8f0ccc92);
442 OP (FI, C, D, A, B, 10, 15, 0xffeff47d);
443 OP (FI, B, C, D, A, 1, 21, 0x85845dd1);
444 OP (FI, A, B, C, D, 8, 6, 0x6fa87e4f);
445 OP (FI, D, A, B, C, 15, 10, 0xfe2ce6e0);
446 OP (FI, C, D, A, B, 6, 15, 0xa3014314);
447 OP (FI, B, C, D, A, 13, 21, 0x4e0811a1);
448 OP (FI, A, B, C, D, 4, 6, 0xf7537e82);
449 OP (FI, D, A, B, C, 11, 10, 0xbd3af235);
450 OP (FI, C, D, A, B, 2, 15, 0x2ad7d2bb);
451 OP (FI, B, C, D, A, 9, 21, 0xeb86d391);
453 /* Add the starting values of the context. */
454 A += A_save;
455 B += B_save;
456 C += C_save;
457 D += D_save;
460 /* Put checksum in context given as argument. */
461 ctx->A = A;
462 ctx->B = B;
463 ctx->C = C;
464 ctx->D = D;