texinfo documentation is similar to the printed manual.
[gnutls.git] / devel / perlasm / ghash-x86_64.pl
bloba5ae180882dbdc374f3b16bdec98e1944d78e3db
1 #!/usr/bin/env perl
3 # ====================================================================
4 # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
5 # project. The module is, however, dual licensed under OpenSSL and
6 # CRYPTOGAMS licenses depending on where you obtain it. For further
7 # details see http://www.openssl.org/~appro/cryptogams/.
8 # ====================================================================
10 # March, June 2010
12 # The module implements "4-bit" GCM GHASH function and underlying
13 # single multiplication operation in GF(2^128). "4-bit" means that
14 # it uses 256 bytes per-key table [+128 bytes shared table]. GHASH
15 # function features so called "528B" variant utilizing additional
16 # 256+16 bytes of per-key storage [+512 bytes shared table].
17 # Performance results are for this streamed GHASH subroutine and are
18 # expressed in cycles per processed byte, less is better:
20 # gcc 3.4.x(*) assembler
22 # P4 28.6 14.0 +100%
23 # Opteron 19.3 7.7 +150%
24 # Core2 17.8 8.1(**) +120%
26 # (*) comparison is not completely fair, because C results are
27 # for vanilla "256B" implementation, while assembler results
28 # are for "528B";-)
29 # (**) it's mystery [to me] why Core2 result is not same as for
30 # Opteron;
32 # May 2010
34 # Add PCLMULQDQ version performing at 2.02 cycles per processed byte.
35 # See ghash-x86.pl for background information and details about coding
36 # techniques.
38 # Special thanks to David Woodhouse <dwmw2@infradead.org> for
39 # providing access to a Westmere-based system on behalf of Intel
40 # Open Source Technology Centre.
42 $flavour = shift;
43 $output = shift;
44 if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }
46 $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
48 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
49 ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
50 ( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
51 die "can't locate x86_64-xlate.pl";
53 open STDOUT,"| $^X $xlate $flavour $output";
55 # common register layout
56 $nlo="%rax";
57 $nhi="%rbx";
58 $Zlo="%r8";
59 $Zhi="%r9";
60 $tmp="%r10";
61 $rem_4bit = "%r11";
63 $Xi="%rdi";
64 $Htbl="%rsi";
66 # per-function register layout
67 $cnt="%rcx";
68 $rem="%rdx";
70 sub LB() { my $r=shift; $r =~ s/%[er]([a-d])x/%\1l/ or
71 $r =~ s/%[er]([sd]i)/%\1l/ or
72 $r =~ s/%[er](bp)/%\1l/ or
73 $r =~ s/%(r[0-9]+)[d]?/%\1b/; $r; }
75 sub AUTOLOAD() # thunk [simplified] 32-bit style perlasm
76 { my $opcode = $AUTOLOAD; $opcode =~ s/.*:://;
77 my $arg = pop;
78 $arg = "\$$arg" if ($arg*1 eq $arg);
79 $code .= "\t$opcode\t".join(',',$arg,reverse @_)."\n";
82 { my $N;
83 sub loop() {
84 my $inp = shift;
86 $N++;
87 $code.=<<___;
88 xor $nlo,$nlo
89 xor $nhi,$nhi
90 mov `&LB("$Zlo")`,`&LB("$nlo")`
91 mov `&LB("$Zlo")`,`&LB("$nhi")`
92 shl \$4,`&LB("$nlo")`
93 mov \$14,$cnt
94 mov 8($Htbl,$nlo),$Zlo
95 mov ($Htbl,$nlo),$Zhi
96 and \$0xf0,`&LB("$nhi")`
97 mov $Zlo,$rem
98 jmp .Loop$N
100 .align 16
101 .Loop$N:
102 shr \$4,$Zlo
103 and \$0xf,$rem
104 mov $Zhi,$tmp
105 mov ($inp,$cnt),`&LB("$nlo")`
106 shr \$4,$Zhi
107 xor 8($Htbl,$nhi),$Zlo
108 shl \$60,$tmp
109 xor ($Htbl,$nhi),$Zhi
110 mov `&LB("$nlo")`,`&LB("$nhi")`
111 xor ($rem_4bit,$rem,8),$Zhi
112 mov $Zlo,$rem
113 shl \$4,`&LB("$nlo")`
114 xor $tmp,$Zlo
115 dec $cnt
116 js .Lbreak$N
118 shr \$4,$Zlo
119 and \$0xf,$rem
120 mov $Zhi,$tmp
121 shr \$4,$Zhi
122 xor 8($Htbl,$nlo),$Zlo
123 shl \$60,$tmp
124 xor ($Htbl,$nlo),$Zhi
125 and \$0xf0,`&LB("$nhi")`
126 xor ($rem_4bit,$rem,8),$Zhi
127 mov $Zlo,$rem
128 xor $tmp,$Zlo
129 jmp .Loop$N
131 .align 16
132 .Lbreak$N:
133 shr \$4,$Zlo
134 and \$0xf,$rem
135 mov $Zhi,$tmp
136 shr \$4,$Zhi
137 xor 8($Htbl,$nlo),$Zlo
138 shl \$60,$tmp
139 xor ($Htbl,$nlo),$Zhi
140 and \$0xf0,`&LB("$nhi")`
141 xor ($rem_4bit,$rem,8),$Zhi
142 mov $Zlo,$rem
143 xor $tmp,$Zlo
145 shr \$4,$Zlo
146 and \$0xf,$rem
147 mov $Zhi,$tmp
148 shr \$4,$Zhi
149 xor 8($Htbl,$nhi),$Zlo
150 shl \$60,$tmp
151 xor ($Htbl,$nhi),$Zhi
152 xor $tmp,$Zlo
153 xor ($rem_4bit,$rem,8),$Zhi
155 bswap $Zlo
156 bswap $Zhi
160 $code=<<___;
161 .text
163 .globl gcm_gmult_4bit
164 .type gcm_gmult_4bit,\@function,2
165 .align 16
166 gcm_gmult_4bit:
167 push %rbx
168 push %rbp # %rbp and %r12 are pushed exclusively in
169 push %r12 # order to reuse Win64 exception handler...
170 .Lgmult_prologue:
172 movzb 15($Xi),$Zlo
173 lea .Lrem_4bit(%rip),$rem_4bit
175 &loop ($Xi);
176 $code.=<<___;
177 mov $Zlo,8($Xi)
178 mov $Zhi,($Xi)
180 mov 16(%rsp),%rbx
181 lea 24(%rsp),%rsp
182 .Lgmult_epilogue:
184 .size gcm_gmult_4bit,.-gcm_gmult_4bit
187 # per-function register layout
188 $inp="%rdx";
189 $len="%rcx";
190 $rem_8bit=$rem_4bit;
192 $code.=<<___;
193 .globl gcm_ghash_4bit
194 .type gcm_ghash_4bit,\@function,4
195 .align 16
196 gcm_ghash_4bit:
197 push %rbx
198 push %rbp
199 push %r12
200 push %r13
201 push %r14
202 push %r15
203 sub \$280,%rsp
204 .Lghash_prologue:
205 mov $inp,%r14 # reassign couple of args
206 mov $len,%r15
208 { my $inp="%r14";
209 my $dat="%edx";
210 my $len="%r15";
211 my @nhi=("%ebx","%ecx");
212 my @rem=("%r12","%r13");
213 my $Hshr4="%rbp";
215 &sub ($Htbl,-128); # size optimization
216 &lea ($Hshr4,"16+128(%rsp)");
217 { my @lo =($nlo,$nhi);
218 my @hi =($Zlo,$Zhi);
220 &xor ($dat,$dat);
221 for ($i=0,$j=-2;$i<18;$i++,$j++) {
222 &mov ("$j(%rsp)",&LB($dat)) if ($i>1);
223 &or ($lo[0],$tmp) if ($i>1);
224 &mov (&LB($dat),&LB($lo[1])) if ($i>0 && $i<17);
225 &shr ($lo[1],4) if ($i>0 && $i<17);
226 &mov ($tmp,$hi[1]) if ($i>0 && $i<17);
227 &shr ($hi[1],4) if ($i>0 && $i<17);
228 &mov ("8*$j($Hshr4)",$hi[0]) if ($i>1);
229 &mov ($hi[0],"16*$i+0-128($Htbl)") if ($i<16);
230 &shl (&LB($dat),4) if ($i>0 && $i<17);
231 &mov ("8*$j-128($Hshr4)",$lo[0]) if ($i>1);
232 &mov ($lo[0],"16*$i+8-128($Htbl)") if ($i<16);
233 &shl ($tmp,60) if ($i>0 && $i<17);
235 push (@lo,shift(@lo));
236 push (@hi,shift(@hi));
239 &add ($Htbl,-128);
240 &mov ($Zlo,"8($Xi)");
241 &mov ($Zhi,"0($Xi)");
242 &add ($len,$inp); # pointer to the end of data
243 &lea ($rem_8bit,".Lrem_8bit(%rip)");
244 &jmp (".Louter_loop");
246 $code.=".align 16\n.Louter_loop:\n";
247 &xor ($Zhi,"($inp)");
248 &mov ("%rdx","8($inp)");
249 &lea ($inp,"16($inp)");
250 &xor ("%rdx",$Zlo);
251 &mov ("($Xi)",$Zhi);
252 &mov ("8($Xi)","%rdx");
253 &shr ("%rdx",32);
255 &xor ($nlo,$nlo);
256 &rol ($dat,8);
257 &mov (&LB($nlo),&LB($dat));
258 &movz ($nhi[0],&LB($dat));
259 &shl (&LB($nlo),4);
260 &shr ($nhi[0],4);
262 for ($j=11,$i=0;$i<15;$i++) {
263 &rol ($dat,8);
264 &xor ($Zlo,"8($Htbl,$nlo)") if ($i>0);
265 &xor ($Zhi,"($Htbl,$nlo)") if ($i>0);
266 &mov ($Zlo,"8($Htbl,$nlo)") if ($i==0);
267 &mov ($Zhi,"($Htbl,$nlo)") if ($i==0);
269 &mov (&LB($nlo),&LB($dat));
270 &xor ($Zlo,$tmp) if ($i>0);
271 &movzw ($rem[1],"($rem_8bit,$rem[1],2)") if ($i>0);
273 &movz ($nhi[1],&LB($dat));
274 &shl (&LB($nlo),4);
275 &movzb ($rem[0],"(%rsp,$nhi[0])");
277 &shr ($nhi[1],4) if ($i<14);
278 &and ($nhi[1],0xf0) if ($i==14);
279 &shl ($rem[1],48) if ($i>0);
280 &xor ($rem[0],$Zlo);
282 &mov ($tmp,$Zhi);
283 &xor ($Zhi,$rem[1]) if ($i>0);
284 &shr ($Zlo,8);
286 &movz ($rem[0],&LB($rem[0]));
287 &mov ($dat,"$j($Xi)") if (--$j%4==0);
288 &shr ($Zhi,8);
290 &xor ($Zlo,"-128($Hshr4,$nhi[0],8)");
291 &shl ($tmp,56);
292 &xor ($Zhi,"($Hshr4,$nhi[0],8)");
294 unshift (@nhi,pop(@nhi)); # "rotate" registers
295 unshift (@rem,pop(@rem));
297 &movzw ($rem[1],"($rem_8bit,$rem[1],2)");
298 &xor ($Zlo,"8($Htbl,$nlo)");
299 &xor ($Zhi,"($Htbl,$nlo)");
301 &shl ($rem[1],48);
302 &xor ($Zlo,$tmp);
304 &xor ($Zhi,$rem[1]);
305 &movz ($rem[0],&LB($Zlo));
306 &shr ($Zlo,4);
308 &mov ($tmp,$Zhi);
309 &shl (&LB($rem[0]),4);
310 &shr ($Zhi,4);
312 &xor ($Zlo,"8($Htbl,$nhi[0])");
313 &movzw ($rem[0],"($rem_8bit,$rem[0],2)");
314 &shl ($tmp,60);
316 &xor ($Zhi,"($Htbl,$nhi[0])");
317 &xor ($Zlo,$tmp);
318 &shl ($rem[0],48);
320 &bswap ($Zlo);
321 &xor ($Zhi,$rem[0]);
323 &bswap ($Zhi);
324 &cmp ($inp,$len);
325 &jb (".Louter_loop");
327 $code.=<<___;
328 mov $Zlo,8($Xi)
329 mov $Zhi,($Xi)
331 lea 280(%rsp),%rsi
332 mov 0(%rsi),%r15
333 mov 8(%rsi),%r14
334 mov 16(%rsi),%r13
335 mov 24(%rsi),%r12
336 mov 32(%rsi),%rbp
337 mov 40(%rsi),%rbx
338 lea 48(%rsi),%rsp
339 .Lghash_epilogue:
341 .size gcm_ghash_4bit,.-gcm_ghash_4bit
344 ######################################################################
345 # PCLMULQDQ version.
347 @_4args=$win64? ("%rcx","%rdx","%r8", "%r9") : # Win64 order
348 ("%rdi","%rsi","%rdx","%rcx"); # Unix order
350 ($Xi,$Xhi)=("%xmm0","%xmm1"); $Hkey="%xmm2";
351 ($T1,$T2,$T3)=("%xmm3","%xmm4","%xmm5");
353 sub clmul64x64_T2 { # minimal register pressure
354 my ($Xhi,$Xi,$Hkey,$modulo)=@_;
356 $code.=<<___ if (!defined($modulo));
357 movdqa $Xi,$Xhi #
358 pshufd \$0b01001110,$Xi,$T1
359 pshufd \$0b01001110,$Hkey,$T2
360 pxor $Xi,$T1 #
361 pxor $Hkey,$T2
363 $code.=<<___;
364 pclmulqdq \$0x00,$Hkey,$Xi #######
365 pclmulqdq \$0x11,$Hkey,$Xhi #######
366 pclmulqdq \$0x00,$T2,$T1 #######
367 pxor $Xi,$T1 #
368 pxor $Xhi,$T1 #
370 movdqa $T1,$T2 #
371 psrldq \$8,$T1
372 pslldq \$8,$T2 #
373 pxor $T1,$Xhi
374 pxor $T2,$Xi #
378 sub reduction_alg9 { # 17/13 times faster than Intel version
379 my ($Xhi,$Xi) = @_;
381 $code.=<<___;
382 # 1st phase
383 movdqa $Xi,$T1 #
384 psllq \$1,$Xi
385 pxor $T1,$Xi #
386 psllq \$5,$Xi #
387 pxor $T1,$Xi #
388 psllq \$57,$Xi #
389 movdqa $Xi,$T2 #
390 pslldq \$8,$Xi
391 psrldq \$8,$T2 #
392 pxor $T1,$Xi
393 pxor $T2,$Xhi #
395 # 2nd phase
396 movdqa $Xi,$T2
397 psrlq \$5,$Xi
398 pxor $T2,$Xi #
399 psrlq \$1,$Xi #
400 pxor $T2,$Xi #
401 pxor $Xhi,$T2
402 psrlq \$1,$Xi #
403 pxor $T2,$Xi #
407 { my ($Htbl,$Xip)=@_4args;
409 $code.=<<___;
410 .globl gcm_init_clmul
411 .type gcm_init_clmul,\@abi-omnipotent
412 .align 16
413 gcm_init_clmul:
414 movdqu ($Xip),$Hkey
415 pshufd \$0b01001110,$Hkey,$Hkey # dword swap
417 # <<1 twist
418 pshufd \$0b11111111,$Hkey,$T2 # broadcast uppermost dword
419 movdqa $Hkey,$T1
420 psllq \$1,$Hkey
421 pxor $T3,$T3 #
422 psrlq \$63,$T1
423 pcmpgtd $T2,$T3 # broadcast carry bit
424 pslldq \$8,$T1
425 por $T1,$Hkey # H<<=1
427 # magic reduction
428 pand .L0x1c2_polynomial(%rip),$T3
429 pxor $T3,$Hkey # if(carry) H^=0x1c2_polynomial
431 # calculate H^2
432 movdqa $Hkey,$Xi
434 &clmul64x64_T2 ($Xhi,$Xi,$Hkey);
435 &reduction_alg9 ($Xhi,$Xi);
436 $code.=<<___;
437 movdqu $Hkey,($Htbl) # save H
438 movdqu $Xi,16($Htbl) # save H^2
440 .size gcm_init_clmul,.-gcm_init_clmul
444 { my ($Xip,$Htbl)=@_4args;
446 $code.=<<___;
447 .globl gcm_gmult_clmul
448 .type gcm_gmult_clmul,\@abi-omnipotent
449 .align 16
450 gcm_gmult_clmul:
451 movdqu ($Xip),$Xi
452 movdqa .Lbswap_mask(%rip),$T3
453 movdqu ($Htbl),$Hkey
454 pshufb $T3,$Xi
456 &clmul64x64_T2 ($Xhi,$Xi,$Hkey);
457 &reduction_alg9 ($Xhi,$Xi);
458 $code.=<<___;
459 pshufb $T3,$Xi
460 movdqu $Xi,($Xip)
462 .size gcm_gmult_clmul,.-gcm_gmult_clmul
466 { my ($Xip,$Htbl,$inp,$len)=@_4args;
467 my $Xn="%xmm6";
468 my $Xhn="%xmm7";
469 my $Hkey2="%xmm8";
470 my $T1n="%xmm9";
471 my $T2n="%xmm10";
473 $code.=<<___;
474 .globl gcm_ghash_clmul
475 .type gcm_ghash_clmul,\@abi-omnipotent
476 .align 16
477 gcm_ghash_clmul:
479 $code.=<<___ if ($win64);
480 .LSEH_begin_gcm_ghash_clmul:
481 # I can't trust assembler to use specific encoding:-(
482 .byte 0x48,0x83,0xec,0x58 #sub \$0x58,%rsp
483 .byte 0x0f,0x29,0x34,0x24 #movaps %xmm6,(%rsp)
484 .byte 0x0f,0x29,0x7c,0x24,0x10 #movdqa %xmm7,0x10(%rsp)
485 .byte 0x44,0x0f,0x29,0x44,0x24,0x20 #movaps %xmm8,0x20(%rsp)
486 .byte 0x44,0x0f,0x29,0x4c,0x24,0x30 #movaps %xmm9,0x30(%rsp)
487 .byte 0x44,0x0f,0x29,0x54,0x24,0x40 #movaps %xmm10,0x40(%rsp)
489 $code.=<<___;
490 movdqa .Lbswap_mask(%rip),$T3
492 movdqu ($Xip),$Xi
493 movdqu ($Htbl),$Hkey
494 pshufb $T3,$Xi
496 sub \$0x10,$len
497 jz .Lodd_tail
499 movdqu 16($Htbl),$Hkey2
500 #######
501 # Xi+2 =[H*(Ii+1 + Xi+1)] mod P =
502 # [(H*Ii+1) + (H*Xi+1)] mod P =
503 # [(H*Ii+1) + H^2*(Ii+Xi)] mod P
505 movdqu ($inp),$T1 # Ii
506 movdqu 16($inp),$Xn # Ii+1
507 pshufb $T3,$T1
508 pshufb $T3,$Xn
509 pxor $T1,$Xi # Ii+Xi
511 &clmul64x64_T2 ($Xhn,$Xn,$Hkey); # H*Ii+1
512 $code.=<<___;
513 movdqa $Xi,$Xhi #
514 pshufd \$0b01001110,$Xi,$T1
515 pshufd \$0b01001110,$Hkey2,$T2
516 pxor $Xi,$T1 #
517 pxor $Hkey2,$T2
519 lea 32($inp),$inp # i+=2
520 sub \$0x20,$len
521 jbe .Leven_tail
523 .Lmod_loop:
525 &clmul64x64_T2 ($Xhi,$Xi,$Hkey2,1); # H^2*(Ii+Xi)
526 $code.=<<___;
527 movdqu ($inp),$T1 # Ii
528 pxor $Xn,$Xi # (H*Ii+1) + H^2*(Ii+Xi)
529 pxor $Xhn,$Xhi
531 movdqu 16($inp),$Xn # Ii+1
532 pshufb $T3,$T1
533 pshufb $T3,$Xn
535 movdqa $Xn,$Xhn #
536 pshufd \$0b01001110,$Xn,$T1n
537 pshufd \$0b01001110,$Hkey,$T2n
538 pxor $Xn,$T1n #
539 pxor $Hkey,$T2n
540 pxor $T1,$Xhi # "Ii+Xi", consume early
542 movdqa $Xi,$T1 # 1st phase
543 psllq \$1,$Xi
544 pxor $T1,$Xi #
545 psllq \$5,$Xi #
546 pxor $T1,$Xi #
547 pclmulqdq \$0x00,$Hkey,$Xn #######
548 psllq \$57,$Xi #
549 movdqa $Xi,$T2 #
550 pslldq \$8,$Xi
551 psrldq \$8,$T2 #
552 pxor $T1,$Xi
553 pxor $T2,$Xhi #
555 pclmulqdq \$0x11,$Hkey,$Xhn #######
556 movdqa $Xi,$T2 # 2nd phase
557 psrlq \$5,$Xi
558 pxor $T2,$Xi #
559 psrlq \$1,$Xi #
560 pxor $T2,$Xi #
561 pxor $Xhi,$T2
562 psrlq \$1,$Xi #
563 pxor $T2,$Xi #
565 pclmulqdq \$0x00,$T2n,$T1n #######
566 movdqa $Xi,$Xhi #
567 pshufd \$0b01001110,$Xi,$T1
568 pshufd \$0b01001110,$Hkey2,$T2
569 pxor $Xi,$T1 #
570 pxor $Hkey2,$T2
572 pxor $Xn,$T1n #
573 pxor $Xhn,$T1n #
574 movdqa $T1n,$T2n #
575 psrldq \$8,$T1n
576 pslldq \$8,$T2n #
577 pxor $T1n,$Xhn
578 pxor $T2n,$Xn #
580 lea 32($inp),$inp
581 sub \$0x20,$len
582 ja .Lmod_loop
584 .Leven_tail:
586 &clmul64x64_T2 ($Xhi,$Xi,$Hkey2,1); # H^2*(Ii+Xi)
587 $code.=<<___;
588 pxor $Xn,$Xi # (H*Ii+1) + H^2*(Ii+Xi)
589 pxor $Xhn,$Xhi
591 &reduction_alg9 ($Xhi,$Xi);
592 $code.=<<___;
593 test $len,$len
594 jnz .Ldone
596 .Lodd_tail:
597 movdqu ($inp),$T1 # Ii
598 pshufb $T3,$T1
599 pxor $T1,$Xi # Ii+Xi
601 &clmul64x64_T2 ($Xhi,$Xi,$Hkey); # H*(Ii+Xi)
602 &reduction_alg9 ($Xhi,$Xi);
603 $code.=<<___;
604 .Ldone:
605 pshufb $T3,$Xi
606 movdqu $Xi,($Xip)
608 $code.=<<___ if ($win64);
609 movaps (%rsp),%xmm6
610 movaps 0x10(%rsp),%xmm7
611 movaps 0x20(%rsp),%xmm8
612 movaps 0x30(%rsp),%xmm9
613 movaps 0x40(%rsp),%xmm10
614 add \$0x58,%rsp
616 $code.=<<___;
618 .LSEH_end_gcm_ghash_clmul:
619 .size gcm_ghash_clmul,.-gcm_ghash_clmul
623 $code.=<<___;
624 .align 64
625 .Lbswap_mask:
626 .byte 15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0
627 .L0x1c2_polynomial:
628 .byte 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0xc2
629 .align 64
630 .type .Lrem_4bit,\@object
631 .Lrem_4bit:
632 .long 0,`0x0000<<16`,0,`0x1C20<<16`,0,`0x3840<<16`,0,`0x2460<<16`
633 .long 0,`0x7080<<16`,0,`0x6CA0<<16`,0,`0x48C0<<16`,0,`0x54E0<<16`
634 .long 0,`0xE100<<16`,0,`0xFD20<<16`,0,`0xD940<<16`,0,`0xC560<<16`
635 .long 0,`0x9180<<16`,0,`0x8DA0<<16`,0,`0xA9C0<<16`,0,`0xB5E0<<16`
636 .type .Lrem_8bit,\@object
637 .Lrem_8bit:
638 .value 0x0000,0x01C2,0x0384,0x0246,0x0708,0x06CA,0x048C,0x054E
639 .value 0x0E10,0x0FD2,0x0D94,0x0C56,0x0918,0x08DA,0x0A9C,0x0B5E
640 .value 0x1C20,0x1DE2,0x1FA4,0x1E66,0x1B28,0x1AEA,0x18AC,0x196E
641 .value 0x1230,0x13F2,0x11B4,0x1076,0x1538,0x14FA,0x16BC,0x177E
642 .value 0x3840,0x3982,0x3BC4,0x3A06,0x3F48,0x3E8A,0x3CCC,0x3D0E
643 .value 0x3650,0x3792,0x35D4,0x3416,0x3158,0x309A,0x32DC,0x331E
644 .value 0x2460,0x25A2,0x27E4,0x2626,0x2368,0x22AA,0x20EC,0x212E
645 .value 0x2A70,0x2BB2,0x29F4,0x2836,0x2D78,0x2CBA,0x2EFC,0x2F3E
646 .value 0x7080,0x7142,0x7304,0x72C6,0x7788,0x764A,0x740C,0x75CE
647 .value 0x7E90,0x7F52,0x7D14,0x7CD6,0x7998,0x785A,0x7A1C,0x7BDE
648 .value 0x6CA0,0x6D62,0x6F24,0x6EE6,0x6BA8,0x6A6A,0x682C,0x69EE
649 .value 0x62B0,0x6372,0x6134,0x60F6,0x65B8,0x647A,0x663C,0x67FE
650 .value 0x48C0,0x4902,0x4B44,0x4A86,0x4FC8,0x4E0A,0x4C4C,0x4D8E
651 .value 0x46D0,0x4712,0x4554,0x4496,0x41D8,0x401A,0x425C,0x439E
652 .value 0x54E0,0x5522,0x5764,0x56A6,0x53E8,0x522A,0x506C,0x51AE
653 .value 0x5AF0,0x5B32,0x5974,0x58B6,0x5DF8,0x5C3A,0x5E7C,0x5FBE
654 .value 0xE100,0xE0C2,0xE284,0xE346,0xE608,0xE7CA,0xE58C,0xE44E
655 .value 0xEF10,0xEED2,0xEC94,0xED56,0xE818,0xE9DA,0xEB9C,0xEA5E
656 .value 0xFD20,0xFCE2,0xFEA4,0xFF66,0xFA28,0xFBEA,0xF9AC,0xF86E
657 .value 0xF330,0xF2F2,0xF0B4,0xF176,0xF438,0xF5FA,0xF7BC,0xF67E
658 .value 0xD940,0xD882,0xDAC4,0xDB06,0xDE48,0xDF8A,0xDDCC,0xDC0E
659 .value 0xD750,0xD692,0xD4D4,0xD516,0xD058,0xD19A,0xD3DC,0xD21E
660 .value 0xC560,0xC4A2,0xC6E4,0xC726,0xC268,0xC3AA,0xC1EC,0xC02E
661 .value 0xCB70,0xCAB2,0xC8F4,0xC936,0xCC78,0xCDBA,0xCFFC,0xCE3E
662 .value 0x9180,0x9042,0x9204,0x93C6,0x9688,0x974A,0x950C,0x94CE
663 .value 0x9F90,0x9E52,0x9C14,0x9DD6,0x9898,0x995A,0x9B1C,0x9ADE
664 .value 0x8DA0,0x8C62,0x8E24,0x8FE6,0x8AA8,0x8B6A,0x892C,0x88EE
665 .value 0x83B0,0x8272,0x8034,0x81F6,0x84B8,0x857A,0x873C,0x86FE
666 .value 0xA9C0,0xA802,0xAA44,0xAB86,0xAEC8,0xAF0A,0xAD4C,0xAC8E
667 .value 0xA7D0,0xA612,0xA454,0xA596,0xA0D8,0xA11A,0xA35C,0xA29E
668 .value 0xB5E0,0xB422,0xB664,0xB7A6,0xB2E8,0xB32A,0xB16C,0xB0AE
669 .value 0xBBF0,0xBA32,0xB874,0xB9B6,0xBCF8,0xBD3A,0xBF7C,0xBEBE
671 .asciz "GHASH for x86_64, CRYPTOGAMS by <appro\@openssl.org>"
672 .align 64
675 # EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
676 # CONTEXT *context,DISPATCHER_CONTEXT *disp)
677 if ($win64) {
678 $rec="%rcx";
679 $frame="%rdx";
680 $context="%r8";
681 $disp="%r9";
683 $code.=<<___;
684 .extern __imp_RtlVirtualUnwind
685 .type se_handler,\@abi-omnipotent
686 .align 16
687 se_handler:
688 push %rsi
689 push %rdi
690 push %rbx
691 push %rbp
692 push %r12
693 push %r13
694 push %r14
695 push %r15
696 pushfq
697 sub \$64,%rsp
699 mov 120($context),%rax # pull context->Rax
700 mov 248($context),%rbx # pull context->Rip
702 mov 8($disp),%rsi # disp->ImageBase
703 mov 56($disp),%r11 # disp->HandlerData
705 mov 0(%r11),%r10d # HandlerData[0]
706 lea (%rsi,%r10),%r10 # prologue label
707 cmp %r10,%rbx # context->Rip<prologue label
708 jb .Lin_prologue
710 mov 152($context),%rax # pull context->Rsp
712 mov 4(%r11),%r10d # HandlerData[1]
713 lea (%rsi,%r10),%r10 # epilogue label
714 cmp %r10,%rbx # context->Rip>=epilogue label
715 jae .Lin_prologue
717 lea 24(%rax),%rax # adjust "rsp"
719 mov -8(%rax),%rbx
720 mov -16(%rax),%rbp
721 mov -24(%rax),%r12
722 mov %rbx,144($context) # restore context->Rbx
723 mov %rbp,160($context) # restore context->Rbp
724 mov %r12,216($context) # restore context->R12
726 .Lin_prologue:
727 mov 8(%rax),%rdi
728 mov 16(%rax),%rsi
729 mov %rax,152($context) # restore context->Rsp
730 mov %rsi,168($context) # restore context->Rsi
731 mov %rdi,176($context) # restore context->Rdi
733 mov 40($disp),%rdi # disp->ContextRecord
734 mov $context,%rsi # context
735 mov \$`1232/8`,%ecx # sizeof(CONTEXT)
736 .long 0xa548f3fc # cld; rep movsq
738 mov $disp,%rsi
739 xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER
740 mov 8(%rsi),%rdx # arg2, disp->ImageBase
741 mov 0(%rsi),%r8 # arg3, disp->ControlPc
742 mov 16(%rsi),%r9 # arg4, disp->FunctionEntry
743 mov 40(%rsi),%r10 # disp->ContextRecord
744 lea 56(%rsi),%r11 # &disp->HandlerData
745 lea 24(%rsi),%r12 # &disp->EstablisherFrame
746 mov %r10,32(%rsp) # arg5
747 mov %r11,40(%rsp) # arg6
748 mov %r12,48(%rsp) # arg7
749 mov %rcx,56(%rsp) # arg8, (NULL)
750 call *__imp_RtlVirtualUnwind(%rip)
752 mov \$1,%eax # ExceptionContinueSearch
753 add \$64,%rsp
754 popfq
755 pop %r15
756 pop %r14
757 pop %r13
758 pop %r12
759 pop %rbp
760 pop %rbx
761 pop %rdi
762 pop %rsi
764 .size se_handler,.-se_handler
766 .section .pdata
767 .align 4
768 .rva .LSEH_begin_gcm_gmult_4bit
769 .rva .LSEH_end_gcm_gmult_4bit
770 .rva .LSEH_info_gcm_gmult_4bit
772 .rva .LSEH_begin_gcm_ghash_4bit
773 .rva .LSEH_end_gcm_ghash_4bit
774 .rva .LSEH_info_gcm_ghash_4bit
776 .rva .LSEH_begin_gcm_ghash_clmul
777 .rva .LSEH_end_gcm_ghash_clmul
778 .rva .LSEH_info_gcm_ghash_clmul
780 .section .xdata
781 .align 8
782 .LSEH_info_gcm_gmult_4bit:
783 .byte 9,0,0,0
784 .rva se_handler
785 .rva .Lgmult_prologue,.Lgmult_epilogue # HandlerData
786 .LSEH_info_gcm_ghash_4bit:
787 .byte 9,0,0,0
788 .rva se_handler
789 .rva .Lghash_prologue,.Lghash_epilogue # HandlerData
790 .LSEH_info_gcm_ghash_clmul:
791 .byte 0x01,0x1f,0x0b,0x00
792 .byte 0x1f,0xa8,0x04,0x00 #movaps 0x40(rsp),xmm10
793 .byte 0x19,0x98,0x03,0x00 #movaps 0x30(rsp),xmm9
794 .byte 0x13,0x88,0x02,0x00 #movaps 0x20(rsp),xmm8
795 .byte 0x0d,0x78,0x01,0x00 #movaps 0x10(rsp),xmm7
796 .byte 0x08,0x68,0x00,0x00 #movaps (rsp),xmm6
797 .byte 0x04,0xa2,0x00,0x00 #sub rsp,0x58
801 $code =~ s/\`([^\`]*)\`/eval($1)/gem;
803 print $code;
805 close STDOUT;