1 /* $NetBSD: tree.h,v 1.8 2004/03/28 19:38:30 provos Exp $ */
2 /* $OpenBSD: tree.h,v 1.7 2002/10/17 21:51:54 art Exp $ */
3 /* $FreeBSD: src/sys/sys/tree.h,v 1.7 2007/12/28 07:03:26 jasone Exp $ */
6 * Copyright 2002 Niels Provos <provos@citi.umich.edu>
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34 * This file defines data structures for different types of trees:
35 * splay trees and red-black trees.
37 * A splay tree is a self-organizing data structure. Every operation
38 * on the tree causes a splay to happen. The splay moves the requested
39 * node to the root of the tree and partly rebalances it.
41 * This has the benefit that request locality causes faster lookups as
42 * the requested nodes move to the top of the tree. On the other hand,
43 * every lookup causes memory writes.
45 * The Balance Theorem bounds the total access time for m operations
46 * and n inserts on an initially empty tree as O((m + n)lg n). The
47 * amortized cost for a sequence of m accesses to a splay tree is O(lg n);
49 * A red-black tree is a binary search tree with the node color as an
50 * extra attribute. It fulfills a set of conditions:
51 * - every search path from the root to a leaf consists of the
52 * same number of black nodes,
53 * - each red node (except for the root) has a black parent,
54 * - each leaf node is black.
56 * Every operation on a red-black tree is bounded as O(lg n).
57 * The maximum height of a red-black tree is 2lg (n+1).
60 #define SPLAY_HEAD(name, type) \
62 struct type *sph_root; /* root of the tree */ \
65 #define SPLAY_INITIALIZER(root) \
68 #define SPLAY_INIT(root) do { \
69 (root)->sph_root = NULL; \
70 } while (/*CONSTCOND*/ 0)
72 #define SPLAY_ENTRY(type) \
74 struct type *spe_left; /* left element */ \
75 struct type *spe_right; /* right element */ \
78 #define SPLAY_LEFT(elm, field) (elm)->field.spe_left
79 #define SPLAY_RIGHT(elm, field) (elm)->field.spe_right
80 #define SPLAY_ROOT(head) (head)->sph_root
81 #define SPLAY_EMPTY(head) (SPLAY_ROOT(head) == NULL)
83 /* SPLAY_ROTATE_{LEFT,RIGHT} expect that tmp hold SPLAY_{RIGHT,LEFT} */
84 #define SPLAY_ROTATE_RIGHT(head, tmp, field) do { \
85 SPLAY_LEFT((head)->sph_root, field) = SPLAY_RIGHT(tmp, field); \
86 SPLAY_RIGHT(tmp, field) = (head)->sph_root; \
87 (head)->sph_root = tmp; \
88 } while (/*CONSTCOND*/ 0)
90 #define SPLAY_ROTATE_LEFT(head, tmp, field) do { \
91 SPLAY_RIGHT((head)->sph_root, field) = SPLAY_LEFT(tmp, field); \
92 SPLAY_LEFT(tmp, field) = (head)->sph_root; \
93 (head)->sph_root = tmp; \
94 } while (/*CONSTCOND*/ 0)
96 #define SPLAY_LINKLEFT(head, tmp, field) do { \
97 SPLAY_LEFT(tmp, field) = (head)->sph_root; \
98 tmp = (head)->sph_root; \
99 (head)->sph_root = SPLAY_LEFT((head)->sph_root, field); \
100 } while (/*CONSTCOND*/ 0)
102 #define SPLAY_LINKRIGHT(head, tmp, field) do { \
103 SPLAY_RIGHT(tmp, field) = (head)->sph_root; \
104 tmp = (head)->sph_root; \
105 (head)->sph_root = SPLAY_RIGHT((head)->sph_root, field); \
106 } while (/*CONSTCOND*/ 0)
108 #define SPLAY_ASSEMBLE(head, node, left, right, field) do { \
109 SPLAY_RIGHT(left, field) = SPLAY_LEFT((head)->sph_root, field); \
110 SPLAY_LEFT(right, field) = SPLAY_RIGHT((head)->sph_root, field);\
111 SPLAY_LEFT((head)->sph_root, field) = SPLAY_RIGHT(node, field); \
112 SPLAY_RIGHT((head)->sph_root, field) = SPLAY_LEFT(node, field); \
113 } while (/*CONSTCOND*/ 0)
115 /* Generates prototypes and inline functions */
117 #define SPLAY_PROTOTYPE(name, type, field, cmp) \
118 void name##_SPLAY(struct name *, struct type *); \
119 void name##_SPLAY_MINMAX(struct name *, int); \
120 struct type *name##_SPLAY_INSERT(struct name *, struct type *); \
121 struct type *name##_SPLAY_REMOVE(struct name *, struct type *); \
123 /* Finds the node with the same key as elm */ \
124 static __inline struct type * \
125 name##_SPLAY_FIND(struct name *head, struct type *elm) \
127 if (SPLAY_EMPTY(head)) \
129 name##_SPLAY(head, elm); \
130 if ((cmp)(elm, (head)->sph_root) == 0) \
131 return (head->sph_root); \
135 static __inline struct type * \
136 name##_SPLAY_NEXT(struct name *head, struct type *elm) \
138 name##_SPLAY(head, elm); \
139 if (SPLAY_RIGHT(elm, field) != NULL) { \
140 elm = SPLAY_RIGHT(elm, field); \
141 while (SPLAY_LEFT(elm, field) != NULL) { \
142 elm = SPLAY_LEFT(elm, field); \
149 static __inline struct type * \
150 name##_SPLAY_MIN_MAX(struct name *head, int val) \
152 name##_SPLAY_MINMAX(head, val); \
153 return (SPLAY_ROOT(head)); \
156 /* Main splay operation.
157 * Moves node close to the key of elm to top
159 #define SPLAY_GENERATE(name, type, field, cmp) \
161 name##_SPLAY_INSERT(struct name *head, struct type *elm) \
163 if (SPLAY_EMPTY(head)) { \
164 SPLAY_LEFT(elm, field) = SPLAY_RIGHT(elm, field) = NULL; \
167 name##_SPLAY(head, elm); \
168 __comp = (cmp)(elm, (head)->sph_root); \
170 SPLAY_LEFT(elm, field) = SPLAY_LEFT((head)->sph_root, field);\
171 SPLAY_RIGHT(elm, field) = (head)->sph_root; \
172 SPLAY_LEFT((head)->sph_root, field) = NULL; \
173 } else if (__comp > 0) { \
174 SPLAY_RIGHT(elm, field) = SPLAY_RIGHT((head)->sph_root, field);\
175 SPLAY_LEFT(elm, field) = (head)->sph_root; \
176 SPLAY_RIGHT((head)->sph_root, field) = NULL; \
178 return ((head)->sph_root); \
180 (head)->sph_root = (elm); \
185 name##_SPLAY_REMOVE(struct name *head, struct type *elm) \
187 struct type *__tmp; \
188 if (SPLAY_EMPTY(head)) \
190 name##_SPLAY(head, elm); \
191 if ((cmp)(elm, (head)->sph_root) == 0) { \
192 if (SPLAY_LEFT((head)->sph_root, field) == NULL) { \
193 (head)->sph_root = SPLAY_RIGHT((head)->sph_root, field);\
195 __tmp = SPLAY_RIGHT((head)->sph_root, field); \
196 (head)->sph_root = SPLAY_LEFT((head)->sph_root, field);\
197 name##_SPLAY(head, elm); \
198 SPLAY_RIGHT((head)->sph_root, field) = __tmp; \
206 name##_SPLAY(struct name *head, struct type *elm) \
208 struct type __node, *__left, *__right, *__tmp; \
211 SPLAY_LEFT(&__node, field) = SPLAY_RIGHT(&__node, field) = NULL;\
212 __left = __right = &__node; \
214 while ((__comp = (cmp)(elm, (head)->sph_root)) != 0) { \
216 __tmp = SPLAY_LEFT((head)->sph_root, field); \
219 if ((cmp)(elm, __tmp) < 0){ \
220 SPLAY_ROTATE_RIGHT(head, __tmp, field); \
221 if (SPLAY_LEFT((head)->sph_root, field) == NULL)\
224 SPLAY_LINKLEFT(head, __right, field); \
225 } else if (__comp > 0) { \
226 __tmp = SPLAY_RIGHT((head)->sph_root, field); \
229 if ((cmp)(elm, __tmp) > 0){ \
230 SPLAY_ROTATE_LEFT(head, __tmp, field); \
231 if (SPLAY_RIGHT((head)->sph_root, field) == NULL)\
234 SPLAY_LINKRIGHT(head, __left, field); \
237 SPLAY_ASSEMBLE(head, &__node, __left, __right, field); \
240 /* Splay with either the minimum or the maximum element \
241 * Used to find minimum or maximum element in tree. \
243 void name##_SPLAY_MINMAX(struct name *head, int __comp) \
245 struct type __node, *__left, *__right, *__tmp; \
247 SPLAY_LEFT(&__node, field) = SPLAY_RIGHT(&__node, field) = NULL;\
248 __left = __right = &__node; \
252 __tmp = SPLAY_LEFT((head)->sph_root, field); \
256 SPLAY_ROTATE_RIGHT(head, __tmp, field); \
257 if (SPLAY_LEFT((head)->sph_root, field) == NULL)\
260 SPLAY_LINKLEFT(head, __right, field); \
261 } else if (__comp > 0) { \
262 __tmp = SPLAY_RIGHT((head)->sph_root, field); \
266 SPLAY_ROTATE_LEFT(head, __tmp, field); \
267 if (SPLAY_RIGHT((head)->sph_root, field) == NULL)\
270 SPLAY_LINKRIGHT(head, __left, field); \
273 SPLAY_ASSEMBLE(head, &__node, __left, __right, field); \
276 #define SPLAY_NEGINF -1
279 #define SPLAY_INSERT(name, x, y) name##_SPLAY_INSERT(x, y)
280 #define SPLAY_REMOVE(name, x, y) name##_SPLAY_REMOVE(x, y)
281 #define SPLAY_FIND(name, x, y) name##_SPLAY_FIND(x, y)
282 #define SPLAY_NEXT(name, x, y) name##_SPLAY_NEXT(x, y)
283 #define SPLAY_MIN(name, x) (SPLAY_EMPTY(x) ? NULL \
284 : name##_SPLAY_MIN_MAX(x, SPLAY_NEGINF))
285 #define SPLAY_MAX(name, x) (SPLAY_EMPTY(x) ? NULL \
286 : name##_SPLAY_MIN_MAX(x, SPLAY_INF))
288 #define SPLAY_FOREACH(x, name, head) \
289 for ((x) = SPLAY_MIN(name, head); \
291 (x) = SPLAY_NEXT(name, head, x))
293 /* Macros that define a red-black tree */
294 #define RB_HEAD(name, type) \
296 struct type *rbh_root; /* root of the tree */ \
299 #define RB_INITIALIZER(root) \
302 #define RB_INIT(root) do { \
303 (root)->rbh_root = NULL; \
304 } while (/*CONSTCOND*/ 0)
308 #define RB_ENTRY(type) \
310 struct type *rbe_left; /* left element */ \
311 struct type *rbe_right; /* right element */ \
312 struct type *rbe_parent; /* parent element */ \
313 int rbe_color; /* node color */ \
316 #define RB_LEFT(elm, field) (elm)->field.rbe_left
317 #define RB_RIGHT(elm, field) (elm)->field.rbe_right
318 #define RB_PARENT(elm, field) (elm)->field.rbe_parent
319 #define RB_COLOR(elm, field) (elm)->field.rbe_color
320 #define RB_ROOT(head) (head)->rbh_root
321 #define RB_EMPTY(head) (RB_ROOT(head) == NULL)
323 #define RB_SET(elm, parent, field) do { \
324 RB_PARENT(elm, field) = parent; \
325 RB_LEFT(elm, field) = RB_RIGHT(elm, field) = NULL; \
326 RB_COLOR(elm, field) = RB_RED; \
327 } while (/*CONSTCOND*/ 0)
329 #define RB_SET_BLACKRED(black, red, field) do { \
330 RB_COLOR(black, field) = RB_BLACK; \
331 RB_COLOR(red, field) = RB_RED; \
332 } while (/*CONSTCOND*/ 0)
335 #define RB_AUGMENT(x) do {} while (0)
338 #define RB_ROTATE_LEFT(head, elm, tmp, field) do { \
339 (tmp) = RB_RIGHT(elm, field); \
340 if ((RB_RIGHT(elm, field) = RB_LEFT(tmp, field)) != NULL) { \
341 RB_PARENT(RB_LEFT(tmp, field), field) = (elm); \
344 if ((RB_PARENT(tmp, field) = RB_PARENT(elm, field)) != NULL) { \
345 if ((elm) == RB_LEFT(RB_PARENT(elm, field), field)) \
346 RB_LEFT(RB_PARENT(elm, field), field) = (tmp); \
348 RB_RIGHT(RB_PARENT(elm, field), field) = (tmp); \
350 (head)->rbh_root = (tmp); \
351 RB_LEFT(tmp, field) = (elm); \
352 RB_PARENT(elm, field) = (tmp); \
354 if ((RB_PARENT(tmp, field))) \
355 RB_AUGMENT(RB_PARENT(tmp, field)); \
356 } while (/*CONSTCOND*/ 0)
358 #define RB_ROTATE_RIGHT(head, elm, tmp, field) do { \
359 (tmp) = RB_LEFT(elm, field); \
360 if ((RB_LEFT(elm, field) = RB_RIGHT(tmp, field)) != NULL) { \
361 RB_PARENT(RB_RIGHT(tmp, field), field) = (elm); \
364 if ((RB_PARENT(tmp, field) = RB_PARENT(elm, field)) != NULL) { \
365 if ((elm) == RB_LEFT(RB_PARENT(elm, field), field)) \
366 RB_LEFT(RB_PARENT(elm, field), field) = (tmp); \
368 RB_RIGHT(RB_PARENT(elm, field), field) = (tmp); \
370 (head)->rbh_root = (tmp); \
371 RB_RIGHT(tmp, field) = (elm); \
372 RB_PARENT(elm, field) = (tmp); \
374 if ((RB_PARENT(tmp, field))) \
375 RB_AUGMENT(RB_PARENT(tmp, field)); \
376 } while (/*CONSTCOND*/ 0)
378 /* Generates prototypes and inline functions */
379 #define RB_PROTOTYPE(name, type, field, cmp) \
380 RB_PROTOTYPE_INTERNAL(name, type, field, cmp,)
381 #define RB_PROTOTYPE_STATIC(name, type, field, cmp) \
382 RB_PROTOTYPE_INTERNAL(name, type, field, cmp, __unused static)
383 #define RB_PROTOTYPE_INTERNAL(name, type, field, cmp, attr) \
384 attr void name##_RB_INSERT_COLOR(struct name *, struct type *); \
385 attr void name##_RB_REMOVE_COLOR(struct name *, struct type *, struct type *);\
386 attr struct type *name##_RB_REMOVE(struct name *, struct type *); \
387 attr struct type *name##_RB_INSERT(struct name *, struct type *); \
388 attr struct type *name##_RB_FIND(struct name *, struct type *); \
389 attr struct type *name##_RB_NFIND(struct name *, struct type *); \
390 attr struct type *name##_RB_NEXT(struct type *); \
391 attr struct type *name##_RB_PREV(struct type *); \
392 attr struct type *name##_RB_MINMAX(struct name *, int); \
395 /* Main rb operation.
396 * Moves node close to the key of elm to top
398 #define RB_GENERATE(name, type, field, cmp) \
399 RB_GENERATE_INTERNAL(name, type, field, cmp,)
400 #define RB_GENERATE_STATIC(name, type, field, cmp) \
401 RB_GENERATE_INTERNAL(name, type, field, cmp, static)
402 #define RB_GENERATE_INTERNAL(name, type, field, cmp, attr) \
404 name##_RB_INSERT_COLOR(struct name *head, struct type *elm) \
406 struct type *parent, *gparent, *tmp; \
407 while ((parent = RB_PARENT(elm, field)) != NULL && \
408 RB_COLOR(parent, field) == RB_RED) { \
409 gparent = RB_PARENT(parent, field); \
410 if (parent == RB_LEFT(gparent, field)) { \
411 tmp = RB_RIGHT(gparent, field); \
412 if (tmp && RB_COLOR(tmp, field) == RB_RED) { \
413 RB_COLOR(tmp, field) = RB_BLACK; \
414 RB_SET_BLACKRED(parent, gparent, field);\
418 if (RB_RIGHT(parent, field) == elm) { \
419 RB_ROTATE_LEFT(head, parent, tmp, field);\
424 RB_SET_BLACKRED(parent, gparent, field); \
425 RB_ROTATE_RIGHT(head, gparent, tmp, field); \
427 tmp = RB_LEFT(gparent, field); \
428 if (tmp && RB_COLOR(tmp, field) == RB_RED) { \
429 RB_COLOR(tmp, field) = RB_BLACK; \
430 RB_SET_BLACKRED(parent, gparent, field);\
434 if (RB_LEFT(parent, field) == elm) { \
435 RB_ROTATE_RIGHT(head, parent, tmp, field);\
440 RB_SET_BLACKRED(parent, gparent, field); \
441 RB_ROTATE_LEFT(head, gparent, tmp, field); \
444 RB_COLOR(head->rbh_root, field) = RB_BLACK; \
448 name##_RB_REMOVE_COLOR(struct name *head, struct type *parent, struct type *elm) \
451 while ((elm == NULL || RB_COLOR(elm, field) == RB_BLACK) && \
452 elm != RB_ROOT(head)) { \
453 if (RB_LEFT(parent, field) == elm) { \
454 tmp = RB_RIGHT(parent, field); \
455 if (RB_COLOR(tmp, field) == RB_RED) { \
456 RB_SET_BLACKRED(tmp, parent, field); \
457 RB_ROTATE_LEFT(head, parent, tmp, field);\
458 tmp = RB_RIGHT(parent, field); \
460 if ((RB_LEFT(tmp, field) == NULL || \
461 RB_COLOR(RB_LEFT(tmp, field), field) == RB_BLACK) &&\
462 (RB_RIGHT(tmp, field) == NULL || \
463 RB_COLOR(RB_RIGHT(tmp, field), field) == RB_BLACK)) {\
464 RB_COLOR(tmp, field) = RB_RED; \
466 parent = RB_PARENT(elm, field); \
468 if (RB_RIGHT(tmp, field) == NULL || \
469 RB_COLOR(RB_RIGHT(tmp, field), field) == RB_BLACK) {\
470 struct type *oleft; \
471 if ((oleft = RB_LEFT(tmp, field)) \
473 RB_COLOR(oleft, field) = RB_BLACK;\
474 RB_COLOR(tmp, field) = RB_RED; \
475 RB_ROTATE_RIGHT(head, tmp, oleft, field);\
476 tmp = RB_RIGHT(parent, field); \
478 RB_COLOR(tmp, field) = RB_COLOR(parent, field);\
479 RB_COLOR(parent, field) = RB_BLACK; \
480 if (RB_RIGHT(tmp, field)) \
481 RB_COLOR(RB_RIGHT(tmp, field), field) = RB_BLACK;\
482 RB_ROTATE_LEFT(head, parent, tmp, field);\
483 elm = RB_ROOT(head); \
487 tmp = RB_LEFT(parent, field); \
488 if (RB_COLOR(tmp, field) == RB_RED) { \
489 RB_SET_BLACKRED(tmp, parent, field); \
490 RB_ROTATE_RIGHT(head, parent, tmp, field);\
491 tmp = RB_LEFT(parent, field); \
493 if ((RB_LEFT(tmp, field) == NULL || \
494 RB_COLOR(RB_LEFT(tmp, field), field) == RB_BLACK) &&\
495 (RB_RIGHT(tmp, field) == NULL || \
496 RB_COLOR(RB_RIGHT(tmp, field), field) == RB_BLACK)) {\
497 RB_COLOR(tmp, field) = RB_RED; \
499 parent = RB_PARENT(elm, field); \
501 if (RB_LEFT(tmp, field) == NULL || \
502 RB_COLOR(RB_LEFT(tmp, field), field) == RB_BLACK) {\
503 struct type *oright; \
504 if ((oright = RB_RIGHT(tmp, field)) \
506 RB_COLOR(oright, field) = RB_BLACK;\
507 RB_COLOR(tmp, field) = RB_RED; \
508 RB_ROTATE_LEFT(head, tmp, oright, field);\
509 tmp = RB_LEFT(parent, field); \
511 RB_COLOR(tmp, field) = RB_COLOR(parent, field);\
512 RB_COLOR(parent, field) = RB_BLACK; \
513 if (RB_LEFT(tmp, field)) \
514 RB_COLOR(RB_LEFT(tmp, field), field) = RB_BLACK;\
515 RB_ROTATE_RIGHT(head, parent, tmp, field);\
516 elm = RB_ROOT(head); \
522 RB_COLOR(elm, field) = RB_BLACK; \
526 name##_RB_REMOVE(struct name *head, struct type *elm) \
528 struct type *child, *parent, *old = elm; \
530 if (RB_LEFT(elm, field) == NULL) \
531 child = RB_RIGHT(elm, field); \
532 else if (RB_RIGHT(elm, field) == NULL) \
533 child = RB_LEFT(elm, field); \
536 elm = RB_RIGHT(elm, field); \
537 while ((left = RB_LEFT(elm, field)) != NULL) \
539 child = RB_RIGHT(elm, field); \
540 parent = RB_PARENT(elm, field); \
541 color = RB_COLOR(elm, field); \
543 RB_PARENT(child, field) = parent; \
545 if (RB_LEFT(parent, field) == elm) \
546 RB_LEFT(parent, field) = child; \
548 RB_RIGHT(parent, field) = child; \
549 RB_AUGMENT(parent); \
551 RB_ROOT(head) = child; \
552 if (RB_PARENT(elm, field) == old) \
554 (elm)->field = (old)->field; \
555 if (RB_PARENT(old, field)) { \
556 if (RB_LEFT(RB_PARENT(old, field), field) == old)\
557 RB_LEFT(RB_PARENT(old, field), field) = elm;\
559 RB_RIGHT(RB_PARENT(old, field), field) = elm;\
560 RB_AUGMENT(RB_PARENT(old, field)); \
562 RB_ROOT(head) = elm; \
563 RB_PARENT(RB_LEFT(old, field), field) = elm; \
564 if (RB_RIGHT(old, field)) \
565 RB_PARENT(RB_RIGHT(old, field), field) = elm; \
570 } while ((left = RB_PARENT(left, field)) != NULL); \
574 parent = RB_PARENT(elm, field); \
575 color = RB_COLOR(elm, field); \
577 RB_PARENT(child, field) = parent; \
579 if (RB_LEFT(parent, field) == elm) \
580 RB_LEFT(parent, field) = child; \
582 RB_RIGHT(parent, field) = child; \
583 RB_AUGMENT(parent); \
585 RB_ROOT(head) = child; \
587 if (color == RB_BLACK) \
588 name##_RB_REMOVE_COLOR(head, parent, child); \
592 /* Inserts a node into the RB tree */ \
594 name##_RB_INSERT(struct name *head, struct type *elm) \
597 struct type *parent = NULL; \
599 tmp = RB_ROOT(head); \
602 comp = (cmp)(elm, parent); \
604 tmp = RB_LEFT(tmp, field); \
606 tmp = RB_RIGHT(tmp, field); \
610 RB_SET(elm, parent, field); \
611 if (parent != NULL) { \
613 RB_LEFT(parent, field) = elm; \
615 RB_RIGHT(parent, field) = elm; \
616 RB_AUGMENT(parent); \
618 RB_ROOT(head) = elm; \
619 name##_RB_INSERT_COLOR(head, elm); \
623 /* Finds the node with the same key as elm */ \
625 name##_RB_FIND(struct name *head, struct type *elm) \
627 struct type *tmp = RB_ROOT(head); \
630 comp = cmp(elm, tmp); \
632 tmp = RB_LEFT(tmp, field); \
634 tmp = RB_RIGHT(tmp, field); \
641 /* Finds the first node greater than or equal to the search key */ \
643 name##_RB_NFIND(struct name *head, struct type *elm) \
645 struct type *tmp = RB_ROOT(head); \
646 struct type *res = NULL; \
649 comp = cmp(elm, tmp); \
652 tmp = RB_LEFT(tmp, field); \
655 tmp = RB_RIGHT(tmp, field); \
664 name##_RB_NEXT(struct type *elm) \
666 if (RB_RIGHT(elm, field)) { \
667 elm = RB_RIGHT(elm, field); \
668 while (RB_LEFT(elm, field)) \
669 elm = RB_LEFT(elm, field); \
671 if (RB_PARENT(elm, field) && \
672 (elm == RB_LEFT(RB_PARENT(elm, field), field))) \
673 elm = RB_PARENT(elm, field); \
675 while (RB_PARENT(elm, field) && \
676 (elm == RB_RIGHT(RB_PARENT(elm, field), field)))\
677 elm = RB_PARENT(elm, field); \
678 elm = RB_PARENT(elm, field); \
686 name##_RB_PREV(struct type *elm) \
688 if (RB_LEFT(elm, field)) { \
689 elm = RB_LEFT(elm, field); \
690 while (RB_RIGHT(elm, field)) \
691 elm = RB_RIGHT(elm, field); \
693 if (RB_PARENT(elm, field) && \
694 (elm == RB_RIGHT(RB_PARENT(elm, field), field))) \
695 elm = RB_PARENT(elm, field); \
697 while (RB_PARENT(elm, field) && \
698 (elm == RB_LEFT(RB_PARENT(elm, field), field)))\
699 elm = RB_PARENT(elm, field); \
700 elm = RB_PARENT(elm, field); \
707 name##_RB_MINMAX(struct name *head, int val) \
709 struct type *tmp = RB_ROOT(head); \
710 struct type *parent = NULL; \
714 tmp = RB_LEFT(tmp, field); \
716 tmp = RB_RIGHT(tmp, field); \
724 #define RB_INSERT(name, x, y) name##_RB_INSERT(x, y)
725 #define RB_REMOVE(name, x, y) name##_RB_REMOVE(x, y)
726 #define RB_FIND(name, x, y) name##_RB_FIND(x, y)
727 #define RB_NFIND(name, x, y) name##_RB_NFIND(x, y)
728 #define RB_NEXT(name, x, y) name##_RB_NEXT(y)
729 #define RB_PREV(name, x, y) name##_RB_PREV(y)
730 #define RB_MIN(name, x) name##_RB_MINMAX(x, RB_NEGINF)
731 #define RB_MAX(name, x) name##_RB_MINMAX(x, RB_INF)
733 #define RB_FOREACH(x, name, head) \
734 for ((x) = RB_MIN(name, head); \
736 (x) = name##_RB_NEXT(x))
738 #define RB_FOREACH_REVERSE(x, name, head) \
739 for ((x) = RB_MAX(name, head); \
741 (x) = name##_RB_PREV(x))
743 #endif /* _SYS_TREE_H_ */