3 TLS Working Group D. Taylor
4 Internet-Draft Forge Research Pty Ltd
5 Expires: February 17, 2005 T. Wu
12 Using SRP for TLS Authentication
17 This document is an Internet-Draft and is in full conformance with
18 all provisions of Section 10 of RFC2026.
20 Internet-Drafts are working documents of the Internet Engineering
21 Task Force (IETF), its areas, and its working groups. Note that
22 other groups may also distribute working documents as
25 Internet-Drafts are draft documents valid for a maximum of six months
26 and may be updated, replaced, or obsoleted by other documents at any
27 time. It is inappropriate to use Internet-Drafts as reference
28 material or to cite them other than as "work in progress."
30 The list of current Internet-Drafts can be accessed at
31 http://www.ietf.org/ietf/1id-abstracts.txt.
33 The list of Internet-Draft Shadow Directories can be accessed at
34 http://www.ietf.org/shadow.html.
36 This Internet-Draft will expire on February 17, 2005.
40 Copyright (C) The Internet Society (2004). All Rights Reserved.
44 This memo presents a technique for using the Secure Remote Password
45 protocol ([SRP], [SRP-6]) as an authentication method for the
46 Transport Layer Security protocol [TLS].
55 Taylor, et al. Expires February 17, 2005 [Page 1]
57 Internet-Draft Using SRP for TLS Authentication August 2004
62 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 3
63 2. SRP Authentication in TLS . . . . . . . . . . . . . . . . . . 4
64 2.1 Notation and Terminology . . . . . . . . . . . . . . . . . 4
65 2.2 Handshake Protocol Overview . . . . . . . . . . . . . . . 4
66 2.3 Text Preparation . . . . . . . . . . . . . . . . . . . . . 5
67 2.4 SRP Verifier Creation . . . . . . . . . . . . . . . . . . 5
68 2.5 Changes to the Handshake Message Contents . . . . . . . . 5
69 2.5.1 Client Hello . . . . . . . . . . . . . . . . . . . . . 5
70 2.5.2 Server Certificate . . . . . . . . . . . . . . . . . . 7
71 2.5.3 Server Key Exchange . . . . . . . . . . . . . . . . . 7
72 2.5.4 Client Key Exchange . . . . . . . . . . . . . . . . . 8
73 2.6 Calculating the Pre-master Secret . . . . . . . . . . . . 8
74 2.7 Cipher Suite Definitions . . . . . . . . . . . . . . . . . 9
75 2.8 New Message Structures . . . . . . . . . . . . . . . . . . 9
76 2.8.1 Client Hello . . . . . . . . . . . . . . . . . . . . . 9
77 2.8.2 Server Key Exchange . . . . . . . . . . . . . . . . . 10
78 2.8.3 Client Key Exchange . . . . . . . . . . . . . . . . . 10
79 2.9 Error Alerts . . . . . . . . . . . . . . . . . . . . . . . 11
80 3. Security Considerations . . . . . . . . . . . . . . . . . . . 12
81 4. References . . . . . . . . . . . . . . . . . . . . . . . . . . 13
82 4.1 Normative References . . . . . . . . . . . . . . . . . . . . 13
83 4.2 Informative References . . . . . . . . . . . . . . . . . . . 13
84 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . 14
85 A. SRP Group Parameters . . . . . . . . . . . . . . . . . . . . . 15
86 B. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 19
87 Intellectual Property and Copyright Statements . . . . . . . . 20
111 Taylor, et al. Expires February 17, 2005 [Page 2]
113 Internet-Draft Using SRP for TLS Authentication August 2004
118 At the time of writing TLS [TLS] uses public key certificates, or
119 Kerberos, for authentication.
121 These authentication methods do not seem well suited to the
122 applications now being adapted to use TLS ([IMAP] or [FTP], for
123 example). Given that these protocols are designed to use the user
124 name and password method of authentication, being able to safely use
125 user names and passwords provides an easier route to additional
128 SRP ([SRP], [SRP-6]) is an authentication method that allows the use
129 of user names and passwords over unencrypted channels without
130 revealing the password to an eavesdropper. SRP also supplies a
131 shared secret at the end of the authentication sequence that can be
132 used to generate encryption keys.
134 This document describes the use of the SRP authentication method for
137 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
138 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
139 document are to be interpreted as described in RFC 2119.
167 Taylor, et al. Expires February 17, 2005 [Page 3]
169 Internet-Draft Using SRP for TLS Authentication August 2004
172 2. SRP Authentication in TLS
174 2.1 Notation and Terminology
176 The version of SRP used here is sometimes referred to as "SRP-6"
177 [SRP-6]. This version is a slight improvement over "SRP-3", which
178 was described in [SRP] and [RFC2945].
180 This document uses the variable names defined in [SRP-6]:
182 N, g: group parameters (prime and generator)
184 B, b: server's public and private values
185 A, a: client's public and private values
186 I: user name (aka "identity")
191 The | symbol indicates string concatenation, the ^ operator is the
192 exponentiation operation, and the % operator is the integer remainder
195 Conversion between integers and byte-strings assumes the
196 most-significant bytes are stored first, as per [TLS] and [RFC2945].
197 In the following text, if a conversion from integer to byte-string is
198 implicit, the most-significant byte in the resultant byte-string MUST
199 be non-zero. If a conversion is explicitly specified with the
200 operator PAD(), the integer will first be implicitly converted, then
201 the resultant byte-string will be left-padded with zeros (if
202 necessary) until its length equals the implicitly-converted length of
205 2.2 Handshake Protocol Overview
207 The advent of [SRP-6] allows the SRP protocol to be implemented using
208 the standard sequence of handshake messages defined in [TLS].
210 The parameters to various messages are given in the following
223 Taylor, et al. Expires February 17, 2005 [Page 4]
225 Internet-Draft Using SRP for TLS Authentication August 2004
230 Client Hello (I) ------------------------> |
231 | <---------------------------- Server Hello
232 | <---------------------------- Certificate*
233 | <---------------------------- Server Key Exchange (N, g, s, B)
234 | <---------------------------- Server Hello Done
235 Client Key Exchange (A) -----------------> |
236 [Change cipher spec] |
237 Finished --------------------------------> |
238 | [Change cipher spec]
239 | <---------------------------- Finished
241 Application Data <--------------> Application Data
243 * Indicates an optional message which is not always sent.
250 The user name and password strings shall be UTF-8 encoded Unicode,
251 prepared using the [SASLPrep] profile of [StringPrep].
253 2.4 SRP Verifier Creation
255 The verifier is calculated as described in section 3 of [RFC2945].
256 We give the algorithm here for convenience.
258 The verifier (v) is computed based on the salt (s), user name (I),
259 password (P), and group parameters (N, g). The computation uses the
260 [SHA1] hash algorithm:
262 x = SHA1(s | SHA1(I | ":" | P))
265 2.5 Changes to the Handshake Message Contents
267 This section describes the changes to the TLS handshake message
268 contents when SRP is being used for authentication. The definitions
269 of the new message contents and the on-the-wire changes are given in
274 The user name is appended to the standard client hello message using
275 the hello message extension mechanism defined in [TLSEXT] (see
279 Taylor, et al. Expires February 17, 2005 [Page 5]
281 Internet-Draft Using SRP for TLS Authentication August 2004
286 2.5.1.1 Session Resumption
288 When a client attempts to resume a session that uses SRP
289 authentication, the client MUST include the user name extension in
290 the client hello message, in case the server cannot or will not allow
291 session resumption, meaning a full handshake is required.
293 If the server does agree to resume an existing session the server
294 MUST ignore the information in the SRP extension of the client hello
295 message, except for its inclusion in the finished message hashes.
296 This is to ensure attackers cannot replace the authenticated identity
297 without supplying the proper authentication information.
299 2.5.1.2 Missing SRP Username
301 The client may offer SRP ciphersuites in the hello message but omit
302 the SRP extension. If the server would like to select an SRP
303 ciphersuite in this case, the server MAY return a
304 missing_srp_username alert (see Section 2.9) immediately after
305 processing the client hello message. This alert signals the client
306 to resend the hello message, this time with the SRP extension. This
307 allows the client to advertise that it supports SRP, but not have to
308 prompt the user for his user name and password, nor expose the user
309 name in the clear, unless necessary.
311 After sending the missing_srp_username alert, the server MUST leave
312 the TLS connection open, yet reset its handshake protocol state so it
313 is prepared to receive a second client hello message. Upon receiving
314 the missing_srp_username alert, the client MUST either send a second
315 client hello message, or send a fatal user_cancelled alert.
317 If the client sends a second hello message, the second hello message
318 MUST offer SRP ciphersuites, and MUST contain the SRP extension, and
319 the server MUST choose one of the SRP ciphersuites. Both client
320 hello messages MUST be treated as handshake messages and included in
321 the hash calculations for the TLS Finished message. The premaster
322 and master secret calculations will use the random value from the
323 second client hello message, not the first.
325 2.5.1.3 Unknown SRP Username
327 If the server doesn't have a verifier for the given user name, the
328 server MAY abort the handshake with an unknown_srp_username alert
329 (see Section 2.9). Alternatively, if the server wishes to hide the
330 fact that this user name doesn't have a verifier, the server MAY
331 simulate the protocol as if a verifier existed, but then reject the
335 Taylor, et al. Expires February 17, 2005 [Page 6]
337 Internet-Draft Using SRP for TLS Authentication August 2004
340 client's finished message with a bad_record_mac alert, as if the
341 password was incorrect.
343 To simulate the existence of an entry for each user name, the server
344 must consistently return the same salt (s) and group (N, g) values
345 for the same user name. For example, the server could store a secret
346 "seed key" and then use HMAC-SHA1(seed_key, "salt" | user_name) to
347 generate the salts [HMAC]. For B, the server can return a random
348 value between 1 and N-1 inclusive. However, the server should take
349 care to simulate computation delays. One way to do this is to
350 generate a fake verifier using the "seed key" approach, and then
351 proceed with the protocol as usual.
353 2.5.2 Server Certificate
355 The server MUST send a certificate if it agrees to an SRP cipher
356 suite that requires the server to provide additional authentication
357 in the form of a digital signature. See Section 2.7 for details of
358 which ciphersuites defined in this document require a server
359 certificate to be sent.
361 2.5.3 Server Key Exchange
363 The server key exchange message contains the prime (N), the generator
364 (g), and the salt value (s) read from the SRP password file based on
365 the user name (I) received in the client hello extension.
367 The server key exchange message also contains the server's public
368 value (B). The server calculates this value as B = k*v + g^b % N,
369 where b is a random number which SHOULD be at least 256 bits in
370 length, and k = SHA1(N | PAD(g)).
372 If the server has sent a certificate message, the server key exchange
373 message MUST be signed.
375 The group parameters (N, g) sent in this message MUST have N as a
376 safe prime (a prime of the form N=2q+1, where q is also prime). The
377 integers from 1 to N-1 will form a group under multiplication % N,
378 and g MUST be a generator of this group. The SRP group parameters in
379 Appendix A are proven to have these properties, so the client SHOULD
380 accept any parameters from this Appendix which have large enough N
381 values to meet his security requirements. The client MAY accept
382 other group parameters from the server, either by prior arrangement,
383 or by checking the parameters himself.
385 To check that N is a safe prime, the client should use some method
386 such as performing 64 iterations of the Miller-Rabin test with random
387 bases (selected from 2 to N-2) on both N and q (by performing 64
391 Taylor, et al. Expires February 17, 2005 [Page 7]
393 Internet-Draft Using SRP for TLS Authentication August 2004
396 iterations, the probability of a false positive is no more than
397 2^-128). To check that g is a generator of the group, the client can
398 check that 1 < g < N-1, and g^q % N equals N-1. Performing these
399 checks may be time-consuming; after checking new parameters, the
400 client may want to add them to a known-good list.
402 Group parameters that are not accepted via one of the above methods
403 MUST be rejected with an untrusted_srp_parameters alert (see Section
406 The client MUST abort the handshake with an illegal_parameter alert
409 2.5.4 Client Key Exchange
411 The client key exchange message carries the client's public value
412 (A). The client calculates this value as A = g^a % N, where a is a
413 random number which SHOULD be at least 256 bits in length.
415 The server MUST abort the handshake with an illegal_parameter alert
418 2.6 Calculating the Pre-master Secret
420 The pre-master secret is calculated by the client as follows:
422 I, P = <read from user>
423 N, g, s, B = <read from server>
426 u = SHA1(PAD(A) | PAD(B))
428 x = SHA1(s | SHA1(I | ":" | P))
429 <premaster secret> = (B - (k * g^x)) ^ (a + (u * x)) % N
431 The pre-master secret is calculated by the server as follows:
433 N, g, s, v = <read from password file>
437 A = <read from client>
438 u = SHA1(PAD(A) | PAD(B))
439 <premaster secret> = (A * v^u) ^ b % N
441 The finished messages perform the same function as the client and
442 server evidence messages (M1 and M2) specified in [RFC2945]. If
443 either the client or the server calculate an incorrect premaster
447 Taylor, et al. Expires February 17, 2005 [Page 8]
449 Internet-Draft Using SRP for TLS Authentication August 2004
452 secret, the finished messages will fail to decrypt properly, and the
453 other party will return a bad_record_mac alert.
455 If a client application receives a bad_record_mac alert when
456 performing an SRP handshake, it should inform the user that the
457 entered user name and password are incorrect.
459 2.7 Cipher Suite Definitions
461 The following cipher suites are added by this draft. The usage of
462 AES ciphersuites is as defined in [RFC3268].
464 CipherSuite TLS_SRP_SHA_WITH_3DES_EDE_CBC_SHA = { 0x00,0x50 };
465 CipherSuite TLS_SRP_SHA_RSA_WITH_3DES_EDE_CBC_SHA = { 0x00,0x51 };
466 CipherSuite TLS_SRP_SHA_DSS_WITH_3DES_EDE_CBC_SHA = { 0x00,0x52 };
467 CipherSuite TLS_SRP_SHA_WITH_AES_128_CBC_SHA = { 0x00,0x53 };
468 CipherSuite TLS_SRP_SHA_RSA_WITH_AES_128_CBC_SHA = { 0x00,0x54 };
469 CipherSuite TLS_SRP_SHA_DSS_WITH_AES_128_CBC_SHA = { 0x00,0x55 };
470 CipherSuite TLS_SRP_SHA_WITH_AES_256_CBC_SHA = { 0x00,0x56 };
471 CipherSuite TLS_SRP_SHA_RSA_WITH_AES_256_CBC_SHA = { 0x00,0x57 };
472 CipherSuite TLS_SRP_SHA_DSS_WITH_AES_256_CBC_SHA = { 0x00,0x58 };
474 Cipher suites that begin with TLS_SRP_SHA_RSA or TLS_SRP_SHA_DSS
475 require the server to send a certificate message containing a
476 certificate with the specified type of public key, and to sign the
477 server key exchange message using a matching private key.
479 Cipher suites that do not include a digital signature algorithm
480 identifier assume the server is authenticated by its possesion of the
483 Implementations conforming to this specification MUST implement the
484 TLS_SRP_SHA_WITH_3DES_EDE_CBC_SHA ciphersuite, SHOULD implement the
485 TLS_SRP_SHA_WITH_AES_128_CBC_SHA and TLS_SRP_SHA_WITH_AES_256_CBC_SHA
486 ciphersuites, and MAY implement the remaining ciphersuites.
488 2.8 New Message Structures
490 This section shows the structure of the messages passed during a
491 handshake that uses SRP for authentication. The representation
492 language used is the same as that used in [TLS].
496 A new value, "srp(6)", has been added to the enumerated ExtensionType
497 defined in [TLSEXT]. This value MUST be used as the extension number
498 for the SRP extension.
503 Taylor, et al. Expires February 17, 2005 [Page 9]
505 Internet-Draft Using SRP for TLS Authentication August 2004
508 The "extension_data" field of the SRP extension SHALL contain:
510 opaque srp_I<1..2^8-1>
512 where srp_I is the user name, encoded per Section 2.4.
514 2.8.2 Server Key Exchange
516 A new value, "srp", has been added to the enumerated
517 KeyExchangeAlgorithm originally defined in [TLS].
519 When the value of KeyExchangeAlgorithm is set to "srp", the server's
520 SRP parameters are sent in the server key exchange message, encoded
521 in a ServerSRPParams structure.
523 If a certificate is sent to the client the server key exchange
524 message must be signed.
526 enum { rsa, diffie_hellman, srp } KeyExchangeAlgorithm;
529 select (KeyExchangeAlgorithm) {
531 ServerDHParams params;
532 Signature signed_params;
534 ServerRSAParams params;
535 Signature signed_params;
536 case srp: /* new entry */
537 ServerSRPParams params;
538 Signature signed_params;
543 opaque srp_N<1..2^16-1>;
544 opaque srp_g<1..2^16-1>;
545 opaque srp_s<1..2^8-1>
546 opaque srp_B<1..2^16-1>;
547 } ServerSRPParams; /* SRP parameters */
549 2.8.3 Client Key Exchange
551 When the value of KeyExchangeAlgorithm is set to "srp", the client's
552 public value (A) is sent in the client key exchange message, encoded
553 in a ClientSRPPublic structure.
559 Taylor, et al. Expires February 17, 2005 [Page 10]
561 Internet-Draft Using SRP for TLS Authentication August 2004
565 select (KeyExchangeAlgorithm) {
566 case rsa: EncryptedPreMasterSecret;
567 case diffie_hellman: ClientDiffieHellmanPublic;
568 case srp: ClientSRPPublic; /* new entry */
573 opaque srp_A<1..2^16-1>;
578 Three new error alerts are defined:
580 o "unknown_srp_username" (120) - this alert MAY be sent by a server
581 that receives an unknown user name. This alert is always fatal.
582 See Section 2.5.1.3 for details.
583 o "missing_srp_username" (121) - this alert MAY be sent by a server
584 that would like to select an offered SRP ciphersuite, if the SRP
585 extension is absent from the client's hello message. This alert
586 is always a warning. Upon receiving this alert, the client MAY
587 send a new hello message on the same connection, this time
588 including the SRP extension. See Section 2.5.1.2 for details.
589 o "untrusted_srp_parameters" (122) - this alert MUST be sent by a
590 client that receives unknown or untrusted (N, g) values. This
591 alert is always fatal. See Section 2.5.3 for details.
615 Taylor, et al. Expires February 17, 2005 [Page 11]
617 Internet-Draft Using SRP for TLS Authentication August 2004
620 3. Security Considerations
622 If an attacker is able to steal the SRP verifier file, the attacker
623 can masquerade as the real server, and can also use dictionary
624 attacks to recover client passwords.
626 An attacker could repeatedly contact an SRP server and try to guess a
627 legitimate user's password. Servers SHOULD take steps to prevent
628 this, such as limiting the rate of authentication attempts from a
629 particular IP address, or against a particular user account, or
630 locking the user account once a threshold of failed attempts is
633 The client's user name is sent in the clear in the Client Hello
634 message. To avoid sending the user name in the clear, the client
635 could first open a conventional anonymous, or server-authenticated
636 connection, then renegotiate an SRP-authenticated connection with the
637 handshake protected by the first connection.
639 The checks described in Section 2.5.3 and Section 2.5.4 on the
640 received values for A and B are crucial for security and MUST be
643 The private values a and b SHOULD be at least 256 bit random numbers,
644 to give approximately 128 bits of security against certain methods of
645 calculating discrete logarithms.
647 If the client receives a missing_srp_username alert, the client
648 should be aware that unless the handshake protocol is run to
649 completion, this alert may have been inserted by an attacker. If the
650 handshake protocol is not run to completion, the client should not
651 make any decisions, nor form any assumptions, based on receiving this
654 It is possible to choose a (user name, password) pair such that the
655 resulting verifier will also match other, related, (user name,
656 password) pairs. Thus, anyone using verifiers should be careful not
657 to assume that only a single (user name, password) pair matches the
671 Taylor, et al. Expires February 17, 2005 [Page 12]
673 Internet-Draft Using SRP for TLS Authentication August 2004
678 4.1 Normative References
680 [TLS] Dierks, T. and C. Allen, "The TLS Protocol", RFC 2246,
683 [SRP-6] Wu, T., "SRP-6: Improvements and Refinements to the Secure
684 Remote Password Protocol", October 2002,
685 <http://srp.stanford.edu/srp6.ps>.
687 [TLSEXT] Blake-Wilson, S., Nystrom, M., Hopwood, D., Mikkelsen, J.
688 and T. Wright, "TLS Extensions", RFC 3546, June 2003.
691 Hoffman, P. and M. Blanchet, "Preparation of
692 Internationalized Strings ("stringprep")", RFC 3454,
696 Zeilenga, K., "SASLprep: Stringprep profile for user names
697 and passwords", draft-ietf-sasl-saslprep-10 (work in
698 progress), July 2004.
700 [RFC2945] Wu, T., "The SRP Authentication and Key Exchange System",
701 RFC 2945, September 2000.
703 [SHA1] "Announcing the Secure Hash Standard", FIPS 180-1,
706 [HMAC] Krawczyk, H., Bellare, M. and R. Canetti, "HMAC:
707 Keyed-Hashing for Message Authentication", RFC 2104,
710 [RFC3268] Chown, P., "Advanced Encryption Standard (AES)
711 Ciphersuites for Transport Layer Security (TLS)", RFC
714 [MODP] Kivinen, T. and M. Kojo, "More Modular Exponentiation
715 (MODP) Diffie-Hellman groups for Internet Key Exchange
716 (IKE)", RFC 3526, May 2003.
718 4.2 Informative References
720 [IMAP] Newman, C., "Using TLS with IMAP, POP3 and ACAP", RFC 2595,
723 [FTP] Ford-Hutchinson, P., "Securing FTP with TLS",
727 Taylor, et al. Expires February 17, 2005 [Page 13]
729 Internet-Draft Using SRP for TLS Authentication August 2004
732 draft-murray-auth-ftp-ssl-15 (work in progress), August 2004.
734 [SRP] Wu, T., "The Secure Remote Password Protocol", Proceedings of
735 the 1998 Internet Society Network and Distributed System
736 Security Symposium pp. 97-111, March 1998.
742 Forge Research Pty Ltd
744 EMail: DavidTaylor@forge.com.au
745 URI: http://www.forge.com.au/
751 EMail: tjw@cs.stanford.edu
754 Nikos Mavroyanopoulos
756 EMail: nmav@gnutls.org
757 URI: http://www.gnutls.org/
762 EMail: trevp@trevp.net
763 URI: http://trevp.net/
783 Taylor, et al. Expires February 17, 2005 [Page 14]
785 Internet-Draft Using SRP for TLS Authentication August 2004
788 Appendix A. SRP Group Parameters
790 The 1024, 1536, and 2048-bit groups are taken from software developed
791 by Tom Wu and Eugene Jhong for the Stanford SRP distribution, and
792 subsequently proven to be prime. The larger primes are taken from
793 [MODP], but generators have been calculated that are primitive roots
794 of N, unlike the generators in [MODP].
796 The 1024-bit and 1536-bit groups MUST be supported.
800 The hexadecimal value for the prime is:
801 EEAF0AB9 ADB38DD6 9C33F80A FA8FC5E8 60726187 75FF3C0B 9EA2314C
802 9C256576 D674DF74 96EA81D3 383B4813 D692C6E0 E0D5D8E2 50B98BE4
803 8E495C1D 6089DAD1 5DC7D7B4 6154D6B6 CE8EF4AD 69B15D49 82559B29
804 7BCF1885 C529F566 660E57EC 68EDBC3C 05726CC0 2FD4CBF4 976EAA9A
805 FD5138FE 8376435B 9FC61D2F C0EB06E3
811 The hexadecimal value for the prime is:
812 9DEF3CAF B939277A B1F12A86 17A47BBB DBA51DF4 99AC4C80 BEEEA961
813 4B19CC4D 5F4F5F55 6E27CBDE 51C6A94B E4607A29 1558903B A0D0F843
814 80B655BB 9A22E8DC DF028A7C EC67F0D0 8134B1C8 B9798914 9B609E0B
815 E3BAB63D 47548381 DBC5B1FC 764E3F4B 53DD9DA1 158BFD3E 2B9C8CF5
816 6EDF0195 39349627 DB2FD53D 24B7C486 65772E43 7D6C7F8C E442734A
817 F7CCB7AE 837C264A E3A9BEB8 7F8A2FE9 B8B5292E 5A021FFF 5E91479E
818 8CE7A28C 2442C6F3 15180F93 499A234D CF76E3FE D135F9BB
824 The hexadecimal value for the prime is:
825 AC6BDB41 324A9A9B F166DE5E 1389582F AF72B665 1987EE07 FC319294
826 3DB56050 A37329CB B4A099ED 8193E075 7767A13D D52312AB 4B03310D
827 CD7F48A9 DA04FD50 E8083969 EDB767B0 CF609517 9A163AB3 661A05FB
828 D5FAAAE8 2918A996 2F0B93B8 55F97993 EC975EEA A80D740A DBF4FF74
829 7359D041 D5C33EA7 1D281E44 6B14773B CA97B43A 23FB8016 76BD207A
830 436C6481 F1D2B907 8717461A 5B9D32E6 88F87748 544523B5 24B0D57D
831 5EA77A27 75D2ECFA 032CFBDB F52FB378 61602790 04E57AE6 AF874E73
832 03CE5329 9CCC041C 7BC308D8 2A5698F3 A8D0C382 71AE35F8 E9DBFBB6
833 94B5C803 D89F7AE4 35DE236D 525F5475 9B65E372 FCD68EF2 0FA7111F
839 Taylor, et al. Expires February 17, 2005 [Page 15]
841 Internet-Draft Using SRP for TLS Authentication August 2004
848 This prime is: 2^3072 - 2^3008 - 1 + 2^64 * { [2^2942 pi] +
851 Its hexadecimal value is:
852 FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1 29024E08
853 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD EF9519B3 CD3A431B
854 302B0A6D F25F1437 4FE1356D 6D51C245 E485B576 625E7EC6 F44C42E9
855 A637ED6B 0BFF5CB6 F406B7ED EE386BFB 5A899FA5 AE9F2411 7C4B1FE6
856 49286651 ECE45B3D C2007CB8 A163BF05 98DA4836 1C55D39A 69163FA8
857 FD24CF5F 83655D23 DCA3AD96 1C62F356 208552BB 9ED52907 7096966D
858 670C354E 4ABC9804 F1746C08 CA18217C 32905E46 2E36CE3B E39E772C
859 180E8603 9B2783A2 EC07A28F B5C55DF0 6F4C52C9 DE2BCBF6 95581718
860 3995497C EA956AE5 15D22618 98FA0510 15728E5A 8AAAC42D AD33170D
861 04507A33 A85521AB DF1CBA64 ECFB8504 58DBEF0A 8AEA7157 5D060C7D
862 B3970F85 A6E1E4C7 ABF5AE8C DB0933D7 1E8C94E0 4A25619D CEE3D226
863 1AD2EE6B F12FFA06 D98A0864 D8760273 3EC86A64 521F2B18 177B200C
864 BBE11757 7A615D6C 770988C0 BAD946E2 08E24FA0 74E5AB31 43DB5BFC
865 E0FD108E 4B82D120 A93AD2CA FFFFFFFF FFFFFFFF
871 This prime is: 2^4096 - 2^4032 - 1 + 2^64 * { [2^3966 pi] +
874 Its hexadecimal value is:
875 FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1 29024E08
876 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD EF9519B3 CD3A431B
877 302B0A6D F25F1437 4FE1356D 6D51C245 E485B576 625E7EC6 F44C42E9
878 A637ED6B 0BFF5CB6 F406B7ED EE386BFB 5A899FA5 AE9F2411 7C4B1FE6
879 49286651 ECE45B3D C2007CB8 A163BF05 98DA4836 1C55D39A 69163FA8
880 FD24CF5F 83655D23 DCA3AD96 1C62F356 208552BB 9ED52907 7096966D
881 670C354E 4ABC9804 F1746C08 CA18217C 32905E46 2E36CE3B E39E772C
882 180E8603 9B2783A2 EC07A28F B5C55DF0 6F4C52C9 DE2BCBF6 95581718
883 3995497C EA956AE5 15D22618 98FA0510 15728E5A 8AAAC42D AD33170D
884 04507A33 A85521AB DF1CBA64 ECFB8504 58DBEF0A 8AEA7157 5D060C7D
885 B3970F85 A6E1E4C7 ABF5AE8C DB0933D7 1E8C94E0 4A25619D CEE3D226
886 1AD2EE6B F12FFA06 D98A0864 D8760273 3EC86A64 521F2B18 177B200C
887 BBE11757 7A615D6C 770988C0 BAD946E2 08E24FA0 74E5AB31 43DB5BFC
888 E0FD108E 4B82D120 A9210801 1A723C12 A787E6D7 88719A10 BDBA5B26
889 99C32718 6AF4E23C 1A946834 B6150BDA 2583E9CA 2AD44CE8 DBBBC2DB
890 04DE8EF9 2E8EFC14 1FBECAA6 287C5947 4E6BC05D 99B2964F A090C3A2
891 233BA186 515BE7ED 1F612970 CEE2D7AF B81BDD76 2170481C D0069127
895 Taylor, et al. Expires February 17, 2005 [Page 16]
897 Internet-Draft Using SRP for TLS Authentication August 2004
900 D5B05AA9 93B4EA98 8D8FDDC1 86FFB7DC 90A6C08F 4DF435C9 34063199
907 This prime is: 2^6144 - 2^6080 - 1 + 2^64 * { [2^6014 pi] +
910 Its hexadecimal value is:
911 FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1 29024E08
912 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD EF9519B3 CD3A431B
913 302B0A6D F25F1437 4FE1356D 6D51C245 E485B576 625E7EC6 F44C42E9
914 A637ED6B 0BFF5CB6 F406B7ED EE386BFB 5A899FA5 AE9F2411 7C4B1FE6
915 49286651 ECE45B3D C2007CB8 A163BF05 98DA4836 1C55D39A 69163FA8
916 FD24CF5F 83655D23 DCA3AD96 1C62F356 208552BB 9ED52907 7096966D
917 670C354E 4ABC9804 F1746C08 CA18217C 32905E46 2E36CE3B E39E772C
918 180E8603 9B2783A2 EC07A28F B5C55DF0 6F4C52C9 DE2BCBF6 95581718
919 3995497C EA956AE5 15D22618 98FA0510 15728E5A 8AAAC42D AD33170D
920 04507A33 A85521AB DF1CBA64 ECFB8504 58DBEF0A 8AEA7157 5D060C7D
921 B3970F85 A6E1E4C7 ABF5AE8C DB0933D7 1E8C94E0 4A25619D CEE3D226
922 1AD2EE6B F12FFA06 D98A0864 D8760273 3EC86A64 521F2B18 177B200C
923 BBE11757 7A615D6C 770988C0 BAD946E2 08E24FA0 74E5AB31 43DB5BFC
924 E0FD108E 4B82D120 A9210801 1A723C12 A787E6D7 88719A10 BDBA5B26
925 99C32718 6AF4E23C 1A946834 B6150BDA 2583E9CA 2AD44CE8 DBBBC2DB
926 04DE8EF9 2E8EFC14 1FBECAA6 287C5947 4E6BC05D 99B2964F A090C3A2
927 233BA186 515BE7ED 1F612970 CEE2D7AF B81BDD76 2170481C D0069127
928 D5B05AA9 93B4EA98 8D8FDDC1 86FFB7DC 90A6C08F 4DF435C9 34028492
929 36C3FAB4 D27C7026 C1D4DCB2 602646DE C9751E76 3DBA37BD F8FF9406
930 AD9E530E E5DB382F 413001AE B06A53ED 9027D831 179727B0 865A8918
931 DA3EDBEB CF9B14ED 44CE6CBA CED4BB1B DB7F1447 E6CC254B 33205151
932 2BD7AF42 6FB8F401 378CD2BF 5983CA01 C64B92EC F032EA15 D1721D03
933 F482D7CE 6E74FEF6 D55E702F 46980C82 B5A84031 900B1C9E 59E7C97F
934 BEC7E8F3 23A97A7E 36CC88BE 0F1D45B7 FF585AC5 4BD407B2 2B4154AA
935 CC8F6D7E BF48E1D8 14CC5ED2 0F8037E0 A79715EE F29BE328 06A1D58B
936 B7C5DA76 F550AA3D 8A1FBFF0 EB19CCB1 A313D55C DA56C9EC 2EF29632
937 387FE8D7 6E3C0468 043E8F66 3F4860EE 12BF2D5B 0B7474D6 E694F91E
938 6DCC4024 FFFFFFFF FFFFFFFF
944 This prime is: 2^8192 - 2^8128 - 1 + 2^64 * { [2^8062 pi] +
947 Its hexadecimal value is:
951 Taylor, et al. Expires February 17, 2005 [Page 17]
953 Internet-Draft Using SRP for TLS Authentication August 2004
956 FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1 29024E08
957 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD EF9519B3 CD3A431B
958 302B0A6D F25F1437 4FE1356D 6D51C245 E485B576 625E7EC6 F44C42E9
959 A637ED6B 0BFF5CB6 F406B7ED EE386BFB 5A899FA5 AE9F2411 7C4B1FE6
960 49286651 ECE45B3D C2007CB8 A163BF05 98DA4836 1C55D39A 69163FA8
961 FD24CF5F 83655D23 DCA3AD96 1C62F356 208552BB 9ED52907 7096966D
962 670C354E 4ABC9804 F1746C08 CA18217C 32905E46 2E36CE3B E39E772C
963 180E8603 9B2783A2 EC07A28F B5C55DF0 6F4C52C9 DE2BCBF6 95581718
964 3995497C EA956AE5 15D22618 98FA0510 15728E5A 8AAAC42D AD33170D
965 04507A33 A85521AB DF1CBA64 ECFB8504 58DBEF0A 8AEA7157 5D060C7D
966 B3970F85 A6E1E4C7 ABF5AE8C DB0933D7 1E8C94E0 4A25619D CEE3D226
967 1AD2EE6B F12FFA06 D98A0864 D8760273 3EC86A64 521F2B18 177B200C
968 BBE11757 7A615D6C 770988C0 BAD946E2 08E24FA0 74E5AB31 43DB5BFC
969 E0FD108E 4B82D120 A9210801 1A723C12 A787E6D7 88719A10 BDBA5B26
970 99C32718 6AF4E23C 1A946834 B6150BDA 2583E9CA 2AD44CE8 DBBBC2DB
971 04DE8EF9 2E8EFC14 1FBECAA6 287C5947 4E6BC05D 99B2964F A090C3A2
972 233BA186 515BE7ED 1F612970 CEE2D7AF B81BDD76 2170481C D0069127
973 D5B05AA9 93B4EA98 8D8FDDC1 86FFB7DC 90A6C08F 4DF435C9 34028492
974 36C3FAB4 D27C7026 C1D4DCB2 602646DE C9751E76 3DBA37BD F8FF9406
975 AD9E530E E5DB382F 413001AE B06A53ED 9027D831 179727B0 865A8918
976 DA3EDBEB CF9B14ED 44CE6CBA CED4BB1B DB7F1447 E6CC254B 33205151
977 2BD7AF42 6FB8F401 378CD2BF 5983CA01 C64B92EC F032EA15 D1721D03
978 F482D7CE 6E74FEF6 D55E702F 46980C82 B5A84031 900B1C9E 59E7C97F
979 BEC7E8F3 23A97A7E 36CC88BE 0F1D45B7 FF585AC5 4BD407B2 2B4154AA
980 CC8F6D7E BF48E1D8 14CC5ED2 0F8037E0 A79715EE F29BE328 06A1D58B
981 B7C5DA76 F550AA3D 8A1FBFF0 EB19CCB1 A313D55C DA56C9EC 2EF29632
982 387FE8D7 6E3C0468 043E8F66 3F4860EE 12BF2D5B 0B7474D6 E694F91E
983 6DBE1159 74A3926F 12FEE5E4 38777CB6 A932DF8C D8BEC4D0 73B931BA
984 3BC832B6 8D9DD300 741FA7BF 8AFC47ED 2576F693 6BA42466 3AAB639C
985 5AE4F568 3423B474 2BF1C978 238F16CB E39D652D E3FDB8BE FC848AD9
986 22222E04 A4037C07 13EB57A8 1A23F0C7 3473FC64 6CEA306B 4BCBC886
987 2F8385DD FA9D4B7F A2C087E8 79683303 ED5BDD3A 062B3CF5 B3A278A6
988 6D2A13F8 3F44F82D DF310EE0 74AB6A36 4597E899 A0255DC1 64F31CC5
989 0846851D F9AB4819 5DED7EA1 B1D510BD 7EE74D73 FAF36BC3 1ECFA268
990 359046F4 EB879F92 4009438B 481C6CD7 889A002E D5EE382B C9190DA6
991 FC026E47 9558E447 5677E9AA 9E3050E2 765694DF C81F56E8 80B96E71
992 60C980DD 98EDD3DF FFFFFFFF FFFFFFFF
994 The generator is: 19 (decimal).
1007 Taylor, et al. Expires February 17, 2005 [Page 18]
1009 Internet-Draft Using SRP for TLS Authentication August 2004
1012 Appendix B. Acknowledgements
1014 Thanks to all on the IETF tls mailing list for ideas and analysis.
1063 Taylor, et al. Expires February 17, 2005 [Page 19]
1065 Internet-Draft Using SRP for TLS Authentication August 2004
1068 Intellectual Property Statement
1070 The IETF takes no position regarding the validity or scope of any
1071 intellectual property or other rights that might be claimed to
1072 pertain to the implementation or use of the technology described in
1073 this document or the extent to which any license under such rights
1074 might or might not be available; neither does it represent that it
1075 has made any effort to identify any such rights. Information on the
1076 IETF's procedures with respect to rights in standards-track and
1077 standards-related documentation can be found in BCP-11. Copies of
1078 claims of rights made available for publication and any assurances of
1079 licenses to be made available, or the result of an attempt made to
1080 obtain a general license or permission for the use of such
1081 proprietary rights by implementors or users of this specification can
1082 be obtained from the IETF Secretariat.
1084 The IETF invites any interested party to bring to its attention any
1085 copyrights, patents or patent applications, or other proprietary
1086 rights which may cover technology that may be required to practice
1087 this standard. Please address the information to the IETF Executive
1091 Full Copyright Statement
1093 Copyright (C) The Internet Society (2004). All Rights Reserved.
1095 This document and translations of it may be copied and furnished to
1096 others, and derivative works that comment on or otherwise explain it
1097 or assist in its implementation may be prepared, copied, published
1098 and distributed, in whole or in part, without restriction of any
1099 kind, provided that the above copyright notice and this paragraph are
1100 included on all such copies and derivative works. However, this
1101 document itself may not be modified in any way, such as by removing
1102 the copyright notice or references to the Internet Society or other
1103 Internet organizations, except as needed for the purpose of
1104 developing Internet standards in which case the procedures for
1105 copyrights defined in the Internet Standards process must be
1106 followed, or as required to translate it into languages other than
1109 The limited permissions granted above are perpetual and will not be
1110 revoked by the Internet Society or its successors or assignees.
1112 This document and the information contained herein is provided on an
1113 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
1114 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
1115 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
1119 Taylor, et al. Expires February 17, 2005 [Page 20]
1121 Internet-Draft Using SRP for TLS Authentication August 2004
1124 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
1125 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
1130 Funding for the RFC Editor function is currently provided by the
1175 Taylor, et al. Expires February 17, 2005 [Page 21]