* sysdeps/unix/sysv/linux/m68k/semtimedop.S: New file.
[glibc/pb-stable.git] / malloc / malloc.c
blob4d1773a3b8df06376379549d31fab926b00605ab
1 /* Malloc implementation for multiple threads without lock contention.
2 Copyright (C) 1996,1997,1998,1999,2000,01,02 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4 Contributed by Wolfram Gloger <wg@malloc.de>
5 and Doug Lea <dl@cs.oswego.edu>, 2001.
7 The GNU C Library is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Lesser General Public License as
9 published by the Free Software Foundation; either version 2.1 of the
10 License, or (at your option) any later version.
12 The GNU C Library is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 Lesser General Public License for more details.
17 You should have received a copy of the GNU Lesser General Public
18 License along with the GNU C Library; see the file COPYING.LIB. If not,
19 write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
23 This is a version (aka ptmalloc2) of malloc/free/realloc written by
24 Doug Lea and adapted to multiple threads/arenas by Wolfram Gloger.
26 * Version ptmalloc2-20011215
27 $Id$
28 based on:
29 VERSION 2.7.0 Sun Mar 11 14:14:06 2001 Doug Lea (dl at gee)
31 Note: There may be an updated version of this malloc obtainable at
32 http://www.malloc.de/malloc/ptmalloc2.tar.gz
33 Check before installing!
35 * Quickstart
37 In order to compile this implementation, a Makefile is provided with
38 the ptmalloc2 distribution, which has pre-defined targets for some
39 popular systems (e.g. "make posix" for Posix threads). All that is
40 typically required with regard to compiler flags is the selection of
41 the thread package via defining one out of USE_PTHREADS, USE_THR or
42 USE_SPROC. Check the thread-m.h file for what effects this has.
43 Many/most systems will additionally require USE_TSD_DATA_HACK to be
44 defined, so this is the default for "make posix".
46 * Why use this malloc?
48 This is not the fastest, most space-conserving, most portable, or
49 most tunable malloc ever written. However it is among the fastest
50 while also being among the most space-conserving, portable and tunable.
51 Consistent balance across these factors results in a good general-purpose
52 allocator for malloc-intensive programs.
54 The main properties of the algorithms are:
55 * For large (>= 512 bytes) requests, it is a pure best-fit allocator,
56 with ties normally decided via FIFO (i.e. least recently used).
57 * For small (<= 64 bytes by default) requests, it is a caching
58 allocator, that maintains pools of quickly recycled chunks.
59 * In between, and for combinations of large and small requests, it does
60 the best it can trying to meet both goals at once.
61 * For very large requests (>= 128KB by default), it relies on system
62 memory mapping facilities, if supported.
64 For a longer but slightly out of date high-level description, see
65 http://gee.cs.oswego.edu/dl/html/malloc.html
67 You may already by default be using a C library containing a malloc
68 that is based on some version of this malloc (for example in
69 linux). You might still want to use the one in this file in order to
70 customize settings or to avoid overheads associated with library
71 versions.
73 * Contents, described in more detail in "description of public routines" below.
75 Standard (ANSI/SVID/...) functions:
76 malloc(size_t n);
77 calloc(size_t n_elements, size_t element_size);
78 free(Void_t* p);
79 realloc(Void_t* p, size_t n);
80 memalign(size_t alignment, size_t n);
81 valloc(size_t n);
82 mallinfo()
83 mallopt(int parameter_number, int parameter_value)
85 Additional functions:
86 independent_calloc(size_t n_elements, size_t size, Void_t* chunks[]);
87 independent_comalloc(size_t n_elements, size_t sizes[], Void_t* chunks[]);
88 pvalloc(size_t n);
89 cfree(Void_t* p);
90 malloc_trim(size_t pad);
91 malloc_usable_size(Void_t* p);
92 malloc_stats();
94 * Vital statistics:
96 Supported pointer representation: 4 or 8 bytes
97 Supported size_t representation: 4 or 8 bytes
98 Note that size_t is allowed to be 4 bytes even if pointers are 8.
99 You can adjust this by defining INTERNAL_SIZE_T
101 Alignment: 2 * sizeof(size_t) (default)
102 (i.e., 8 byte alignment with 4byte size_t). This suffices for
103 nearly all current machines and C compilers. However, you can
104 define MALLOC_ALIGNMENT to be wider than this if necessary.
106 Minimum overhead per allocated chunk: 4 or 8 bytes
107 Each malloced chunk has a hidden word of overhead holding size
108 and status information.
110 Minimum allocated size: 4-byte ptrs: 16 bytes (including 4 overhead)
111 8-byte ptrs: 24/32 bytes (including, 4/8 overhead)
113 When a chunk is freed, 12 (for 4byte ptrs) or 20 (for 8 byte
114 ptrs but 4 byte size) or 24 (for 8/8) additional bytes are
115 needed; 4 (8) for a trailing size field and 8 (16) bytes for
116 free list pointers. Thus, the minimum allocatable size is
117 16/24/32 bytes.
119 Even a request for zero bytes (i.e., malloc(0)) returns a
120 pointer to something of the minimum allocatable size.
122 The maximum overhead wastage (i.e., number of extra bytes
123 allocated than were requested in malloc) is less than or equal
124 to the minimum size, except for requests >= mmap_threshold that
125 are serviced via mmap(), where the worst case wastage is 2 *
126 sizeof(size_t) bytes plus the remainder from a system page (the
127 minimal mmap unit); typically 4096 or 8192 bytes.
129 Maximum allocated size: 4-byte size_t: 2^32 minus about two pages
130 8-byte size_t: 2^64 minus about two pages
132 It is assumed that (possibly signed) size_t values suffice to
133 represent chunk sizes. `Possibly signed' is due to the fact
134 that `size_t' may be defined on a system as either a signed or
135 an unsigned type. The ISO C standard says that it must be
136 unsigned, but a few systems are known not to adhere to this.
137 Additionally, even when size_t is unsigned, sbrk (which is by
138 default used to obtain memory from system) accepts signed
139 arguments, and may not be able to handle size_t-wide arguments
140 with negative sign bit. Generally, values that would
141 appear as negative after accounting for overhead and alignment
142 are supported only via mmap(), which does not have this
143 limitation.
145 Requests for sizes outside the allowed range will perform an optional
146 failure action and then return null. (Requests may also
147 also fail because a system is out of memory.)
149 Thread-safety: thread-safe unless NO_THREADS is defined
151 Compliance: I believe it is compliant with the 1997 Single Unix Specification
152 (See http://www.opennc.org). Also SVID/XPG, ANSI C, and probably
153 others as well.
155 * Synopsis of compile-time options:
157 People have reported using previous versions of this malloc on all
158 versions of Unix, sometimes by tweaking some of the defines
159 below. It has been tested most extensively on Solaris and
160 Linux. It is also reported to work on WIN32 platforms.
161 People also report using it in stand-alone embedded systems.
163 The implementation is in straight, hand-tuned ANSI C. It is not
164 at all modular. (Sorry!) It uses a lot of macros. To be at all
165 usable, this code should be compiled using an optimizing compiler
166 (for example gcc -O3) that can simplify expressions and control
167 paths. (FAQ: some macros import variables as arguments rather than
168 declare locals because people reported that some debuggers
169 otherwise get confused.)
171 OPTION DEFAULT VALUE
173 Compilation Environment options:
175 __STD_C derived from C compiler defines
176 WIN32 NOT defined
177 HAVE_MEMCPY defined
178 USE_MEMCPY 1 if HAVE_MEMCPY is defined
179 HAVE_MMAP defined as 1
180 MMAP_CLEARS 1
181 HAVE_MREMAP 0 unless linux defined
182 USE_ARENAS the same as HAVE_MMAP
183 malloc_getpagesize derived from system #includes, or 4096 if not
184 HAVE_USR_INCLUDE_MALLOC_H NOT defined
185 LACKS_UNISTD_H NOT defined unless WIN32
186 LACKS_SYS_PARAM_H NOT defined unless WIN32
187 LACKS_SYS_MMAN_H NOT defined unless WIN32
189 Changing default word sizes:
191 INTERNAL_SIZE_T size_t
192 MALLOC_ALIGNMENT 2 * sizeof(INTERNAL_SIZE_T)
194 Configuration and functionality options:
196 USE_DL_PREFIX NOT defined
197 USE_PUBLIC_MALLOC_WRAPPERS NOT defined
198 USE_MALLOC_LOCK NOT defined
199 MALLOC_DEBUG NOT defined
200 REALLOC_ZERO_BYTES_FREES 1
201 MALLOC_FAILURE_ACTION errno = ENOMEM, if __STD_C defined, else no-op
202 TRIM_FASTBINS 0
204 Options for customizing MORECORE:
206 MORECORE sbrk
207 MORECORE_FAILURE -1
208 MORECORE_CONTIGUOUS 1
209 MORECORE_CANNOT_TRIM NOT defined
210 MORECORE_CLEARS 1
211 MMAP_AS_MORECORE_SIZE (1024 * 1024)
213 Tuning options that are also dynamically changeable via mallopt:
215 DEFAULT_MXFAST 64
216 DEFAULT_TRIM_THRESHOLD 128 * 1024
217 DEFAULT_TOP_PAD 0
218 DEFAULT_MMAP_THRESHOLD 128 * 1024
219 DEFAULT_MMAP_MAX 65536
221 There are several other #defined constants and macros that you
222 probably don't want to touch unless you are extending or adapting malloc. */
225 __STD_C should be nonzero if using ANSI-standard C compiler, a C++
226 compiler, or a C compiler sufficiently close to ANSI to get away
227 with it.
230 #ifndef __STD_C
231 #if defined(__STDC__) || defined(__cplusplus)
232 #define __STD_C 1
233 #else
234 #define __STD_C 0
235 #endif
236 #endif /*__STD_C*/
240 Void_t* is the pointer type that malloc should say it returns
243 #ifndef Void_t
244 #if (__STD_C || defined(WIN32))
245 #define Void_t void
246 #else
247 #define Void_t char
248 #endif
249 #endif /*Void_t*/
251 #if __STD_C
252 #include <stddef.h> /* for size_t */
253 #include <stdlib.h> /* for getenv(), abort() */
254 #else
255 #include <sys/types.h>
256 #endif
258 #ifdef __cplusplus
259 extern "C" {
260 #endif
262 /* define LACKS_UNISTD_H if your system does not have a <unistd.h>. */
264 /* #define LACKS_UNISTD_H */
266 #ifndef LACKS_UNISTD_H
267 #include <unistd.h>
268 #endif
270 /* define LACKS_SYS_PARAM_H if your system does not have a <sys/param.h>. */
272 /* #define LACKS_SYS_PARAM_H */
275 #include <stdio.h> /* needed for malloc_stats */
276 #include <errno.h> /* needed for optional MALLOC_FAILURE_ACTION */
280 Debugging:
282 Because freed chunks may be overwritten with bookkeeping fields, this
283 malloc will often die when freed memory is overwritten by user
284 programs. This can be very effective (albeit in an annoying way)
285 in helping track down dangling pointers.
287 If you compile with -DMALLOC_DEBUG, a number of assertion checks are
288 enabled that will catch more memory errors. You probably won't be
289 able to make much sense of the actual assertion errors, but they
290 should help you locate incorrectly overwritten memory. The checking
291 is fairly extensive, and will slow down execution
292 noticeably. Calling malloc_stats or mallinfo with MALLOC_DEBUG set
293 will attempt to check every non-mmapped allocated and free chunk in
294 the course of computing the summmaries. (By nature, mmapped regions
295 cannot be checked very much automatically.)
297 Setting MALLOC_DEBUG may also be helpful if you are trying to modify
298 this code. The assertions in the check routines spell out in more
299 detail the assumptions and invariants underlying the algorithms.
301 Setting MALLOC_DEBUG does NOT provide an automated mechanism for
302 checking that all accesses to malloced memory stay within their
303 bounds. However, there are several add-ons and adaptations of this
304 or other mallocs available that do this.
307 #if MALLOC_DEBUG
308 #include <assert.h>
309 #else
310 #undef assert
311 #define assert(x) ((void)0)
312 #endif
316 INTERNAL_SIZE_T is the word-size used for internal bookkeeping
317 of chunk sizes.
319 The default version is the same as size_t.
321 While not strictly necessary, it is best to define this as an
322 unsigned type, even if size_t is a signed type. This may avoid some
323 artificial size limitations on some systems.
325 On a 64-bit machine, you may be able to reduce malloc overhead by
326 defining INTERNAL_SIZE_T to be a 32 bit `unsigned int' at the
327 expense of not being able to handle more than 2^32 of malloced
328 space. If this limitation is acceptable, you are encouraged to set
329 this unless you are on a platform requiring 16byte alignments. In
330 this case the alignment requirements turn out to negate any
331 potential advantages of decreasing size_t word size.
333 Implementors: Beware of the possible combinations of:
334 - INTERNAL_SIZE_T might be signed or unsigned, might be 32 or 64 bits,
335 and might be the same width as int or as long
336 - size_t might have different width and signedness as INTERNAL_SIZE_T
337 - int and long might be 32 or 64 bits, and might be the same width
338 To deal with this, most comparisons and difference computations
339 among INTERNAL_SIZE_Ts should cast them to unsigned long, being
340 aware of the fact that casting an unsigned int to a wider long does
341 not sign-extend. (This also makes checking for negative numbers
342 awkward.) Some of these casts result in harmless compiler warnings
343 on some systems.
346 #ifndef INTERNAL_SIZE_T
347 #define INTERNAL_SIZE_T size_t
348 #endif
350 /* The corresponding word size */
351 #define SIZE_SZ (sizeof(INTERNAL_SIZE_T))
355 MALLOC_ALIGNMENT is the minimum alignment for malloc'ed chunks.
356 It must be a power of two at least 2 * SIZE_SZ, even on machines
357 for which smaller alignments would suffice. It may be defined as
358 larger than this though. Note however that code and data structures
359 are optimized for the case of 8-byte alignment.
363 #ifndef MALLOC_ALIGNMENT
364 #define MALLOC_ALIGNMENT (2 * SIZE_SZ)
365 #endif
367 /* The corresponding bit mask value */
368 #define MALLOC_ALIGN_MASK (MALLOC_ALIGNMENT - 1)
373 REALLOC_ZERO_BYTES_FREES should be set if a call to
374 realloc with zero bytes should be the same as a call to free.
375 This is required by the C standard. Otherwise, since this malloc
376 returns a unique pointer for malloc(0), so does realloc(p, 0).
379 #ifndef REALLOC_ZERO_BYTES_FREES
380 #define REALLOC_ZERO_BYTES_FREES 1
381 #endif
384 TRIM_FASTBINS controls whether free() of a very small chunk can
385 immediately lead to trimming. Setting to true (1) can reduce memory
386 footprint, but will almost always slow down programs that use a lot
387 of small chunks.
389 Define this only if you are willing to give up some speed to more
390 aggressively reduce system-level memory footprint when releasing
391 memory in programs that use many small chunks. You can get
392 essentially the same effect by setting MXFAST to 0, but this can
393 lead to even greater slowdowns in programs using many small chunks.
394 TRIM_FASTBINS is an in-between compile-time option, that disables
395 only those chunks bordering topmost memory from being placed in
396 fastbins.
399 #ifndef TRIM_FASTBINS
400 #define TRIM_FASTBINS 0
401 #endif
405 USE_DL_PREFIX will prefix all public routines with the string 'dl'.
406 This is necessary when you only want to use this malloc in one part
407 of a program, using your regular system malloc elsewhere.
410 /* #define USE_DL_PREFIX */
414 Two-phase name translation.
415 All of the actual routines are given mangled names.
416 When wrappers are used, they become the public callable versions.
417 When DL_PREFIX is used, the callable names are prefixed.
420 #ifdef USE_DL_PREFIX
421 #define public_cALLOc dlcalloc
422 #define public_fREe dlfree
423 #define public_cFREe dlcfree
424 #define public_mALLOc dlmalloc
425 #define public_mEMALIGn dlmemalign
426 #define public_rEALLOc dlrealloc
427 #define public_vALLOc dlvalloc
428 #define public_pVALLOc dlpvalloc
429 #define public_mALLINFo dlmallinfo
430 #define public_mALLOPt dlmallopt
431 #define public_mTRIm dlmalloc_trim
432 #define public_mSTATs dlmalloc_stats
433 #define public_mUSABLe dlmalloc_usable_size
434 #define public_iCALLOc dlindependent_calloc
435 #define public_iCOMALLOc dlindependent_comalloc
436 #define public_gET_STATe dlget_state
437 #define public_sET_STATe dlset_state
438 #else /* USE_DL_PREFIX */
439 #ifdef _LIBC
441 /* Special defines for the GNU C library. */
442 #define public_cALLOc __libc_calloc
443 #define public_fREe __libc_free
444 #define public_cFREe __libc_cfree
445 #define public_mALLOc __libc_malloc
446 #define public_mEMALIGn __libc_memalign
447 #define public_rEALLOc __libc_realloc
448 #define public_vALLOc __libc_valloc
449 #define public_pVALLOc __libc_pvalloc
450 #define public_mALLINFo __libc_mallinfo
451 #define public_mALLOPt __libc_mallopt
452 #define public_mTRIm __malloc_trim
453 #define public_mSTATs __malloc_stats
454 #define public_mUSABLe __malloc_usable_size
455 #define public_iCALLOc __libc_independent_calloc
456 #define public_iCOMALLOc __libc_independent_comalloc
457 #define public_gET_STATe __malloc_get_state
458 #define public_sET_STATe __malloc_set_state
459 #define malloc_getpagesize __getpagesize()
460 #define open __open
461 #define mmap __mmap
462 #define munmap __munmap
463 #define mremap __mremap
464 #define mprotect __mprotect
465 #define MORECORE (*__morecore)
466 #define MORECORE_FAILURE 0
468 Void_t * __default_morecore (ptrdiff_t);
469 Void_t *(*__morecore)(ptrdiff_t) = __default_morecore;
471 #else /* !_LIBC */
472 #define public_cALLOc calloc
473 #define public_fREe free
474 #define public_cFREe cfree
475 #define public_mALLOc malloc
476 #define public_mEMALIGn memalign
477 #define public_rEALLOc realloc
478 #define public_vALLOc valloc
479 #define public_pVALLOc pvalloc
480 #define public_mALLINFo mallinfo
481 #define public_mALLOPt mallopt
482 #define public_mTRIm malloc_trim
483 #define public_mSTATs malloc_stats
484 #define public_mUSABLe malloc_usable_size
485 #define public_iCALLOc independent_calloc
486 #define public_iCOMALLOc independent_comalloc
487 #define public_gET_STATe malloc_get_state
488 #define public_sET_STATe malloc_set_state
489 #endif /* _LIBC */
490 #endif /* USE_DL_PREFIX */
492 #ifndef _LIBC
493 #define __builtin_expect(expr, val) (expr)
495 #define fwrite(buf, size, count, fp) _IO_fwrite (buf, size, count, fp)
496 #endif
499 HAVE_MEMCPY should be defined if you are not otherwise using
500 ANSI STD C, but still have memcpy and memset in your C library
501 and want to use them in calloc and realloc. Otherwise simple
502 macro versions are defined below.
504 USE_MEMCPY should be defined as 1 if you actually want to
505 have memset and memcpy called. People report that the macro
506 versions are faster than libc versions on some systems.
508 Even if USE_MEMCPY is set to 1, loops to copy/clear small chunks
509 (of <= 36 bytes) are manually unrolled in realloc and calloc.
512 #define HAVE_MEMCPY
514 #ifndef USE_MEMCPY
515 #ifdef HAVE_MEMCPY
516 #define USE_MEMCPY 1
517 #else
518 #define USE_MEMCPY 0
519 #endif
520 #endif
523 #if (__STD_C || defined(HAVE_MEMCPY))
525 #ifdef _LIBC
526 # include <string.h>
527 #else
528 #ifdef WIN32
529 /* On Win32 memset and memcpy are already declared in windows.h */
530 #else
531 #if __STD_C
532 void* memset(void*, int, size_t);
533 void* memcpy(void*, const void*, size_t);
534 #else
535 Void_t* memset();
536 Void_t* memcpy();
537 #endif
538 #endif
539 #endif
540 #endif
543 MALLOC_FAILURE_ACTION is the action to take before "return 0" when
544 malloc fails to be able to return memory, either because memory is
545 exhausted or because of illegal arguments.
547 By default, sets errno if running on STD_C platform, else does nothing.
550 #ifndef MALLOC_FAILURE_ACTION
551 #if __STD_C
552 #define MALLOC_FAILURE_ACTION \
553 errno = ENOMEM;
555 #else
556 #define MALLOC_FAILURE_ACTION
557 #endif
558 #endif
561 MORECORE-related declarations. By default, rely on sbrk
565 #ifdef LACKS_UNISTD_H
566 #if !defined(__FreeBSD__) && !defined(__OpenBSD__) && !defined(__NetBSD__)
567 #if __STD_C
568 extern Void_t* sbrk(ptrdiff_t);
569 #else
570 extern Void_t* sbrk();
571 #endif
572 #endif
573 #endif
576 MORECORE is the name of the routine to call to obtain more memory
577 from the system. See below for general guidance on writing
578 alternative MORECORE functions, as well as a version for WIN32 and a
579 sample version for pre-OSX macos.
582 #ifndef MORECORE
583 #define MORECORE sbrk
584 #endif
587 MORECORE_FAILURE is the value returned upon failure of MORECORE
588 as well as mmap. Since it cannot be an otherwise valid memory address,
589 and must reflect values of standard sys calls, you probably ought not
590 try to redefine it.
593 #ifndef MORECORE_FAILURE
594 #define MORECORE_FAILURE (-1)
595 #endif
598 If MORECORE_CONTIGUOUS is true, take advantage of fact that
599 consecutive calls to MORECORE with positive arguments always return
600 contiguous increasing addresses. This is true of unix sbrk. Even
601 if not defined, when regions happen to be contiguous, malloc will
602 permit allocations spanning regions obtained from different
603 calls. But defining this when applicable enables some stronger
604 consistency checks and space efficiencies.
607 #ifndef MORECORE_CONTIGUOUS
608 #define MORECORE_CONTIGUOUS 1
609 #endif
612 Define MORECORE_CANNOT_TRIM if your version of MORECORE
613 cannot release space back to the system when given negative
614 arguments. This is generally necessary only if you are using
615 a hand-crafted MORECORE function that cannot handle negative arguments.
618 /* #define MORECORE_CANNOT_TRIM */
620 /* MORECORE_CLEARS (default 1)
621 The degree to which the routine mapped to MORECORE zeroes out
622 memory: never (0), only for newly allocated space (1) or always
623 (2). The distinction between (1) and (2) is necessary because on
624 some systems, if the application first decrements and then
625 increments the break value, the contents of the reallocated space
626 are unspecified.
629 #ifndef MORECORE_CLEARS
630 #define MORECORE_CLEARS 1
631 #endif
635 Define HAVE_MMAP as true to optionally make malloc() use mmap() to
636 allocate very large blocks. These will be returned to the
637 operating system immediately after a free(). Also, if mmap
638 is available, it is used as a backup strategy in cases where
639 MORECORE fails to provide space from system.
641 This malloc is best tuned to work with mmap for large requests.
642 If you do not have mmap, operations involving very large chunks (1MB
643 or so) may be slower than you'd like.
646 #ifndef HAVE_MMAP
647 #define HAVE_MMAP 1
650 Standard unix mmap using /dev/zero clears memory so calloc doesn't
651 need to.
654 #ifndef MMAP_CLEARS
655 #define MMAP_CLEARS 1
656 #endif
658 #else /* no mmap */
659 #ifndef MMAP_CLEARS
660 #define MMAP_CLEARS 0
661 #endif
662 #endif
666 MMAP_AS_MORECORE_SIZE is the minimum mmap size argument to use if
667 sbrk fails, and mmap is used as a backup (which is done only if
668 HAVE_MMAP). The value must be a multiple of page size. This
669 backup strategy generally applies only when systems have "holes" in
670 address space, so sbrk cannot perform contiguous expansion, but
671 there is still space available on system. On systems for which
672 this is known to be useful (i.e. most linux kernels), this occurs
673 only when programs allocate huge amounts of memory. Between this,
674 and the fact that mmap regions tend to be limited, the size should
675 be large, to avoid too many mmap calls and thus avoid running out
676 of kernel resources.
679 #ifndef MMAP_AS_MORECORE_SIZE
680 #define MMAP_AS_MORECORE_SIZE (1024 * 1024)
681 #endif
684 Define HAVE_MREMAP to make realloc() use mremap() to re-allocate
685 large blocks. This is currently only possible on Linux with
686 kernel versions newer than 1.3.77.
689 #ifndef HAVE_MREMAP
690 #ifdef linux
691 #define HAVE_MREMAP 1
692 #else
693 #define HAVE_MREMAP 0
694 #endif
696 #endif /* HAVE_MMAP */
698 /* Define USE_ARENAS to enable support for multiple `arenas'. These
699 are allocated using mmap(), are necessary for threads and
700 occasionally useful to overcome address space limitations affecting
701 sbrk(). */
703 #ifndef USE_ARENAS
704 #define USE_ARENAS HAVE_MMAP
705 #endif
709 The system page size. To the extent possible, this malloc manages
710 memory from the system in page-size units. Note that this value is
711 cached during initialization into a field of malloc_state. So even
712 if malloc_getpagesize is a function, it is only called once.
714 The following mechanics for getpagesize were adapted from bsd/gnu
715 getpagesize.h. If none of the system-probes here apply, a value of
716 4096 is used, which should be OK: If they don't apply, then using
717 the actual value probably doesn't impact performance.
721 #ifndef malloc_getpagesize
723 #ifndef LACKS_UNISTD_H
724 # include <unistd.h>
725 #endif
727 # ifdef _SC_PAGESIZE /* some SVR4 systems omit an underscore */
728 # ifndef _SC_PAGE_SIZE
729 # define _SC_PAGE_SIZE _SC_PAGESIZE
730 # endif
731 # endif
733 # ifdef _SC_PAGE_SIZE
734 # define malloc_getpagesize sysconf(_SC_PAGE_SIZE)
735 # else
736 # if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE)
737 extern size_t getpagesize();
738 # define malloc_getpagesize getpagesize()
739 # else
740 # ifdef WIN32 /* use supplied emulation of getpagesize */
741 # define malloc_getpagesize getpagesize()
742 # else
743 # ifndef LACKS_SYS_PARAM_H
744 # include <sys/param.h>
745 # endif
746 # ifdef EXEC_PAGESIZE
747 # define malloc_getpagesize EXEC_PAGESIZE
748 # else
749 # ifdef NBPG
750 # ifndef CLSIZE
751 # define malloc_getpagesize NBPG
752 # else
753 # define malloc_getpagesize (NBPG * CLSIZE)
754 # endif
755 # else
756 # ifdef NBPC
757 # define malloc_getpagesize NBPC
758 # else
759 # ifdef PAGESIZE
760 # define malloc_getpagesize PAGESIZE
761 # else /* just guess */
762 # define malloc_getpagesize (4096)
763 # endif
764 # endif
765 # endif
766 # endif
767 # endif
768 # endif
769 # endif
770 #endif
773 This version of malloc supports the standard SVID/XPG mallinfo
774 routine that returns a struct containing usage properties and
775 statistics. It should work on any SVID/XPG compliant system that has
776 a /usr/include/malloc.h defining struct mallinfo. (If you'd like to
777 install such a thing yourself, cut out the preliminary declarations
778 as described above and below and save them in a malloc.h file. But
779 there's no compelling reason to bother to do this.)
781 The main declaration needed is the mallinfo struct that is returned
782 (by-copy) by mallinfo(). The SVID/XPG malloinfo struct contains a
783 bunch of fields that are not even meaningful in this version of
784 malloc. These fields are are instead filled by mallinfo() with
785 other numbers that might be of interest.
787 HAVE_USR_INCLUDE_MALLOC_H should be set if you have a
788 /usr/include/malloc.h file that includes a declaration of struct
789 mallinfo. If so, it is included; else an SVID2/XPG2 compliant
790 version is declared below. These must be precisely the same for
791 mallinfo() to work. The original SVID version of this struct,
792 defined on most systems with mallinfo, declares all fields as
793 ints. But some others define as unsigned long. If your system
794 defines the fields using a type of different width than listed here,
795 you must #include your system version and #define
796 HAVE_USR_INCLUDE_MALLOC_H.
799 /* #define HAVE_USR_INCLUDE_MALLOC_H */
801 #ifdef HAVE_USR_INCLUDE_MALLOC_H
802 #include "/usr/include/malloc.h"
803 #endif
806 /* ---------- description of public routines ------------ */
809 malloc(size_t n)
810 Returns a pointer to a newly allocated chunk of at least n bytes, or null
811 if no space is available. Additionally, on failure, errno is
812 set to ENOMEM on ANSI C systems.
814 If n is zero, malloc returns a minumum-sized chunk. (The minimum
815 size is 16 bytes on most 32bit systems, and 24 or 32 bytes on 64bit
816 systems.) On most systems, size_t is an unsigned type, so calls
817 with negative arguments are interpreted as requests for huge amounts
818 of space, which will often fail. The maximum supported value of n
819 differs across systems, but is in all cases less than the maximum
820 representable value of a size_t.
822 #if __STD_C
823 Void_t* public_mALLOc(size_t);
824 #else
825 Void_t* public_mALLOc();
826 #endif
829 free(Void_t* p)
830 Releases the chunk of memory pointed to by p, that had been previously
831 allocated using malloc or a related routine such as realloc.
832 It has no effect if p is null. It can have arbitrary (i.e., bad!)
833 effects if p has already been freed.
835 Unless disabled (using mallopt), freeing very large spaces will
836 when possible, automatically trigger operations that give
837 back unused memory to the system, thus reducing program footprint.
839 #if __STD_C
840 void public_fREe(Void_t*);
841 #else
842 void public_fREe();
843 #endif
846 calloc(size_t n_elements, size_t element_size);
847 Returns a pointer to n_elements * element_size bytes, with all locations
848 set to zero.
850 #if __STD_C
851 Void_t* public_cALLOc(size_t, size_t);
852 #else
853 Void_t* public_cALLOc();
854 #endif
857 realloc(Void_t* p, size_t n)
858 Returns a pointer to a chunk of size n that contains the same data
859 as does chunk p up to the minimum of (n, p's size) bytes, or null
860 if no space is available.
862 The returned pointer may or may not be the same as p. The algorithm
863 prefers extending p when possible, otherwise it employs the
864 equivalent of a malloc-copy-free sequence.
866 If p is null, realloc is equivalent to malloc.
868 If space is not available, realloc returns null, errno is set (if on
869 ANSI) and p is NOT freed.
871 if n is for fewer bytes than already held by p, the newly unused
872 space is lopped off and freed if possible. Unless the #define
873 REALLOC_ZERO_BYTES_FREES is set, realloc with a size argument of
874 zero (re)allocates a minimum-sized chunk.
876 Large chunks that were internally obtained via mmap will always
877 be reallocated using malloc-copy-free sequences unless
878 the system supports MREMAP (currently only linux).
880 The old unix realloc convention of allowing the last-free'd chunk
881 to be used as an argument to realloc is not supported.
883 #if __STD_C
884 Void_t* public_rEALLOc(Void_t*, size_t);
885 #else
886 Void_t* public_rEALLOc();
887 #endif
890 memalign(size_t alignment, size_t n);
891 Returns a pointer to a newly allocated chunk of n bytes, aligned
892 in accord with the alignment argument.
894 The alignment argument should be a power of two. If the argument is
895 not a power of two, the nearest greater power is used.
896 8-byte alignment is guaranteed by normal malloc calls, so don't
897 bother calling memalign with an argument of 8 or less.
899 Overreliance on memalign is a sure way to fragment space.
901 #if __STD_C
902 Void_t* public_mEMALIGn(size_t, size_t);
903 #else
904 Void_t* public_mEMALIGn();
905 #endif
908 valloc(size_t n);
909 Equivalent to memalign(pagesize, n), where pagesize is the page
910 size of the system. If the pagesize is unknown, 4096 is used.
912 #if __STD_C
913 Void_t* public_vALLOc(size_t);
914 #else
915 Void_t* public_vALLOc();
916 #endif
921 mallopt(int parameter_number, int parameter_value)
922 Sets tunable parameters The format is to provide a
923 (parameter-number, parameter-value) pair. mallopt then sets the
924 corresponding parameter to the argument value if it can (i.e., so
925 long as the value is meaningful), and returns 1 if successful else
926 0. SVID/XPG/ANSI defines four standard param numbers for mallopt,
927 normally defined in malloc.h. Only one of these (M_MXFAST) is used
928 in this malloc. The others (M_NLBLKS, M_GRAIN, M_KEEP) don't apply,
929 so setting them has no effect. But this malloc also supports four
930 other options in mallopt. See below for details. Briefly, supported
931 parameters are as follows (listed defaults are for "typical"
932 configurations).
934 Symbol param # default allowed param values
935 M_MXFAST 1 64 0-80 (0 disables fastbins)
936 M_TRIM_THRESHOLD -1 128*1024 any (-1U disables trimming)
937 M_TOP_PAD -2 0 any
938 M_MMAP_THRESHOLD -3 128*1024 any (or 0 if no MMAP support)
939 M_MMAP_MAX -4 65536 any (0 disables use of mmap)
941 #if __STD_C
942 int public_mALLOPt(int, int);
943 #else
944 int public_mALLOPt();
945 #endif
949 mallinfo()
950 Returns (by copy) a struct containing various summary statistics:
952 arena: current total non-mmapped bytes allocated from system
953 ordblks: the number of free chunks
954 smblks: the number of fastbin blocks (i.e., small chunks that
955 have been freed but not use resused or consolidated)
956 hblks: current number of mmapped regions
957 hblkhd: total bytes held in mmapped regions
958 usmblks: the maximum total allocated space. This will be greater
959 than current total if trimming has occurred.
960 fsmblks: total bytes held in fastbin blocks
961 uordblks: current total allocated space (normal or mmapped)
962 fordblks: total free space
963 keepcost: the maximum number of bytes that could ideally be released
964 back to system via malloc_trim. ("ideally" means that
965 it ignores page restrictions etc.)
967 Because these fields are ints, but internal bookkeeping may
968 be kept as longs, the reported values may wrap around zero and
969 thus be inaccurate.
971 #if __STD_C
972 struct mallinfo public_mALLINFo(void);
973 #else
974 struct mallinfo public_mALLINFo();
975 #endif
978 independent_calloc(size_t n_elements, size_t element_size, Void_t* chunks[]);
980 independent_calloc is similar to calloc, but instead of returning a
981 single cleared space, it returns an array of pointers to n_elements
982 independent elements that can hold contents of size elem_size, each
983 of which starts out cleared, and can be independently freed,
984 realloc'ed etc. The elements are guaranteed to be adjacently
985 allocated (this is not guaranteed to occur with multiple callocs or
986 mallocs), which may also improve cache locality in some
987 applications.
989 The "chunks" argument is optional (i.e., may be null, which is
990 probably the most typical usage). If it is null, the returned array
991 is itself dynamically allocated and should also be freed when it is
992 no longer needed. Otherwise, the chunks array must be of at least
993 n_elements in length. It is filled in with the pointers to the
994 chunks.
996 In either case, independent_calloc returns this pointer array, or
997 null if the allocation failed. If n_elements is zero and "chunks"
998 is null, it returns a chunk representing an array with zero elements
999 (which should be freed if not wanted).
1001 Each element must be individually freed when it is no longer
1002 needed. If you'd like to instead be able to free all at once, you
1003 should instead use regular calloc and assign pointers into this
1004 space to represent elements. (In this case though, you cannot
1005 independently free elements.)
1007 independent_calloc simplifies and speeds up implementations of many
1008 kinds of pools. It may also be useful when constructing large data
1009 structures that initially have a fixed number of fixed-sized nodes,
1010 but the number is not known at compile time, and some of the nodes
1011 may later need to be freed. For example:
1013 struct Node { int item; struct Node* next; };
1015 struct Node* build_list() {
1016 struct Node** pool;
1017 int n = read_number_of_nodes_needed();
1018 if (n <= 0) return 0;
1019 pool = (struct Node**)(independent_calloc(n, sizeof(struct Node), 0);
1020 if (pool == 0) die();
1021 // organize into a linked list...
1022 struct Node* first = pool[0];
1023 for (i = 0; i < n-1; ++i)
1024 pool[i]->next = pool[i+1];
1025 free(pool); // Can now free the array (or not, if it is needed later)
1026 return first;
1029 #if __STD_C
1030 Void_t** public_iCALLOc(size_t, size_t, Void_t**);
1031 #else
1032 Void_t** public_iCALLOc();
1033 #endif
1036 independent_comalloc(size_t n_elements, size_t sizes[], Void_t* chunks[]);
1038 independent_comalloc allocates, all at once, a set of n_elements
1039 chunks with sizes indicated in the "sizes" array. It returns
1040 an array of pointers to these elements, each of which can be
1041 independently freed, realloc'ed etc. The elements are guaranteed to
1042 be adjacently allocated (this is not guaranteed to occur with
1043 multiple callocs or mallocs), which may also improve cache locality
1044 in some applications.
1046 The "chunks" argument is optional (i.e., may be null). If it is null
1047 the returned array is itself dynamically allocated and should also
1048 be freed when it is no longer needed. Otherwise, the chunks array
1049 must be of at least n_elements in length. It is filled in with the
1050 pointers to the chunks.
1052 In either case, independent_comalloc returns this pointer array, or
1053 null if the allocation failed. If n_elements is zero and chunks is
1054 null, it returns a chunk representing an array with zero elements
1055 (which should be freed if not wanted).
1057 Each element must be individually freed when it is no longer
1058 needed. If you'd like to instead be able to free all at once, you
1059 should instead use a single regular malloc, and assign pointers at
1060 particular offsets in the aggregate space. (In this case though, you
1061 cannot independently free elements.)
1063 independent_comallac differs from independent_calloc in that each
1064 element may have a different size, and also that it does not
1065 automatically clear elements.
1067 independent_comalloc can be used to speed up allocation in cases
1068 where several structs or objects must always be allocated at the
1069 same time. For example:
1071 struct Head { ... }
1072 struct Foot { ... }
1074 void send_message(char* msg) {
1075 int msglen = strlen(msg);
1076 size_t sizes[3] = { sizeof(struct Head), msglen, sizeof(struct Foot) };
1077 void* chunks[3];
1078 if (independent_comalloc(3, sizes, chunks) == 0)
1079 die();
1080 struct Head* head = (struct Head*)(chunks[0]);
1081 char* body = (char*)(chunks[1]);
1082 struct Foot* foot = (struct Foot*)(chunks[2]);
1083 // ...
1086 In general though, independent_comalloc is worth using only for
1087 larger values of n_elements. For small values, you probably won't
1088 detect enough difference from series of malloc calls to bother.
1090 Overuse of independent_comalloc can increase overall memory usage,
1091 since it cannot reuse existing noncontiguous small chunks that
1092 might be available for some of the elements.
1094 #if __STD_C
1095 Void_t** public_iCOMALLOc(size_t, size_t*, Void_t**);
1096 #else
1097 Void_t** public_iCOMALLOc();
1098 #endif
1102 pvalloc(size_t n);
1103 Equivalent to valloc(minimum-page-that-holds(n)), that is,
1104 round up n to nearest pagesize.
1106 #if __STD_C
1107 Void_t* public_pVALLOc(size_t);
1108 #else
1109 Void_t* public_pVALLOc();
1110 #endif
1113 cfree(Void_t* p);
1114 Equivalent to free(p).
1116 cfree is needed/defined on some systems that pair it with calloc,
1117 for odd historical reasons (such as: cfree is used in example
1118 code in the first edition of K&R).
1120 #if __STD_C
1121 void public_cFREe(Void_t*);
1122 #else
1123 void public_cFREe();
1124 #endif
1127 malloc_trim(size_t pad);
1129 If possible, gives memory back to the system (via negative
1130 arguments to sbrk) if there is unused memory at the `high' end of
1131 the malloc pool. You can call this after freeing large blocks of
1132 memory to potentially reduce the system-level memory requirements
1133 of a program. However, it cannot guarantee to reduce memory. Under
1134 some allocation patterns, some large free blocks of memory will be
1135 locked between two used chunks, so they cannot be given back to
1136 the system.
1138 The `pad' argument to malloc_trim represents the amount of free
1139 trailing space to leave untrimmed. If this argument is zero,
1140 only the minimum amount of memory to maintain internal data
1141 structures will be left (one page or less). Non-zero arguments
1142 can be supplied to maintain enough trailing space to service
1143 future expected allocations without having to re-obtain memory
1144 from the system.
1146 Malloc_trim returns 1 if it actually released any memory, else 0.
1147 On systems that do not support "negative sbrks", it will always
1148 rreturn 0.
1150 #if __STD_C
1151 int public_mTRIm(size_t);
1152 #else
1153 int public_mTRIm();
1154 #endif
1157 malloc_usable_size(Void_t* p);
1159 Returns the number of bytes you can actually use in
1160 an allocated chunk, which may be more than you requested (although
1161 often not) due to alignment and minimum size constraints.
1162 You can use this many bytes without worrying about
1163 overwriting other allocated objects. This is not a particularly great
1164 programming practice. malloc_usable_size can be more useful in
1165 debugging and assertions, for example:
1167 p = malloc(n);
1168 assert(malloc_usable_size(p) >= 256);
1171 #if __STD_C
1172 size_t public_mUSABLe(Void_t*);
1173 #else
1174 size_t public_mUSABLe();
1175 #endif
1178 malloc_stats();
1179 Prints on stderr the amount of space obtained from the system (both
1180 via sbrk and mmap), the maximum amount (which may be more than
1181 current if malloc_trim and/or munmap got called), and the current
1182 number of bytes allocated via malloc (or realloc, etc) but not yet
1183 freed. Note that this is the number of bytes allocated, not the
1184 number requested. It will be larger than the number requested
1185 because of alignment and bookkeeping overhead. Because it includes
1186 alignment wastage as being in use, this figure may be greater than
1187 zero even when no user-level chunks are allocated.
1189 The reported current and maximum system memory can be inaccurate if
1190 a program makes other calls to system memory allocation functions
1191 (normally sbrk) outside of malloc.
1193 malloc_stats prints only the most commonly interesting statistics.
1194 More information can be obtained by calling mallinfo.
1197 #if __STD_C
1198 void public_mSTATs(void);
1199 #else
1200 void public_mSTATs();
1201 #endif
1204 malloc_get_state(void);
1206 Returns the state of all malloc variables in an opaque data
1207 structure.
1209 #if __STD_C
1210 Void_t* public_gET_STATe(void);
1211 #else
1212 Void_t* public_gET_STATe();
1213 #endif
1216 malloc_set_state(Void_t* state);
1218 Restore the state of all malloc variables from data obtained with
1219 malloc_get_state().
1221 #if __STD_C
1222 int public_sET_STATe(Void_t*);
1223 #else
1224 int public_sET_STATe();
1225 #endif
1227 #ifdef _LIBC
1229 posix_memalign(void **memptr, size_t alignment, size_t size);
1231 POSIX wrapper like memalign(), checking for validity of size.
1233 int __posix_memalign(void **, size_t, size_t);
1234 #endif
1236 /* mallopt tuning options */
1239 M_MXFAST is the maximum request size used for "fastbins", special bins
1240 that hold returned chunks without consolidating their spaces. This
1241 enables future requests for chunks of the same size to be handled
1242 very quickly, but can increase fragmentation, and thus increase the
1243 overall memory footprint of a program.
1245 This malloc manages fastbins very conservatively yet still
1246 efficiently, so fragmentation is rarely a problem for values less
1247 than or equal to the default. The maximum supported value of MXFAST
1248 is 80. You wouldn't want it any higher than this anyway. Fastbins
1249 are designed especially for use with many small structs, objects or
1250 strings -- the default handles structs/objects/arrays with sizes up
1251 to 8 4byte fields, or small strings representing words, tokens,
1252 etc. Using fastbins for larger objects normally worsens
1253 fragmentation without improving speed.
1255 M_MXFAST is set in REQUEST size units. It is internally used in
1256 chunksize units, which adds padding and alignment. You can reduce
1257 M_MXFAST to 0 to disable all use of fastbins. This causes the malloc
1258 algorithm to be a closer approximation of fifo-best-fit in all cases,
1259 not just for larger requests, but will generally cause it to be
1260 slower.
1264 /* M_MXFAST is a standard SVID/XPG tuning option, usually listed in malloc.h */
1265 #ifndef M_MXFAST
1266 #define M_MXFAST 1
1267 #endif
1269 #ifndef DEFAULT_MXFAST
1270 #define DEFAULT_MXFAST 64
1271 #endif
1275 M_TRIM_THRESHOLD is the maximum amount of unused top-most memory
1276 to keep before releasing via malloc_trim in free().
1278 Automatic trimming is mainly useful in long-lived programs.
1279 Because trimming via sbrk can be slow on some systems, and can
1280 sometimes be wasteful (in cases where programs immediately
1281 afterward allocate more large chunks) the value should be high
1282 enough so that your overall system performance would improve by
1283 releasing this much memory.
1285 The trim threshold and the mmap control parameters (see below)
1286 can be traded off with one another. Trimming and mmapping are
1287 two different ways of releasing unused memory back to the
1288 system. Between these two, it is often possible to keep
1289 system-level demands of a long-lived program down to a bare
1290 minimum. For example, in one test suite of sessions measuring
1291 the XF86 X server on Linux, using a trim threshold of 128K and a
1292 mmap threshold of 192K led to near-minimal long term resource
1293 consumption.
1295 If you are using this malloc in a long-lived program, it should
1296 pay to experiment with these values. As a rough guide, you
1297 might set to a value close to the average size of a process
1298 (program) running on your system. Releasing this much memory
1299 would allow such a process to run in memory. Generally, it's
1300 worth it to tune for trimming rather tham memory mapping when a
1301 program undergoes phases where several large chunks are
1302 allocated and released in ways that can reuse each other's
1303 storage, perhaps mixed with phases where there are no such
1304 chunks at all. And in well-behaved long-lived programs,
1305 controlling release of large blocks via trimming versus mapping
1306 is usually faster.
1308 However, in most programs, these parameters serve mainly as
1309 protection against the system-level effects of carrying around
1310 massive amounts of unneeded memory. Since frequent calls to
1311 sbrk, mmap, and munmap otherwise degrade performance, the default
1312 parameters are set to relatively high values that serve only as
1313 safeguards.
1315 The trim value It must be greater than page size to have any useful
1316 effect. To disable trimming completely, you can set to
1317 (unsigned long)(-1)
1319 Trim settings interact with fastbin (MXFAST) settings: Unless
1320 TRIM_FASTBINS is defined, automatic trimming never takes place upon
1321 freeing a chunk with size less than or equal to MXFAST. Trimming is
1322 instead delayed until subsequent freeing of larger chunks. However,
1323 you can still force an attempted trim by calling malloc_trim.
1325 Also, trimming is not generally possible in cases where
1326 the main arena is obtained via mmap.
1328 Note that the trick some people use of mallocing a huge space and
1329 then freeing it at program startup, in an attempt to reserve system
1330 memory, doesn't have the intended effect under automatic trimming,
1331 since that memory will immediately be returned to the system.
1334 #define M_TRIM_THRESHOLD -1
1336 #ifndef DEFAULT_TRIM_THRESHOLD
1337 #define DEFAULT_TRIM_THRESHOLD (128 * 1024)
1338 #endif
1341 M_TOP_PAD is the amount of extra `padding' space to allocate or
1342 retain whenever sbrk is called. It is used in two ways internally:
1344 * When sbrk is called to extend the top of the arena to satisfy
1345 a new malloc request, this much padding is added to the sbrk
1346 request.
1348 * When malloc_trim is called automatically from free(),
1349 it is used as the `pad' argument.
1351 In both cases, the actual amount of padding is rounded
1352 so that the end of the arena is always a system page boundary.
1354 The main reason for using padding is to avoid calling sbrk so
1355 often. Having even a small pad greatly reduces the likelihood
1356 that nearly every malloc request during program start-up (or
1357 after trimming) will invoke sbrk, which needlessly wastes
1358 time.
1360 Automatic rounding-up to page-size units is normally sufficient
1361 to avoid measurable overhead, so the default is 0. However, in
1362 systems where sbrk is relatively slow, it can pay to increase
1363 this value, at the expense of carrying around more memory than
1364 the program needs.
1367 #define M_TOP_PAD -2
1369 #ifndef DEFAULT_TOP_PAD
1370 #define DEFAULT_TOP_PAD (0)
1371 #endif
1374 M_MMAP_THRESHOLD is the request size threshold for using mmap()
1375 to service a request. Requests of at least this size that cannot
1376 be allocated using already-existing space will be serviced via mmap.
1377 (If enough normal freed space already exists it is used instead.)
1379 Using mmap segregates relatively large chunks of memory so that
1380 they can be individually obtained and released from the host
1381 system. A request serviced through mmap is never reused by any
1382 other request (at least not directly; the system may just so
1383 happen to remap successive requests to the same locations).
1385 Segregating space in this way has the benefits that:
1387 1. Mmapped space can ALWAYS be individually released back
1388 to the system, which helps keep the system level memory
1389 demands of a long-lived program low.
1390 2. Mapped memory can never become `locked' between
1391 other chunks, as can happen with normally allocated chunks, which
1392 means that even trimming via malloc_trim would not release them.
1393 3. On some systems with "holes" in address spaces, mmap can obtain
1394 memory that sbrk cannot.
1396 However, it has the disadvantages that:
1398 1. The space cannot be reclaimed, consolidated, and then
1399 used to service later requests, as happens with normal chunks.
1400 2. It can lead to more wastage because of mmap page alignment
1401 requirements
1402 3. It causes malloc performance to be more dependent on host
1403 system memory management support routines which may vary in
1404 implementation quality and may impose arbitrary
1405 limitations. Generally, servicing a request via normal
1406 malloc steps is faster than going through a system's mmap.
1408 The advantages of mmap nearly always outweigh disadvantages for
1409 "large" chunks, but the value of "large" varies across systems. The
1410 default is an empirically derived value that works well in most
1411 systems.
1414 #define M_MMAP_THRESHOLD -3
1416 #ifndef DEFAULT_MMAP_THRESHOLD
1417 #define DEFAULT_MMAP_THRESHOLD (128 * 1024)
1418 #endif
1421 M_MMAP_MAX is the maximum number of requests to simultaneously
1422 service using mmap. This parameter exists because
1423 some systems have a limited number of internal tables for
1424 use by mmap, and using more than a few of them may degrade
1425 performance.
1427 The default is set to a value that serves only as a safeguard.
1428 Setting to 0 disables use of mmap for servicing large requests. If
1429 HAVE_MMAP is not set, the default value is 0, and attempts to set it
1430 to non-zero values in mallopt will fail.
1433 #define M_MMAP_MAX -4
1435 #ifndef DEFAULT_MMAP_MAX
1436 #if HAVE_MMAP
1437 #define DEFAULT_MMAP_MAX (65536)
1438 #else
1439 #define DEFAULT_MMAP_MAX (0)
1440 #endif
1441 #endif
1443 #ifdef __cplusplus
1444 }; /* end of extern "C" */
1445 #endif
1447 #include <malloc.h>
1448 #include "thread-m.h"
1450 #ifndef BOUNDED_N
1451 #define BOUNDED_N(ptr, sz) (ptr)
1452 #endif
1453 #ifndef RETURN_ADDRESS
1454 #define RETURN_ADDRESS(X_) (NULL)
1455 #endif
1457 /* On some platforms we can compile internal, not exported functions better.
1458 Let the environment provide a macro and define it to be empty if it
1459 is not available. */
1460 #ifndef internal_function
1461 # define internal_function
1462 #endif
1464 /* Forward declarations. */
1465 struct malloc_chunk;
1466 typedef struct malloc_chunk* mchunkptr;
1468 /* Internal routines. */
1470 #if __STD_C
1472 Void_t* _int_malloc(mstate, size_t);
1473 void _int_free(mstate, Void_t*);
1474 Void_t* _int_realloc(mstate, Void_t*, size_t);
1475 Void_t* _int_memalign(mstate, size_t, size_t);
1476 Void_t* _int_valloc(mstate, size_t);
1477 static Void_t* _int_pvalloc(mstate, size_t);
1478 /*static Void_t* cALLOc(size_t, size_t);*/
1479 static Void_t** _int_icalloc(mstate, size_t, size_t, Void_t**);
1480 static Void_t** _int_icomalloc(mstate, size_t, size_t*, Void_t**);
1481 static int mTRIm(size_t);
1482 static size_t mUSABLe(Void_t*);
1483 static void mSTATs(void);
1484 static int mALLOPt(int, int);
1485 static struct mallinfo mALLINFo(mstate);
1487 static Void_t* internal_function mem2mem_check(Void_t *p, size_t sz);
1488 static int internal_function top_check(void);
1489 static void internal_function munmap_chunk(mchunkptr p);
1490 #if HAVE_MREMAP
1491 static mchunkptr internal_function mremap_chunk(mchunkptr p, size_t new_size);
1492 #endif
1494 static Void_t* malloc_check(size_t sz, const Void_t *caller);
1495 static void free_check(Void_t* mem, const Void_t *caller);
1496 static Void_t* realloc_check(Void_t* oldmem, size_t bytes,
1497 const Void_t *caller);
1498 static Void_t* memalign_check(size_t alignment, size_t bytes,
1499 const Void_t *caller);
1500 #ifndef NO_THREADS
1501 # ifdef _LIBC
1502 # if USE___THREAD || (defined USE_TLS && !defined SHARED)
1503 /* These routines are never needed in this configuration. */
1504 # define NO_STARTER
1505 # endif
1506 # endif
1507 # ifdef NO_STARTER
1508 # undef NO_STARTER
1509 # else
1510 static Void_t* malloc_starter(size_t sz, const Void_t *caller);
1511 static Void_t* memalign_starter(size_t aln, size_t sz, const Void_t *caller);
1512 static void free_starter(Void_t* mem, const Void_t *caller);
1513 # endif
1514 static Void_t* malloc_atfork(size_t sz, const Void_t *caller);
1515 static void free_atfork(Void_t* mem, const Void_t *caller);
1516 #endif
1518 #else
1520 Void_t* _int_malloc();
1521 void _int_free();
1522 Void_t* _int_realloc();
1523 Void_t* _int_memalign();
1524 Void_t* _int_valloc();
1525 Void_t* _int_pvalloc();
1526 /*static Void_t* cALLOc();*/
1527 static Void_t** _int_icalloc();
1528 static Void_t** _int_icomalloc();
1529 static int mTRIm();
1530 static size_t mUSABLe();
1531 static void mSTATs();
1532 static int mALLOPt();
1533 static struct mallinfo mALLINFo();
1535 #endif
1540 /* ------------- Optional versions of memcopy ---------------- */
1543 #if USE_MEMCPY
1546 Note: memcpy is ONLY invoked with non-overlapping regions,
1547 so the (usually slower) memmove is not needed.
1550 #define MALLOC_COPY(dest, src, nbytes) memcpy(dest, src, nbytes)
1551 #define MALLOC_ZERO(dest, nbytes) memset(dest, 0, nbytes)
1553 #else /* !USE_MEMCPY */
1555 /* Use Duff's device for good zeroing/copying performance. */
1557 #define MALLOC_ZERO(charp, nbytes) \
1558 do { \
1559 INTERNAL_SIZE_T* mzp = (INTERNAL_SIZE_T*)(charp); \
1560 unsigned long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T); \
1561 long mcn; \
1562 if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; } \
1563 switch (mctmp) { \
1564 case 0: for(;;) { *mzp++ = 0; \
1565 case 7: *mzp++ = 0; \
1566 case 6: *mzp++ = 0; \
1567 case 5: *mzp++ = 0; \
1568 case 4: *mzp++ = 0; \
1569 case 3: *mzp++ = 0; \
1570 case 2: *mzp++ = 0; \
1571 case 1: *mzp++ = 0; if(mcn <= 0) break; mcn--; } \
1573 } while(0)
1575 #define MALLOC_COPY(dest,src,nbytes) \
1576 do { \
1577 INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) src; \
1578 INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) dest; \
1579 unsigned long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T); \
1580 long mcn; \
1581 if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; } \
1582 switch (mctmp) { \
1583 case 0: for(;;) { *mcdst++ = *mcsrc++; \
1584 case 7: *mcdst++ = *mcsrc++; \
1585 case 6: *mcdst++ = *mcsrc++; \
1586 case 5: *mcdst++ = *mcsrc++; \
1587 case 4: *mcdst++ = *mcsrc++; \
1588 case 3: *mcdst++ = *mcsrc++; \
1589 case 2: *mcdst++ = *mcsrc++; \
1590 case 1: *mcdst++ = *mcsrc++; if(mcn <= 0) break; mcn--; } \
1592 } while(0)
1594 #endif
1596 /* ------------------ MMAP support ------------------ */
1599 #if HAVE_MMAP
1601 #include <fcntl.h>
1602 #ifndef LACKS_SYS_MMAN_H
1603 #include <sys/mman.h>
1604 #endif
1606 #if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
1607 # define MAP_ANONYMOUS MAP_ANON
1608 #endif
1609 #if !defined(MAP_FAILED)
1610 # define MAP_FAILED ((char*)-1)
1611 #endif
1613 #ifndef MAP_NORESERVE
1614 # ifdef MAP_AUTORESRV
1615 # define MAP_NORESERVE MAP_AUTORESRV
1616 # else
1617 # define MAP_NORESERVE 0
1618 # endif
1619 #endif
1622 Nearly all versions of mmap support MAP_ANONYMOUS,
1623 so the following is unlikely to be needed, but is
1624 supplied just in case.
1627 #ifndef MAP_ANONYMOUS
1629 static int dev_zero_fd = -1; /* Cached file descriptor for /dev/zero. */
1631 #define MMAP(addr, size, prot, flags) ((dev_zero_fd < 0) ? \
1632 (dev_zero_fd = open("/dev/zero", O_RDWR), \
1633 mmap((addr), (size), (prot), (flags), dev_zero_fd, 0)) : \
1634 mmap((addr), (size), (prot), (flags), dev_zero_fd, 0))
1636 #else
1638 #define MMAP(addr, size, prot, flags) \
1639 (mmap((addr), (size), (prot), (flags)|MAP_ANONYMOUS, -1, 0))
1641 #endif
1644 #endif /* HAVE_MMAP */
1648 ----------------------- Chunk representations -----------------------
1653 This struct declaration is misleading (but accurate and necessary).
1654 It declares a "view" into memory allowing access to necessary
1655 fields at known offsets from a given base. See explanation below.
1658 struct malloc_chunk {
1660 INTERNAL_SIZE_T prev_size; /* Size of previous chunk (if free). */
1661 INTERNAL_SIZE_T size; /* Size in bytes, including overhead. */
1663 struct malloc_chunk* fd; /* double links -- used only if free. */
1664 struct malloc_chunk* bk;
1669 malloc_chunk details:
1671 (The following includes lightly edited explanations by Colin Plumb.)
1673 Chunks of memory are maintained using a `boundary tag' method as
1674 described in e.g., Knuth or Standish. (See the paper by Paul
1675 Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a
1676 survey of such techniques.) Sizes of free chunks are stored both
1677 in the front of each chunk and at the end. This makes
1678 consolidating fragmented chunks into bigger chunks very fast. The
1679 size fields also hold bits representing whether chunks are free or
1680 in use.
1682 An allocated chunk looks like this:
1685 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1686 | Size of previous chunk, if allocated | |
1687 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1688 | Size of chunk, in bytes |P|
1689 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1690 | User data starts here... .
1692 . (malloc_usable_space() bytes) .
1694 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1695 | Size of chunk |
1696 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1699 Where "chunk" is the front of the chunk for the purpose of most of
1700 the malloc code, but "mem" is the pointer that is returned to the
1701 user. "Nextchunk" is the beginning of the next contiguous chunk.
1703 Chunks always begin on even word boundries, so the mem portion
1704 (which is returned to the user) is also on an even word boundary, and
1705 thus at least double-word aligned.
1707 Free chunks are stored in circular doubly-linked lists, and look like this:
1709 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1710 | Size of previous chunk |
1711 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1712 `head:' | Size of chunk, in bytes |P|
1713 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1714 | Forward pointer to next chunk in list |
1715 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1716 | Back pointer to previous chunk in list |
1717 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1718 | Unused space (may be 0 bytes long) .
1721 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1722 `foot:' | Size of chunk, in bytes |
1723 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1725 The P (PREV_INUSE) bit, stored in the unused low-order bit of the
1726 chunk size (which is always a multiple of two words), is an in-use
1727 bit for the *previous* chunk. If that bit is *clear*, then the
1728 word before the current chunk size contains the previous chunk
1729 size, and can be used to find the front of the previous chunk.
1730 The very first chunk allocated always has this bit set,
1731 preventing access to non-existent (or non-owned) memory. If
1732 prev_inuse is set for any given chunk, then you CANNOT determine
1733 the size of the previous chunk, and might even get a memory
1734 addressing fault when trying to do so.
1736 Note that the `foot' of the current chunk is actually represented
1737 as the prev_size of the NEXT chunk. This makes it easier to
1738 deal with alignments etc but can be very confusing when trying
1739 to extend or adapt this code.
1741 The two exceptions to all this are
1743 1. The special chunk `top' doesn't bother using the
1744 trailing size field since there is no next contiguous chunk
1745 that would have to index off it. After initialization, `top'
1746 is forced to always exist. If it would become less than
1747 MINSIZE bytes long, it is replenished.
1749 2. Chunks allocated via mmap, which have the second-lowest-order
1750 bit (IS_MMAPPED) set in their size fields. Because they are
1751 allocated one-by-one, each must contain its own trailing size field.
1756 ---------- Size and alignment checks and conversions ----------
1759 /* conversion from malloc headers to user pointers, and back */
1761 #define chunk2mem(p) ((Void_t*)((char*)(p) + 2*SIZE_SZ))
1762 #define mem2chunk(mem) ((mchunkptr)((char*)(mem) - 2*SIZE_SZ))
1764 /* The smallest possible chunk */
1765 #define MIN_CHUNK_SIZE (sizeof(struct malloc_chunk))
1767 /* The smallest size we can malloc is an aligned minimal chunk */
1769 #define MINSIZE \
1770 (unsigned long)(((MIN_CHUNK_SIZE+MALLOC_ALIGN_MASK) & ~MALLOC_ALIGN_MASK))
1772 /* Check if m has acceptable alignment */
1774 #define aligned_OK(m) (((unsigned long)((m)) & (MALLOC_ALIGN_MASK)) == 0)
1778 Check if a request is so large that it would wrap around zero when
1779 padded and aligned. To simplify some other code, the bound is made
1780 low enough so that adding MINSIZE will also not wrap around zero.
1783 #define REQUEST_OUT_OF_RANGE(req) \
1784 ((unsigned long)(req) >= \
1785 (unsigned long)(INTERNAL_SIZE_T)(-2 * MINSIZE))
1787 /* pad request bytes into a usable size -- internal version */
1789 #define request2size(req) \
1790 (((req) + SIZE_SZ + MALLOC_ALIGN_MASK < MINSIZE) ? \
1791 MINSIZE : \
1792 ((req) + SIZE_SZ + MALLOC_ALIGN_MASK) & ~MALLOC_ALIGN_MASK)
1794 /* Same, except also perform argument check */
1796 #define checked_request2size(req, sz) \
1797 if (REQUEST_OUT_OF_RANGE(req)) { \
1798 MALLOC_FAILURE_ACTION; \
1799 return 0; \
1801 (sz) = request2size(req);
1804 --------------- Physical chunk operations ---------------
1808 /* size field is or'ed with PREV_INUSE when previous adjacent chunk in use */
1809 #define PREV_INUSE 0x1
1811 /* extract inuse bit of previous chunk */
1812 #define prev_inuse(p) ((p)->size & PREV_INUSE)
1815 /* size field is or'ed with IS_MMAPPED if the chunk was obtained with mmap() */
1816 #define IS_MMAPPED 0x2
1818 /* check for mmap()'ed chunk */
1819 #define chunk_is_mmapped(p) ((p)->size & IS_MMAPPED)
1822 /* size field is or'ed with NON_MAIN_ARENA if the chunk was obtained
1823 from a non-main arena. This is only set immediately before handing
1824 the chunk to the user, if necessary. */
1825 #define NON_MAIN_ARENA 0x4
1827 /* check for chunk from non-main arena */
1828 #define chunk_non_main_arena(p) ((p)->size & NON_MAIN_ARENA)
1832 Bits to mask off when extracting size
1834 Note: IS_MMAPPED is intentionally not masked off from size field in
1835 macros for which mmapped chunks should never be seen. This should
1836 cause helpful core dumps to occur if it is tried by accident by
1837 people extending or adapting this malloc.
1839 #define SIZE_BITS (PREV_INUSE|IS_MMAPPED|NON_MAIN_ARENA)
1841 /* Get size, ignoring use bits */
1842 #define chunksize(p) ((p)->size & ~(SIZE_BITS))
1845 /* Ptr to next physical malloc_chunk. */
1846 #define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->size & ~SIZE_BITS) ))
1848 /* Ptr to previous physical malloc_chunk */
1849 #define prev_chunk(p) ((mchunkptr)( ((char*)(p)) - ((p)->prev_size) ))
1851 /* Treat space at ptr + offset as a chunk */
1852 #define chunk_at_offset(p, s) ((mchunkptr)(((char*)(p)) + (s)))
1854 /* extract p's inuse bit */
1855 #define inuse(p)\
1856 ((((mchunkptr)(((char*)(p))+((p)->size & ~SIZE_BITS)))->size) & PREV_INUSE)
1858 /* set/clear chunk as being inuse without otherwise disturbing */
1859 #define set_inuse(p)\
1860 ((mchunkptr)(((char*)(p)) + ((p)->size & ~SIZE_BITS)))->size |= PREV_INUSE
1862 #define clear_inuse(p)\
1863 ((mchunkptr)(((char*)(p)) + ((p)->size & ~SIZE_BITS)))->size &= ~(PREV_INUSE)
1866 /* check/set/clear inuse bits in known places */
1867 #define inuse_bit_at_offset(p, s)\
1868 (((mchunkptr)(((char*)(p)) + (s)))->size & PREV_INUSE)
1870 #define set_inuse_bit_at_offset(p, s)\
1871 (((mchunkptr)(((char*)(p)) + (s)))->size |= PREV_INUSE)
1873 #define clear_inuse_bit_at_offset(p, s)\
1874 (((mchunkptr)(((char*)(p)) + (s)))->size &= ~(PREV_INUSE))
1877 /* Set size at head, without disturbing its use bit */
1878 #define set_head_size(p, s) ((p)->size = (((p)->size & SIZE_BITS) | (s)))
1880 /* Set size/use field */
1881 #define set_head(p, s) ((p)->size = (s))
1883 /* Set size at footer (only when chunk is not in use) */
1884 #define set_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_size = (s))
1888 -------------------- Internal data structures --------------------
1890 All internal state is held in an instance of malloc_state defined
1891 below. There are no other static variables, except in two optional
1892 cases:
1893 * If USE_MALLOC_LOCK is defined, the mALLOC_MUTEx declared above.
1894 * If HAVE_MMAP is true, but mmap doesn't support
1895 MAP_ANONYMOUS, a dummy file descriptor for mmap.
1897 Beware of lots of tricks that minimize the total bookkeeping space
1898 requirements. The result is a little over 1K bytes (for 4byte
1899 pointers and size_t.)
1903 Bins
1905 An array of bin headers for free chunks. Each bin is doubly
1906 linked. The bins are approximately proportionally (log) spaced.
1907 There are a lot of these bins (128). This may look excessive, but
1908 works very well in practice. Most bins hold sizes that are
1909 unusual as malloc request sizes, but are more usual for fragments
1910 and consolidated sets of chunks, which is what these bins hold, so
1911 they can be found quickly. All procedures maintain the invariant
1912 that no consolidated chunk physically borders another one, so each
1913 chunk in a list is known to be preceeded and followed by either
1914 inuse chunks or the ends of memory.
1916 Chunks in bins are kept in size order, with ties going to the
1917 approximately least recently used chunk. Ordering isn't needed
1918 for the small bins, which all contain the same-sized chunks, but
1919 facilitates best-fit allocation for larger chunks. These lists
1920 are just sequential. Keeping them in order almost never requires
1921 enough traversal to warrant using fancier ordered data
1922 structures.
1924 Chunks of the same size are linked with the most
1925 recently freed at the front, and allocations are taken from the
1926 back. This results in LRU (FIFO) allocation order, which tends
1927 to give each chunk an equal opportunity to be consolidated with
1928 adjacent freed chunks, resulting in larger free chunks and less
1929 fragmentation.
1931 To simplify use in double-linked lists, each bin header acts
1932 as a malloc_chunk. This avoids special-casing for headers.
1933 But to conserve space and improve locality, we allocate
1934 only the fd/bk pointers of bins, and then use repositioning tricks
1935 to treat these as the fields of a malloc_chunk*.
1938 typedef struct malloc_chunk* mbinptr;
1940 /* addressing -- note that bin_at(0) does not exist */
1941 #define bin_at(m, i) ((mbinptr)((char*)&((m)->bins[(i)<<1]) - (SIZE_SZ<<1)))
1943 /* analog of ++bin */
1944 #define next_bin(b) ((mbinptr)((char*)(b) + (sizeof(mchunkptr)<<1)))
1946 /* Reminders about list directionality within bins */
1947 #define first(b) ((b)->fd)
1948 #define last(b) ((b)->bk)
1950 /* Take a chunk off a bin list */
1951 #define unlink(P, BK, FD) { \
1952 FD = P->fd; \
1953 BK = P->bk; \
1954 FD->bk = BK; \
1955 BK->fd = FD; \
1959 Indexing
1961 Bins for sizes < 512 bytes contain chunks of all the same size, spaced
1962 8 bytes apart. Larger bins are approximately logarithmically spaced:
1964 64 bins of size 8
1965 32 bins of size 64
1966 16 bins of size 512
1967 8 bins of size 4096
1968 4 bins of size 32768
1969 2 bins of size 262144
1970 1 bin of size what's left
1972 There is actually a little bit of slop in the numbers in bin_index
1973 for the sake of speed. This makes no difference elsewhere.
1975 The bins top out around 1MB because we expect to service large
1976 requests via mmap.
1979 #define NBINS 128
1980 #define NSMALLBINS 64
1981 #define SMALLBIN_WIDTH 8
1982 #define MIN_LARGE_SIZE 512
1984 #define in_smallbin_range(sz) \
1985 ((unsigned long)(sz) < (unsigned long)MIN_LARGE_SIZE)
1987 #define smallbin_index(sz) (((unsigned)(sz)) >> 3)
1989 #define largebin_index(sz) \
1990 (((((unsigned long)(sz)) >> 6) <= 32)? 56 + (((unsigned long)(sz)) >> 6): \
1991 ((((unsigned long)(sz)) >> 9) <= 20)? 91 + (((unsigned long)(sz)) >> 9): \
1992 ((((unsigned long)(sz)) >> 12) <= 10)? 110 + (((unsigned long)(sz)) >> 12): \
1993 ((((unsigned long)(sz)) >> 15) <= 4)? 119 + (((unsigned long)(sz)) >> 15): \
1994 ((((unsigned long)(sz)) >> 18) <= 2)? 124 + (((unsigned long)(sz)) >> 18): \
1995 126)
1997 #define bin_index(sz) \
1998 ((in_smallbin_range(sz)) ? smallbin_index(sz) : largebin_index(sz))
2002 Unsorted chunks
2004 All remainders from chunk splits, as well as all returned chunks,
2005 are first placed in the "unsorted" bin. They are then placed
2006 in regular bins after malloc gives them ONE chance to be used before
2007 binning. So, basically, the unsorted_chunks list acts as a queue,
2008 with chunks being placed on it in free (and malloc_consolidate),
2009 and taken off (to be either used or placed in bins) in malloc.
2011 The NON_MAIN_ARENA flag is never set for unsorted chunks, so it
2012 does not have to be taken into account in size comparisons.
2015 /* The otherwise unindexable 1-bin is used to hold unsorted chunks. */
2016 #define unsorted_chunks(M) (bin_at(M, 1))
2021 The top-most available chunk (i.e., the one bordering the end of
2022 available memory) is treated specially. It is never included in
2023 any bin, is used only if no other chunk is available, and is
2024 released back to the system if it is very large (see
2025 M_TRIM_THRESHOLD). Because top initially
2026 points to its own bin with initial zero size, thus forcing
2027 extension on the first malloc request, we avoid having any special
2028 code in malloc to check whether it even exists yet. But we still
2029 need to do so when getting memory from system, so we make
2030 initial_top treat the bin as a legal but unusable chunk during the
2031 interval between initialization and the first call to
2032 sYSMALLOc. (This is somewhat delicate, since it relies on
2033 the 2 preceding words to be zero during this interval as well.)
2036 /* Conveniently, the unsorted bin can be used as dummy top on first call */
2037 #define initial_top(M) (unsorted_chunks(M))
2040 Binmap
2042 To help compensate for the large number of bins, a one-level index
2043 structure is used for bin-by-bin searching. `binmap' is a
2044 bitvector recording whether bins are definitely empty so they can
2045 be skipped over during during traversals. The bits are NOT always
2046 cleared as soon as bins are empty, but instead only
2047 when they are noticed to be empty during traversal in malloc.
2050 /* Conservatively use 32 bits per map word, even if on 64bit system */
2051 #define BINMAPSHIFT 5
2052 #define BITSPERMAP (1U << BINMAPSHIFT)
2053 #define BINMAPSIZE (NBINS / BITSPERMAP)
2055 #define idx2block(i) ((i) >> BINMAPSHIFT)
2056 #define idx2bit(i) ((1U << ((i) & ((1U << BINMAPSHIFT)-1))))
2058 #define mark_bin(m,i) ((m)->binmap[idx2block(i)] |= idx2bit(i))
2059 #define unmark_bin(m,i) ((m)->binmap[idx2block(i)] &= ~(idx2bit(i)))
2060 #define get_binmap(m,i) ((m)->binmap[idx2block(i)] & idx2bit(i))
2063 Fastbins
2065 An array of lists holding recently freed small chunks. Fastbins
2066 are not doubly linked. It is faster to single-link them, and
2067 since chunks are never removed from the middles of these lists,
2068 double linking is not necessary. Also, unlike regular bins, they
2069 are not even processed in FIFO order (they use faster LIFO) since
2070 ordering doesn't much matter in the transient contexts in which
2071 fastbins are normally used.
2073 Chunks in fastbins keep their inuse bit set, so they cannot
2074 be consolidated with other free chunks. malloc_consolidate
2075 releases all chunks in fastbins and consolidates them with
2076 other free chunks.
2079 typedef struct malloc_chunk* mfastbinptr;
2081 /* offset 2 to use otherwise unindexable first 2 bins */
2082 #define fastbin_index(sz) ((((unsigned int)(sz)) >> 3) - 2)
2084 /* The maximum fastbin request size we support */
2085 #define MAX_FAST_SIZE 80
2087 #define NFASTBINS (fastbin_index(request2size(MAX_FAST_SIZE))+1)
2090 FASTBIN_CONSOLIDATION_THRESHOLD is the size of a chunk in free()
2091 that triggers automatic consolidation of possibly-surrounding
2092 fastbin chunks. This is a heuristic, so the exact value should not
2093 matter too much. It is defined at half the default trim threshold as a
2094 compromise heuristic to only attempt consolidation if it is likely
2095 to lead to trimming. However, it is not dynamically tunable, since
2096 consolidation reduces fragmentation surrounding large chunks even
2097 if trimming is not used.
2100 #define FASTBIN_CONSOLIDATION_THRESHOLD (65536UL)
2103 Since the lowest 2 bits in max_fast don't matter in size comparisons,
2104 they are used as flags.
2108 FASTCHUNKS_BIT held in max_fast indicates that there are probably
2109 some fastbin chunks. It is set true on entering a chunk into any
2110 fastbin, and cleared only in malloc_consolidate.
2112 The truth value is inverted so that have_fastchunks will be true
2113 upon startup (since statics are zero-filled), simplifying
2114 initialization checks.
2117 #define FASTCHUNKS_BIT (1U)
2119 #define have_fastchunks(M) (((M)->max_fast & FASTCHUNKS_BIT) == 0)
2120 #define clear_fastchunks(M) ((M)->max_fast |= FASTCHUNKS_BIT)
2121 #define set_fastchunks(M) ((M)->max_fast &= ~FASTCHUNKS_BIT)
2124 NONCONTIGUOUS_BIT indicates that MORECORE does not return contiguous
2125 regions. Otherwise, contiguity is exploited in merging together,
2126 when possible, results from consecutive MORECORE calls.
2128 The initial value comes from MORECORE_CONTIGUOUS, but is
2129 changed dynamically if mmap is ever used as an sbrk substitute.
2132 #define NONCONTIGUOUS_BIT (2U)
2134 #define contiguous(M) (((M)->max_fast & NONCONTIGUOUS_BIT) == 0)
2135 #define noncontiguous(M) (((M)->max_fast & NONCONTIGUOUS_BIT) != 0)
2136 #define set_noncontiguous(M) ((M)->max_fast |= NONCONTIGUOUS_BIT)
2137 #define set_contiguous(M) ((M)->max_fast &= ~NONCONTIGUOUS_BIT)
2140 Set value of max_fast.
2141 Use impossibly small value if 0.
2142 Precondition: there are no existing fastbin chunks.
2143 Setting the value clears fastchunk bit but preserves noncontiguous bit.
2146 #define set_max_fast(M, s) \
2147 (M)->max_fast = (((s) == 0)? SMALLBIN_WIDTH: request2size(s)) | \
2148 FASTCHUNKS_BIT | \
2149 ((M)->max_fast & NONCONTIGUOUS_BIT)
2153 ----------- Internal state representation and initialization -----------
2156 struct malloc_state {
2157 /* Serialize access. */
2158 mutex_t mutex;
2160 /* Statistics for locking. Only used if THREAD_STATS is defined. */
2161 long stat_lock_direct, stat_lock_loop, stat_lock_wait;
2162 long pad0_[1]; /* try to give the mutex its own cacheline */
2164 /* The maximum chunk size to be eligible for fastbin */
2165 INTERNAL_SIZE_T max_fast; /* low 2 bits used as flags */
2167 /* Fastbins */
2168 mfastbinptr fastbins[NFASTBINS];
2170 /* Base of the topmost chunk -- not otherwise kept in a bin */
2171 mchunkptr top;
2173 /* The remainder from the most recent split of a small request */
2174 mchunkptr last_remainder;
2176 /* Normal bins packed as described above */
2177 mchunkptr bins[NBINS * 2];
2179 /* Bitmap of bins */
2180 unsigned int binmap[BINMAPSIZE];
2182 /* Linked list */
2183 struct malloc_state *next;
2185 /* Memory allocated from the system in this arena. */
2186 INTERNAL_SIZE_T system_mem;
2187 INTERNAL_SIZE_T max_system_mem;
2190 struct malloc_par {
2191 /* Tunable parameters */
2192 unsigned long trim_threshold;
2193 INTERNAL_SIZE_T top_pad;
2194 INTERNAL_SIZE_T mmap_threshold;
2196 /* Memory map support */
2197 int n_mmaps;
2198 int n_mmaps_max;
2199 int max_n_mmaps;
2201 /* Cache malloc_getpagesize */
2202 unsigned int pagesize;
2204 /* Statistics */
2205 INTERNAL_SIZE_T mmapped_mem;
2206 /*INTERNAL_SIZE_T sbrked_mem;*/
2207 /*INTERNAL_SIZE_T max_sbrked_mem;*/
2208 INTERNAL_SIZE_T max_mmapped_mem;
2209 INTERNAL_SIZE_T max_total_mem; /* only kept for NO_THREADS */
2211 /* First address handed out by MORECORE/sbrk. */
2212 char* sbrk_base;
2215 /* There are several instances of this struct ("arenas") in this
2216 malloc. If you are adapting this malloc in a way that does NOT use
2217 a static or mmapped malloc_state, you MUST explicitly zero-fill it
2218 before using. This malloc relies on the property that malloc_state
2219 is initialized to all zeroes (as is true of C statics). */
2221 static struct malloc_state main_arena;
2223 /* There is only one instance of the malloc parameters. */
2225 static struct malloc_par mp_;
2228 Initialize a malloc_state struct.
2230 This is called only from within malloc_consolidate, which needs
2231 be called in the same contexts anyway. It is never called directly
2232 outside of malloc_consolidate because some optimizing compilers try
2233 to inline it at all call points, which turns out not to be an
2234 optimization at all. (Inlining it in malloc_consolidate is fine though.)
2237 #if __STD_C
2238 static void malloc_init_state(mstate av)
2239 #else
2240 static void malloc_init_state(av) mstate av;
2241 #endif
2243 int i;
2244 mbinptr bin;
2246 /* Establish circular links for normal bins */
2247 for (i = 1; i < NBINS; ++i) {
2248 bin = bin_at(av,i);
2249 bin->fd = bin->bk = bin;
2252 #if MORECORE_CONTIGUOUS
2253 if (av != &main_arena)
2254 #endif
2255 set_noncontiguous(av);
2257 set_max_fast(av, DEFAULT_MXFAST);
2259 av->top = initial_top(av);
2263 Other internal utilities operating on mstates
2266 #if __STD_C
2267 static Void_t* sYSMALLOc(INTERNAL_SIZE_T, mstate);
2268 static int sYSTRIm(size_t, mstate);
2269 static void malloc_consolidate(mstate);
2270 static Void_t** iALLOc(mstate, size_t, size_t*, int, Void_t**);
2271 #else
2272 static Void_t* sYSMALLOc();
2273 static int sYSTRIm();
2274 static void malloc_consolidate();
2275 static Void_t** iALLOc();
2276 #endif
2279 /* -------------- Early definitions for debugging hooks ---------------- */
2281 /* Define and initialize the hook variables. These weak definitions must
2282 appear before any use of the variables in a function (arena.c uses one). */
2283 #ifndef weak_variable
2284 #ifndef _LIBC
2285 #define weak_variable /**/
2286 #else
2287 /* In GNU libc we want the hook variables to be weak definitions to
2288 avoid a problem with Emacs. */
2289 #define weak_variable weak_function
2290 #endif
2291 #endif
2293 /* Forward declarations. */
2294 static Void_t* malloc_hook_ini __MALLOC_P ((size_t sz,
2295 const __malloc_ptr_t caller));
2296 static Void_t* realloc_hook_ini __MALLOC_P ((Void_t* ptr, size_t sz,
2297 const __malloc_ptr_t caller));
2298 static Void_t* memalign_hook_ini __MALLOC_P ((size_t alignment, size_t sz,
2299 const __malloc_ptr_t caller));
2301 void weak_variable (*__malloc_initialize_hook) __MALLOC_P ((void)) = NULL;
2302 void weak_variable (*__free_hook) __MALLOC_P ((__malloc_ptr_t __ptr,
2303 const __malloc_ptr_t)) = NULL;
2304 __malloc_ptr_t weak_variable (*__malloc_hook)
2305 __MALLOC_P ((size_t __size, const __malloc_ptr_t)) = malloc_hook_ini;
2306 __malloc_ptr_t weak_variable (*__realloc_hook)
2307 __MALLOC_P ((__malloc_ptr_t __ptr, size_t __size, const __malloc_ptr_t))
2308 = realloc_hook_ini;
2309 __malloc_ptr_t weak_variable (*__memalign_hook)
2310 __MALLOC_P ((size_t __alignment, size_t __size, const __malloc_ptr_t))
2311 = memalign_hook_ini;
2312 void weak_variable (*__after_morecore_hook) __MALLOC_P ((void)) = NULL;
2315 /* ------------------- Support for multiple arenas -------------------- */
2316 #include "arena.c"
2319 Debugging support
2321 These routines make a number of assertions about the states
2322 of data structures that should be true at all times. If any
2323 are not true, it's very likely that a user program has somehow
2324 trashed memory. (It's also possible that there is a coding error
2325 in malloc. In which case, please report it!)
2328 #if ! MALLOC_DEBUG
2330 #define check_chunk(A,P)
2331 #define check_free_chunk(A,P)
2332 #define check_inuse_chunk(A,P)
2333 #define check_remalloced_chunk(A,P,N)
2334 #define check_malloced_chunk(A,P,N)
2335 #define check_malloc_state(A)
2337 #else
2339 #define check_chunk(A,P) do_check_chunk(A,P)
2340 #define check_free_chunk(A,P) do_check_free_chunk(A,P)
2341 #define check_inuse_chunk(A,P) do_check_inuse_chunk(A,P)
2342 #define check_remalloced_chunk(A,P,N) do_check_remalloced_chunk(A,P,N)
2343 #define check_malloced_chunk(A,P,N) do_check_malloced_chunk(A,P,N)
2344 #define check_malloc_state(A) do_check_malloc_state(A)
2347 Properties of all chunks
2350 #if __STD_C
2351 static void do_check_chunk(mstate av, mchunkptr p)
2352 #else
2353 static void do_check_chunk(av, p) mstate av; mchunkptr p;
2354 #endif
2356 unsigned long sz = chunksize(p);
2357 /* min and max possible addresses assuming contiguous allocation */
2358 char* max_address = (char*)(av->top) + chunksize(av->top);
2359 char* min_address = max_address - av->system_mem;
2361 if (!chunk_is_mmapped(p)) {
2363 /* Has legal address ... */
2364 if (p != av->top) {
2365 if (contiguous(av)) {
2366 assert(((char*)p) >= min_address);
2367 assert(((char*)p + sz) <= ((char*)(av->top)));
2370 else {
2371 /* top size is always at least MINSIZE */
2372 assert((unsigned long)(sz) >= MINSIZE);
2373 /* top predecessor always marked inuse */
2374 assert(prev_inuse(p));
2378 else {
2379 #if HAVE_MMAP
2380 /* address is outside main heap */
2381 if (contiguous(av) && av->top != initial_top(av)) {
2382 assert(((char*)p) < min_address || ((char*)p) > max_address);
2384 /* chunk is page-aligned */
2385 assert(((p->prev_size + sz) & (mp_.pagesize-1)) == 0);
2386 /* mem is aligned */
2387 assert(aligned_OK(chunk2mem(p)));
2388 #else
2389 /* force an appropriate assert violation if debug set */
2390 assert(!chunk_is_mmapped(p));
2391 #endif
2396 Properties of free chunks
2399 #if __STD_C
2400 static void do_check_free_chunk(mstate av, mchunkptr p)
2401 #else
2402 static void do_check_free_chunk(av, p) mstate av; mchunkptr p;
2403 #endif
2405 INTERNAL_SIZE_T sz = p->size & ~(PREV_INUSE|NON_MAIN_ARENA);
2406 mchunkptr next = chunk_at_offset(p, sz);
2408 do_check_chunk(av, p);
2410 /* Chunk must claim to be free ... */
2411 assert(!inuse(p));
2412 assert (!chunk_is_mmapped(p));
2414 /* Unless a special marker, must have OK fields */
2415 if ((unsigned long)(sz) >= MINSIZE)
2417 assert((sz & MALLOC_ALIGN_MASK) == 0);
2418 assert(aligned_OK(chunk2mem(p)));
2419 /* ... matching footer field */
2420 assert(next->prev_size == sz);
2421 /* ... and is fully consolidated */
2422 assert(prev_inuse(p));
2423 assert (next == av->top || inuse(next));
2425 /* ... and has minimally sane links */
2426 assert(p->fd->bk == p);
2427 assert(p->bk->fd == p);
2429 else /* markers are always of size SIZE_SZ */
2430 assert(sz == SIZE_SZ);
2434 Properties of inuse chunks
2437 #if __STD_C
2438 static void do_check_inuse_chunk(mstate av, mchunkptr p)
2439 #else
2440 static void do_check_inuse_chunk(av, p) mstate av; mchunkptr p;
2441 #endif
2443 mchunkptr next;
2445 do_check_chunk(av, p);
2447 if (chunk_is_mmapped(p))
2448 return; /* mmapped chunks have no next/prev */
2450 /* Check whether it claims to be in use ... */
2451 assert(inuse(p));
2453 next = next_chunk(p);
2455 /* ... and is surrounded by OK chunks.
2456 Since more things can be checked with free chunks than inuse ones,
2457 if an inuse chunk borders them and debug is on, it's worth doing them.
2459 if (!prev_inuse(p)) {
2460 /* Note that we cannot even look at prev unless it is not inuse */
2461 mchunkptr prv = prev_chunk(p);
2462 assert(next_chunk(prv) == p);
2463 do_check_free_chunk(av, prv);
2466 if (next == av->top) {
2467 assert(prev_inuse(next));
2468 assert(chunksize(next) >= MINSIZE);
2470 else if (!inuse(next))
2471 do_check_free_chunk(av, next);
2475 Properties of chunks recycled from fastbins
2478 #if __STD_C
2479 static void do_check_remalloced_chunk(mstate av, mchunkptr p, INTERNAL_SIZE_T s)
2480 #else
2481 static void do_check_remalloced_chunk(av, p, s)
2482 mstate av; mchunkptr p; INTERNAL_SIZE_T s;
2483 #endif
2485 INTERNAL_SIZE_T sz = p->size & ~(PREV_INUSE|NON_MAIN_ARENA);
2487 if (!chunk_is_mmapped(p)) {
2488 assert(av == arena_for_chunk(p));
2489 if (chunk_non_main_arena(p))
2490 assert(av != &main_arena);
2491 else
2492 assert(av == &main_arena);
2495 do_check_inuse_chunk(av, p);
2497 /* Legal size ... */
2498 assert((sz & MALLOC_ALIGN_MASK) == 0);
2499 assert((unsigned long)(sz) >= MINSIZE);
2500 /* ... and alignment */
2501 assert(aligned_OK(chunk2mem(p)));
2502 /* chunk is less than MINSIZE more than request */
2503 assert((long)(sz) - (long)(s) >= 0);
2504 assert((long)(sz) - (long)(s + MINSIZE) < 0);
2508 Properties of nonrecycled chunks at the point they are malloced
2511 #if __STD_C
2512 static void do_check_malloced_chunk(mstate av, mchunkptr p, INTERNAL_SIZE_T s)
2513 #else
2514 static void do_check_malloced_chunk(av, p, s)
2515 mstate av; mchunkptr p; INTERNAL_SIZE_T s;
2516 #endif
2518 /* same as recycled case ... */
2519 do_check_remalloced_chunk(av, p, s);
2522 ... plus, must obey implementation invariant that prev_inuse is
2523 always true of any allocated chunk; i.e., that each allocated
2524 chunk borders either a previously allocated and still in-use
2525 chunk, or the base of its memory arena. This is ensured
2526 by making all allocations from the the `lowest' part of any found
2527 chunk. This does not necessarily hold however for chunks
2528 recycled via fastbins.
2531 assert(prev_inuse(p));
2536 Properties of malloc_state.
2538 This may be useful for debugging malloc, as well as detecting user
2539 programmer errors that somehow write into malloc_state.
2541 If you are extending or experimenting with this malloc, you can
2542 probably figure out how to hack this routine to print out or
2543 display chunk addresses, sizes, bins, and other instrumentation.
2546 static void do_check_malloc_state(mstate av)
2548 int i;
2549 mchunkptr p;
2550 mchunkptr q;
2551 mbinptr b;
2552 unsigned int binbit;
2553 int empty;
2554 unsigned int idx;
2555 INTERNAL_SIZE_T size;
2556 unsigned long total = 0;
2557 int max_fast_bin;
2559 /* internal size_t must be no wider than pointer type */
2560 assert(sizeof(INTERNAL_SIZE_T) <= sizeof(char*));
2562 /* alignment is a power of 2 */
2563 assert((MALLOC_ALIGNMENT & (MALLOC_ALIGNMENT-1)) == 0);
2565 /* cannot run remaining checks until fully initialized */
2566 if (av->top == 0 || av->top == initial_top(av))
2567 return;
2569 /* pagesize is a power of 2 */
2570 assert((mp_.pagesize & (mp_.pagesize-1)) == 0);
2572 /* A contiguous main_arena is consistent with sbrk_base. */
2573 if (av == &main_arena && contiguous(av))
2574 assert((char*)mp_.sbrk_base + av->system_mem ==
2575 (char*)av->top + chunksize(av->top));
2577 /* properties of fastbins */
2579 /* max_fast is in allowed range */
2580 assert((av->max_fast & ~1) <= request2size(MAX_FAST_SIZE));
2582 max_fast_bin = fastbin_index(av->max_fast);
2584 for (i = 0; i < NFASTBINS; ++i) {
2585 p = av->fastbins[i];
2587 /* all bins past max_fast are empty */
2588 if (i > max_fast_bin)
2589 assert(p == 0);
2591 while (p != 0) {
2592 /* each chunk claims to be inuse */
2593 do_check_inuse_chunk(av, p);
2594 total += chunksize(p);
2595 /* chunk belongs in this bin */
2596 assert(fastbin_index(chunksize(p)) == i);
2597 p = p->fd;
2601 if (total != 0)
2602 assert(have_fastchunks(av));
2603 else if (!have_fastchunks(av))
2604 assert(total == 0);
2606 /* check normal bins */
2607 for (i = 1; i < NBINS; ++i) {
2608 b = bin_at(av,i);
2610 /* binmap is accurate (except for bin 1 == unsorted_chunks) */
2611 if (i >= 2) {
2612 binbit = get_binmap(av,i);
2613 empty = last(b) == b;
2614 if (!binbit)
2615 assert(empty);
2616 else if (!empty)
2617 assert(binbit);
2620 for (p = last(b); p != b; p = p->bk) {
2621 /* each chunk claims to be free */
2622 do_check_free_chunk(av, p);
2623 size = chunksize(p);
2624 total += size;
2625 if (i >= 2) {
2626 /* chunk belongs in bin */
2627 idx = bin_index(size);
2628 assert(idx == i);
2629 /* lists are sorted */
2630 assert(p->bk == b ||
2631 (unsigned long)chunksize(p->bk) >= (unsigned long)chunksize(p));
2633 /* chunk is followed by a legal chain of inuse chunks */
2634 for (q = next_chunk(p);
2635 (q != av->top && inuse(q) &&
2636 (unsigned long)(chunksize(q)) >= MINSIZE);
2637 q = next_chunk(q))
2638 do_check_inuse_chunk(av, q);
2642 /* top chunk is OK */
2643 check_chunk(av, av->top);
2645 /* sanity checks for statistics */
2647 #ifdef NO_THREADS
2648 assert(total <= (unsigned long)(mp_.max_total_mem));
2649 assert(mp_.n_mmaps >= 0);
2650 #endif
2651 assert(mp_.n_mmaps <= mp_.n_mmaps_max);
2652 assert(mp_.n_mmaps <= mp_.max_n_mmaps);
2654 assert((unsigned long)(av->system_mem) <=
2655 (unsigned long)(av->max_system_mem));
2657 assert((unsigned long)(mp_.mmapped_mem) <=
2658 (unsigned long)(mp_.max_mmapped_mem));
2660 #ifdef NO_THREADS
2661 assert((unsigned long)(mp_.max_total_mem) >=
2662 (unsigned long)(mp_.mmapped_mem) + (unsigned long)(av->system_mem));
2663 #endif
2665 #endif
2668 /* ----------------- Support for debugging hooks -------------------- */
2669 #include "hooks.c"
2672 /* ----------- Routines dealing with system allocation -------------- */
2675 sysmalloc handles malloc cases requiring more memory from the system.
2676 On entry, it is assumed that av->top does not have enough
2677 space to service request for nb bytes, thus requiring that av->top
2678 be extended or replaced.
2681 #if __STD_C
2682 static Void_t* sYSMALLOc(INTERNAL_SIZE_T nb, mstate av)
2683 #else
2684 static Void_t* sYSMALLOc(nb, av) INTERNAL_SIZE_T nb; mstate av;
2685 #endif
2687 mchunkptr old_top; /* incoming value of av->top */
2688 INTERNAL_SIZE_T old_size; /* its size */
2689 char* old_end; /* its end address */
2691 long size; /* arg to first MORECORE or mmap call */
2692 char* brk; /* return value from MORECORE */
2694 long correction; /* arg to 2nd MORECORE call */
2695 char* snd_brk; /* 2nd return val */
2697 INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of new space */
2698 INTERNAL_SIZE_T end_misalign; /* partial page left at end of new space */
2699 char* aligned_brk; /* aligned offset into brk */
2701 mchunkptr p; /* the allocated/returned chunk */
2702 mchunkptr remainder; /* remainder from allocation */
2703 unsigned long remainder_size; /* its size */
2705 unsigned long sum; /* for updating stats */
2707 size_t pagemask = mp_.pagesize - 1;
2710 #if HAVE_MMAP
2713 If have mmap, and the request size meets the mmap threshold, and
2714 the system supports mmap, and there are few enough currently
2715 allocated mmapped regions, try to directly map this request
2716 rather than expanding top.
2719 if ((unsigned long)(nb) >= (unsigned long)(mp_.mmap_threshold) &&
2720 (mp_.n_mmaps < mp_.n_mmaps_max)) {
2722 char* mm; /* return value from mmap call*/
2725 Round up size to nearest page. For mmapped chunks, the overhead
2726 is one SIZE_SZ unit larger than for normal chunks, because there
2727 is no following chunk whose prev_size field could be used.
2729 size = (nb + SIZE_SZ + MALLOC_ALIGN_MASK + pagemask) & ~pagemask;
2731 /* Don't try if size wraps around 0 */
2732 if ((unsigned long)(size) > (unsigned long)(nb)) {
2734 mm = (char*)(MMAP(0, size, PROT_READ|PROT_WRITE, MAP_PRIVATE));
2736 if (mm != MAP_FAILED) {
2739 The offset to the start of the mmapped region is stored
2740 in the prev_size field of the chunk. This allows us to adjust
2741 returned start address to meet alignment requirements here
2742 and in memalign(), and still be able to compute proper
2743 address argument for later munmap in free() and realloc().
2746 front_misalign = (INTERNAL_SIZE_T)chunk2mem(mm) & MALLOC_ALIGN_MASK;
2747 if (front_misalign > 0) {
2748 correction = MALLOC_ALIGNMENT - front_misalign;
2749 p = (mchunkptr)(mm + correction);
2750 p->prev_size = correction;
2751 set_head(p, (size - correction) |IS_MMAPPED);
2753 else {
2754 p = (mchunkptr)mm;
2755 set_head(p, size|IS_MMAPPED);
2758 /* update statistics */
2760 if (++mp_.n_mmaps > mp_.max_n_mmaps)
2761 mp_.max_n_mmaps = mp_.n_mmaps;
2763 sum = mp_.mmapped_mem += size;
2764 if (sum > (unsigned long)(mp_.max_mmapped_mem))
2765 mp_.max_mmapped_mem = sum;
2766 #ifdef NO_THREADS
2767 sum += av->system_mem;
2768 if (sum > (unsigned long)(mp_.max_total_mem))
2769 mp_.max_total_mem = sum;
2770 #endif
2772 check_chunk(av, p);
2774 return chunk2mem(p);
2778 #endif
2780 /* Record incoming configuration of top */
2782 old_top = av->top;
2783 old_size = chunksize(old_top);
2784 old_end = (char*)(chunk_at_offset(old_top, old_size));
2786 brk = snd_brk = (char*)(MORECORE_FAILURE);
2789 If not the first time through, we require old_size to be
2790 at least MINSIZE and to have prev_inuse set.
2793 assert((old_top == initial_top(av) && old_size == 0) ||
2794 ((unsigned long) (old_size) >= MINSIZE &&
2795 prev_inuse(old_top) &&
2796 ((unsigned long)old_end & pagemask) == 0));
2798 /* Precondition: not enough current space to satisfy nb request */
2799 assert((unsigned long)(old_size) < (unsigned long)(nb + MINSIZE));
2801 /* Precondition: all fastbins are consolidated */
2802 assert(!have_fastchunks(av));
2805 if (av != &main_arena) {
2807 heap_info *old_heap, *heap;
2808 size_t old_heap_size;
2810 /* First try to extend the current heap. */
2811 old_heap = heap_for_ptr(old_top);
2812 old_heap_size = old_heap->size;
2813 if (grow_heap(old_heap, MINSIZE + nb - old_size) == 0) {
2814 av->system_mem += old_heap->size - old_heap_size;
2815 arena_mem += old_heap->size - old_heap_size;
2816 #if 0
2817 if(mmapped_mem + arena_mem + sbrked_mem > max_total_mem)
2818 max_total_mem = mmapped_mem + arena_mem + sbrked_mem;
2819 #endif
2820 set_head(old_top, (((char *)old_heap + old_heap->size) - (char *)old_top)
2821 | PREV_INUSE);
2823 else if ((heap = new_heap(nb + (MINSIZE + sizeof(*heap)), mp_.top_pad))) {
2824 /* Use a newly allocated heap. */
2825 heap->ar_ptr = av;
2826 heap->prev = old_heap;
2827 av->system_mem += heap->size;
2828 arena_mem += heap->size;
2829 #if 0
2830 if((unsigned long)(mmapped_mem + arena_mem + sbrked_mem) > max_total_mem)
2831 max_total_mem = mmapped_mem + arena_mem + sbrked_mem;
2832 #endif
2833 /* Set up the new top. */
2834 top(av) = chunk_at_offset(heap, sizeof(*heap));
2835 set_head(top(av), (heap->size - sizeof(*heap)) | PREV_INUSE);
2837 /* Setup fencepost and free the old top chunk. */
2838 /* The fencepost takes at least MINSIZE bytes, because it might
2839 become the top chunk again later. Note that a footer is set
2840 up, too, although the chunk is marked in use. */
2841 old_size -= MINSIZE;
2842 set_head(chunk_at_offset(old_top, old_size + 2*SIZE_SZ), 0|PREV_INUSE);
2843 if (old_size >= MINSIZE) {
2844 set_head(chunk_at_offset(old_top, old_size), (2*SIZE_SZ)|PREV_INUSE);
2845 set_foot(chunk_at_offset(old_top, old_size), (2*SIZE_SZ));
2846 set_head(old_top, old_size|PREV_INUSE|NON_MAIN_ARENA);
2847 _int_free(av, chunk2mem(old_top));
2848 } else {
2849 set_head(old_top, (old_size + 2*SIZE_SZ)|PREV_INUSE);
2850 set_foot(old_top, (old_size + 2*SIZE_SZ));
2854 } else { /* av == main_arena */
2857 /* Request enough space for nb + pad + overhead */
2859 size = nb + mp_.top_pad + MINSIZE;
2862 If contiguous, we can subtract out existing space that we hope to
2863 combine with new space. We add it back later only if
2864 we don't actually get contiguous space.
2867 if (contiguous(av))
2868 size -= old_size;
2871 Round to a multiple of page size.
2872 If MORECORE is not contiguous, this ensures that we only call it
2873 with whole-page arguments. And if MORECORE is contiguous and
2874 this is not first time through, this preserves page-alignment of
2875 previous calls. Otherwise, we correct to page-align below.
2878 size = (size + pagemask) & ~pagemask;
2881 Don't try to call MORECORE if argument is so big as to appear
2882 negative. Note that since mmap takes size_t arg, it may succeed
2883 below even if we cannot call MORECORE.
2886 if (size > 0)
2887 brk = (char*)(MORECORE(size));
2889 if (brk != (char*)(MORECORE_FAILURE)) {
2890 /* Call the `morecore' hook if necessary. */
2891 if (__after_morecore_hook)
2892 (*__after_morecore_hook) ();
2893 } else {
2895 If have mmap, try using it as a backup when MORECORE fails or
2896 cannot be used. This is worth doing on systems that have "holes" in
2897 address space, so sbrk cannot extend to give contiguous space, but
2898 space is available elsewhere. Note that we ignore mmap max count
2899 and threshold limits, since the space will not be used as a
2900 segregated mmap region.
2903 #if HAVE_MMAP
2904 /* Cannot merge with old top, so add its size back in */
2905 if (contiguous(av))
2906 size = (size + old_size + pagemask) & ~pagemask;
2908 /* If we are relying on mmap as backup, then use larger units */
2909 if ((unsigned long)(size) < (unsigned long)(MMAP_AS_MORECORE_SIZE))
2910 size = MMAP_AS_MORECORE_SIZE;
2912 /* Don't try if size wraps around 0 */
2913 if ((unsigned long)(size) > (unsigned long)(nb)) {
2915 char *mbrk = (char*)(MMAP(0, size, PROT_READ|PROT_WRITE, MAP_PRIVATE));
2917 if (mbrk != MAP_FAILED) {
2919 /* We do not need, and cannot use, another sbrk call to find end */
2920 brk = mbrk;
2921 snd_brk = brk + size;
2924 Record that we no longer have a contiguous sbrk region.
2925 After the first time mmap is used as backup, we do not
2926 ever rely on contiguous space since this could incorrectly
2927 bridge regions.
2929 set_noncontiguous(av);
2932 #endif
2935 if (brk != (char*)(MORECORE_FAILURE)) {
2936 if (mp_.sbrk_base == 0)
2937 mp_.sbrk_base = brk;
2938 av->system_mem += size;
2941 If MORECORE extends previous space, we can likewise extend top size.
2944 if (brk == old_end && snd_brk == (char*)(MORECORE_FAILURE))
2945 set_head(old_top, (size + old_size) | PREV_INUSE);
2947 else if (contiguous(av) && old_size && brk < old_end) {
2948 /* Oops! Someone else killed our space.. Can't touch anything. */
2949 assert(0);
2953 Otherwise, make adjustments:
2955 * If the first time through or noncontiguous, we need to call sbrk
2956 just to find out where the end of memory lies.
2958 * We need to ensure that all returned chunks from malloc will meet
2959 MALLOC_ALIGNMENT
2961 * If there was an intervening foreign sbrk, we need to adjust sbrk
2962 request size to account for fact that we will not be able to
2963 combine new space with existing space in old_top.
2965 * Almost all systems internally allocate whole pages at a time, in
2966 which case we might as well use the whole last page of request.
2967 So we allocate enough more memory to hit a page boundary now,
2968 which in turn causes future contiguous calls to page-align.
2971 else {
2972 /* Count foreign sbrk as system_mem. */
2973 if (old_size)
2974 av->system_mem += brk - old_end;
2975 front_misalign = 0;
2976 end_misalign = 0;
2977 correction = 0;
2978 aligned_brk = brk;
2980 /* handle contiguous cases */
2981 if (contiguous(av)) {
2983 /* Guarantee alignment of first new chunk made from this space */
2985 front_misalign = (INTERNAL_SIZE_T)chunk2mem(brk) & MALLOC_ALIGN_MASK;
2986 if (front_misalign > 0) {
2989 Skip over some bytes to arrive at an aligned position.
2990 We don't need to specially mark these wasted front bytes.
2991 They will never be accessed anyway because
2992 prev_inuse of av->top (and any chunk created from its start)
2993 is always true after initialization.
2996 correction = MALLOC_ALIGNMENT - front_misalign;
2997 aligned_brk += correction;
3001 If this isn't adjacent to existing space, then we will not
3002 be able to merge with old_top space, so must add to 2nd request.
3005 correction += old_size;
3007 /* Extend the end address to hit a page boundary */
3008 end_misalign = (INTERNAL_SIZE_T)(brk + size + correction);
3009 correction += ((end_misalign + pagemask) & ~pagemask) - end_misalign;
3011 assert(correction >= 0);
3012 snd_brk = (char*)(MORECORE(correction));
3015 If can't allocate correction, try to at least find out current
3016 brk. It might be enough to proceed without failing.
3018 Note that if second sbrk did NOT fail, we assume that space
3019 is contiguous with first sbrk. This is a safe assumption unless
3020 program is multithreaded but doesn't use locks and a foreign sbrk
3021 occurred between our first and second calls.
3024 if (snd_brk == (char*)(MORECORE_FAILURE)) {
3025 correction = 0;
3026 snd_brk = (char*)(MORECORE(0));
3027 } else
3028 /* Call the `morecore' hook if necessary. */
3029 if (__after_morecore_hook)
3030 (*__after_morecore_hook) ();
3033 /* handle non-contiguous cases */
3034 else {
3035 /* MORECORE/mmap must correctly align */
3036 assert(((unsigned long)chunk2mem(brk) & MALLOC_ALIGN_MASK) == 0);
3038 /* Find out current end of memory */
3039 if (snd_brk == (char*)(MORECORE_FAILURE)) {
3040 snd_brk = (char*)(MORECORE(0));
3044 /* Adjust top based on results of second sbrk */
3045 if (snd_brk != (char*)(MORECORE_FAILURE)) {
3046 av->top = (mchunkptr)aligned_brk;
3047 set_head(av->top, (snd_brk - aligned_brk + correction) | PREV_INUSE);
3048 av->system_mem += correction;
3051 If not the first time through, we either have a
3052 gap due to foreign sbrk or a non-contiguous region. Insert a
3053 double fencepost at old_top to prevent consolidation with space
3054 we don't own. These fenceposts are artificial chunks that are
3055 marked as inuse and are in any case too small to use. We need
3056 two to make sizes and alignments work out.
3059 if (old_size != 0) {
3061 Shrink old_top to insert fenceposts, keeping size a
3062 multiple of MALLOC_ALIGNMENT. We know there is at least
3063 enough space in old_top to do this.
3065 old_size = (old_size - 4*SIZE_SZ) & ~MALLOC_ALIGN_MASK;
3066 set_head(old_top, old_size | PREV_INUSE);
3069 Note that the following assignments completely overwrite
3070 old_top when old_size was previously MINSIZE. This is
3071 intentional. We need the fencepost, even if old_top otherwise gets
3072 lost.
3074 chunk_at_offset(old_top, old_size )->size =
3075 (2*SIZE_SZ)|PREV_INUSE;
3077 chunk_at_offset(old_top, old_size + 2*SIZE_SZ)->size =
3078 (2*SIZE_SZ)|PREV_INUSE;
3080 /* If possible, release the rest. */
3081 if (old_size >= MINSIZE) {
3082 _int_free(av, chunk2mem(old_top));
3089 /* Update statistics */
3090 #ifdef NO_THREADS
3091 sum = av->system_mem + mp_.mmapped_mem;
3092 if (sum > (unsigned long)(mp_.max_total_mem))
3093 mp_.max_total_mem = sum;
3094 #endif
3098 } /* if (av != &main_arena) */
3100 if ((unsigned long)av->system_mem > (unsigned long)(av->max_system_mem))
3101 av->max_system_mem = av->system_mem;
3102 check_malloc_state(av);
3104 /* finally, do the allocation */
3105 p = av->top;
3106 size = chunksize(p);
3108 /* check that one of the above allocation paths succeeded */
3109 if ((unsigned long)(size) >= (unsigned long)(nb + MINSIZE)) {
3110 remainder_size = size - nb;
3111 remainder = chunk_at_offset(p, nb);
3112 av->top = remainder;
3113 set_head(p, nb | PREV_INUSE | (av != &main_arena ? NON_MAIN_ARENA : 0));
3114 set_head(remainder, remainder_size | PREV_INUSE);
3115 check_malloced_chunk(av, p, nb);
3116 return chunk2mem(p);
3119 /* catch all failure paths */
3120 MALLOC_FAILURE_ACTION;
3121 return 0;
3126 sYSTRIm is an inverse of sorts to sYSMALLOc. It gives memory back
3127 to the system (via negative arguments to sbrk) if there is unused
3128 memory at the `high' end of the malloc pool. It is called
3129 automatically by free() when top space exceeds the trim
3130 threshold. It is also called by the public malloc_trim routine. It
3131 returns 1 if it actually released any memory, else 0.
3134 #if __STD_C
3135 static int sYSTRIm(size_t pad, mstate av)
3136 #else
3137 static int sYSTRIm(pad, av) size_t pad; mstate av;
3138 #endif
3140 long top_size; /* Amount of top-most memory */
3141 long extra; /* Amount to release */
3142 long released; /* Amount actually released */
3143 char* current_brk; /* address returned by pre-check sbrk call */
3144 char* new_brk; /* address returned by post-check sbrk call */
3145 size_t pagesz;
3147 pagesz = mp_.pagesize;
3148 top_size = chunksize(av->top);
3150 /* Release in pagesize units, keeping at least one page */
3151 extra = ((top_size - pad - MINSIZE + (pagesz-1)) / pagesz - 1) * pagesz;
3153 if (extra > 0) {
3156 Only proceed if end of memory is where we last set it.
3157 This avoids problems if there were foreign sbrk calls.
3159 current_brk = (char*)(MORECORE(0));
3160 if (current_brk == (char*)(av->top) + top_size) {
3163 Attempt to release memory. We ignore MORECORE return value,
3164 and instead call again to find out where new end of memory is.
3165 This avoids problems if first call releases less than we asked,
3166 of if failure somehow altered brk value. (We could still
3167 encounter problems if it altered brk in some very bad way,
3168 but the only thing we can do is adjust anyway, which will cause
3169 some downstream failure.)
3172 MORECORE(-extra);
3173 /* Call the `morecore' hook if necessary. */
3174 if (__after_morecore_hook)
3175 (*__after_morecore_hook) ();
3176 new_brk = (char*)(MORECORE(0));
3178 if (new_brk != (char*)MORECORE_FAILURE) {
3179 released = (long)(current_brk - new_brk);
3181 if (released != 0) {
3182 /* Success. Adjust top. */
3183 av->system_mem -= released;
3184 set_head(av->top, (top_size - released) | PREV_INUSE);
3185 check_malloc_state(av);
3186 return 1;
3191 return 0;
3194 #ifdef HAVE_MMAP
3196 static void
3197 internal_function
3198 #if __STD_C
3199 munmap_chunk(mchunkptr p)
3200 #else
3201 munmap_chunk(p) mchunkptr p;
3202 #endif
3204 INTERNAL_SIZE_T size = chunksize(p);
3205 int ret;
3207 assert (chunk_is_mmapped(p));
3208 #if 0
3209 assert(! ((char*)p >= mp_.sbrk_base && (char*)p < mp_.sbrk_base + mp_.sbrked_mem));
3210 assert((mp_.n_mmaps > 0));
3211 #endif
3212 assert(((p->prev_size + size) & (mp_.pagesize-1)) == 0);
3214 mp_.n_mmaps--;
3215 mp_.mmapped_mem -= (size + p->prev_size);
3217 ret = munmap((char *)p - p->prev_size, size + p->prev_size);
3219 /* munmap returns non-zero on failure */
3220 assert(ret == 0);
3223 #if HAVE_MREMAP
3225 static mchunkptr
3226 internal_function
3227 #if __STD_C
3228 mremap_chunk(mchunkptr p, size_t new_size)
3229 #else
3230 mremap_chunk(p, new_size) mchunkptr p; size_t new_size;
3231 #endif
3233 size_t page_mask = mp_.pagesize - 1;
3234 INTERNAL_SIZE_T offset = p->prev_size;
3235 INTERNAL_SIZE_T size = chunksize(p);
3236 char *cp;
3238 assert (chunk_is_mmapped(p));
3239 #if 0
3240 assert(! ((char*)p >= mp_.sbrk_base && (char*)p < mp_.sbrk_base + mp_.sbrked_mem));
3241 assert((mp_.n_mmaps > 0));
3242 #endif
3243 assert(((size + offset) & (mp_.pagesize-1)) == 0);
3245 /* Note the extra SIZE_SZ overhead as in mmap_chunk(). */
3246 new_size = (new_size + offset + SIZE_SZ + page_mask) & ~page_mask;
3248 cp = (char *)mremap((char *)p - offset, size + offset, new_size,
3249 MREMAP_MAYMOVE);
3251 if (cp == MAP_FAILED) return 0;
3253 p = (mchunkptr)(cp + offset);
3255 assert(aligned_OK(chunk2mem(p)));
3257 assert((p->prev_size == offset));
3258 set_head(p, (new_size - offset)|IS_MMAPPED);
3260 mp_.mmapped_mem -= size + offset;
3261 mp_.mmapped_mem += new_size;
3262 if ((unsigned long)mp_.mmapped_mem > (unsigned long)mp_.max_mmapped_mem)
3263 mp_.max_mmapped_mem = mp_.mmapped_mem;
3264 #ifdef NO_THREADS
3265 if ((unsigned long)(mp_.mmapped_mem + arena_mem + main_arena.system_mem) >
3266 mp_.max_total_mem)
3267 mp_.max_total_mem = mp_.mmapped_mem + arena_mem + main_arena.system_mem;
3268 #endif
3269 return p;
3272 #endif /* HAVE_MREMAP */
3274 #endif /* HAVE_MMAP */
3276 /*------------------------ Public wrappers. --------------------------------*/
3278 Void_t*
3279 public_mALLOc(size_t bytes)
3281 mstate ar_ptr;
3282 Void_t *victim;
3284 __malloc_ptr_t (*hook) __MALLOC_P ((size_t, __const __malloc_ptr_t)) =
3285 __malloc_hook;
3286 if (hook != NULL)
3287 return (*hook)(bytes, RETURN_ADDRESS (0));
3289 arena_get(ar_ptr, bytes);
3290 if(!ar_ptr)
3291 return 0;
3292 victim = _int_malloc(ar_ptr, bytes);
3293 if(!victim) {
3294 /* Maybe the failure is due to running out of mmapped areas. */
3295 if(ar_ptr != &main_arena) {
3296 (void)mutex_unlock(&ar_ptr->mutex);
3297 (void)mutex_lock(&main_arena.mutex);
3298 victim = _int_malloc(&main_arena, bytes);
3299 (void)mutex_unlock(&main_arena.mutex);
3300 } else {
3301 #if USE_ARENAS
3302 /* ... or sbrk() has failed and there is still a chance to mmap() */
3303 ar_ptr = arena_get2(ar_ptr->next ? ar_ptr : 0, bytes);
3304 (void)mutex_unlock(&main_arena.mutex);
3305 if(ar_ptr) {
3306 victim = _int_malloc(ar_ptr, bytes);
3307 (void)mutex_unlock(&ar_ptr->mutex);
3309 #endif
3311 } else
3312 (void)mutex_unlock(&ar_ptr->mutex);
3313 assert(!victim || chunk_is_mmapped(mem2chunk(victim)) ||
3314 ar_ptr == arena_for_chunk(mem2chunk(victim)));
3315 return victim;
3318 void
3319 public_fREe(Void_t* mem)
3321 mstate ar_ptr;
3322 mchunkptr p; /* chunk corresponding to mem */
3324 void (*hook) __MALLOC_P ((__malloc_ptr_t, __const __malloc_ptr_t)) =
3325 __free_hook;
3326 if (hook != NULL) {
3327 (*hook)(mem, RETURN_ADDRESS (0));
3328 return;
3331 if (mem == 0) /* free(0) has no effect */
3332 return;
3334 p = mem2chunk(mem);
3336 #if HAVE_MMAP
3337 if (chunk_is_mmapped(p)) /* release mmapped memory. */
3339 munmap_chunk(p);
3340 return;
3342 #endif
3344 ar_ptr = arena_for_chunk(p);
3345 #if THREAD_STATS
3346 if(!mutex_trylock(&ar_ptr->mutex))
3347 ++(ar_ptr->stat_lock_direct);
3348 else {
3349 (void)mutex_lock(&ar_ptr->mutex);
3350 ++(ar_ptr->stat_lock_wait);
3352 #else
3353 (void)mutex_lock(&ar_ptr->mutex);
3354 #endif
3355 _int_free(ar_ptr, mem);
3356 (void)mutex_unlock(&ar_ptr->mutex);
3359 Void_t*
3360 public_rEALLOc(Void_t* oldmem, size_t bytes)
3362 mstate ar_ptr;
3363 INTERNAL_SIZE_T nb; /* padded request size */
3365 mchunkptr oldp; /* chunk corresponding to oldmem */
3366 INTERNAL_SIZE_T oldsize; /* its size */
3368 Void_t* newp; /* chunk to return */
3370 __malloc_ptr_t (*hook) __MALLOC_P ((__malloc_ptr_t, size_t,
3371 __const __malloc_ptr_t)) =
3372 __realloc_hook;
3373 if (hook != NULL)
3374 return (*hook)(oldmem, bytes, RETURN_ADDRESS (0));
3376 #if REALLOC_ZERO_BYTES_FREES
3377 if (bytes == 0 && oldmem != NULL) { public_fREe(oldmem); return 0; }
3378 #endif
3380 /* realloc of null is supposed to be same as malloc */
3381 if (oldmem == 0) return public_mALLOc(bytes);
3383 oldp = mem2chunk(oldmem);
3384 oldsize = chunksize(oldp);
3386 checked_request2size(bytes, nb);
3388 #if HAVE_MMAP
3389 if (chunk_is_mmapped(oldp))
3391 Void_t* newmem;
3393 #if HAVE_MREMAP
3394 newp = mremap_chunk(oldp, nb);
3395 if(newp) return chunk2mem(newp);
3396 #endif
3397 /* Note the extra SIZE_SZ overhead. */
3398 if(oldsize - SIZE_SZ >= nb) return oldmem; /* do nothing */
3399 /* Must alloc, copy, free. */
3400 newmem = public_mALLOc(bytes);
3401 if (newmem == 0) return 0; /* propagate failure */
3402 MALLOC_COPY(newmem, oldmem, oldsize - 2*SIZE_SZ);
3403 munmap_chunk(oldp);
3404 return newmem;
3406 #endif
3408 ar_ptr = arena_for_chunk(oldp);
3409 #if THREAD_STATS
3410 if(!mutex_trylock(&ar_ptr->mutex))
3411 ++(ar_ptr->stat_lock_direct);
3412 else {
3413 (void)mutex_lock(&ar_ptr->mutex);
3414 ++(ar_ptr->stat_lock_wait);
3416 #else
3417 (void)mutex_lock(&ar_ptr->mutex);
3418 #endif
3420 #ifndef NO_THREADS
3421 /* As in malloc(), remember this arena for the next allocation. */
3422 tsd_setspecific(arena_key, (Void_t *)ar_ptr);
3423 #endif
3425 newp = _int_realloc(ar_ptr, oldmem, bytes);
3427 (void)mutex_unlock(&ar_ptr->mutex);
3428 assert(!newp || chunk_is_mmapped(mem2chunk(newp)) ||
3429 ar_ptr == arena_for_chunk(mem2chunk(newp)));
3430 return newp;
3433 Void_t*
3434 public_mEMALIGn(size_t alignment, size_t bytes)
3436 mstate ar_ptr;
3437 Void_t *p;
3439 __malloc_ptr_t (*hook) __MALLOC_PMT ((size_t, size_t,
3440 __const __malloc_ptr_t)) =
3441 __memalign_hook;
3442 if (hook != NULL)
3443 return (*hook)(alignment, bytes, RETURN_ADDRESS (0));
3445 /* If need less alignment than we give anyway, just relay to malloc */
3446 if (alignment <= MALLOC_ALIGNMENT) return public_mALLOc(bytes);
3448 /* Otherwise, ensure that it is at least a minimum chunk size */
3449 if (alignment < MINSIZE) alignment = MINSIZE;
3451 arena_get(ar_ptr, bytes + alignment + MINSIZE);
3452 if(!ar_ptr)
3453 return 0;
3454 p = _int_memalign(ar_ptr, alignment, bytes);
3455 (void)mutex_unlock(&ar_ptr->mutex);
3456 if(!p) {
3457 /* Maybe the failure is due to running out of mmapped areas. */
3458 if(ar_ptr != &main_arena) {
3459 (void)mutex_lock(&main_arena.mutex);
3460 p = _int_memalign(&main_arena, alignment, bytes);
3461 (void)mutex_unlock(&main_arena.mutex);
3462 } else {
3463 #if USE_ARENAS
3464 /* ... or sbrk() has failed and there is still a chance to mmap() */
3465 ar_ptr = arena_get2(ar_ptr->next ? ar_ptr : 0, bytes);
3466 if(ar_ptr) {
3467 p = _int_memalign(ar_ptr, alignment, bytes);
3468 (void)mutex_unlock(&ar_ptr->mutex);
3470 #endif
3473 assert(!p || chunk_is_mmapped(mem2chunk(p)) ||
3474 ar_ptr == arena_for_chunk(mem2chunk(p)));
3475 return p;
3478 Void_t*
3479 public_vALLOc(size_t bytes)
3481 mstate ar_ptr;
3482 Void_t *p;
3484 if(__malloc_initialized < 0)
3485 ptmalloc_init ();
3486 arena_get(ar_ptr, bytes + mp_.pagesize + MINSIZE);
3487 if(!ar_ptr)
3488 return 0;
3489 p = _int_valloc(ar_ptr, bytes);
3490 (void)mutex_unlock(&ar_ptr->mutex);
3491 return p;
3494 Void_t*
3495 public_pVALLOc(size_t bytes)
3497 mstate ar_ptr;
3498 Void_t *p;
3500 if(__malloc_initialized < 0)
3501 ptmalloc_init ();
3502 arena_get(ar_ptr, bytes + 2*mp_.pagesize + MINSIZE);
3503 p = _int_pvalloc(ar_ptr, bytes);
3504 (void)mutex_unlock(&ar_ptr->mutex);
3505 return p;
3508 Void_t*
3509 public_cALLOc(size_t n, size_t elem_size)
3511 mstate av;
3512 mchunkptr oldtop, p;
3513 INTERNAL_SIZE_T bytes, sz, csz, oldtopsize;
3514 Void_t* mem;
3515 unsigned long clearsize;
3516 unsigned long nclears;
3517 INTERNAL_SIZE_T* d;
3518 __malloc_ptr_t (*hook) __MALLOC_PMT ((size_t, __const __malloc_ptr_t)) =
3519 __malloc_hook;
3521 /* size_t is unsigned so the behavior on overflow is defined. */
3522 bytes = n * elem_size;
3523 #define HALF_INTERNAL_SIZE_T \
3524 (((INTERNAL_SIZE_T) 1) << (8 * sizeof (INTERNAL_SIZE_T) / 2))
3525 if (__builtin_expect ((n | elem_size) >= HALF_INTERNAL_SIZE_T, 0)) {
3526 if (elem_size != 0 && bytes / elem_size != n) {
3527 MALLOC_FAILURE_ACTION;
3528 return 0;
3532 if (hook != NULL) {
3533 sz = bytes;
3534 mem = (*hook)(sz, RETURN_ADDRESS (0));
3535 if(mem == 0)
3536 return 0;
3537 #ifdef HAVE_MEMCPY
3538 return memset(mem, 0, sz);
3539 #else
3540 while(sz > 0) ((char*)mem)[--sz] = 0; /* rather inefficient */
3541 return mem;
3542 #endif
3545 sz = bytes;
3547 arena_get(av, sz);
3548 if(!av)
3549 return 0;
3551 /* Check if we hand out the top chunk, in which case there may be no
3552 need to clear. */
3553 #if MORECORE_CLEARS
3554 oldtop = top(av);
3555 oldtopsize = chunksize(top(av));
3556 #if MORECORE_CLEARS < 2
3557 /* Only newly allocated memory is guaranteed to be cleared. */
3558 if (av == &main_arena &&
3559 oldtopsize < mp_.sbrk_base + av->max_system_mem - (char *)oldtop)
3560 oldtopsize = (mp_.sbrk_base + av->max_system_mem - (char *)oldtop);
3561 #endif
3562 #endif
3563 mem = _int_malloc(av, sz);
3565 /* Only clearing follows, so we can unlock early. */
3566 (void)mutex_unlock(&av->mutex);
3568 assert(!mem || chunk_is_mmapped(mem2chunk(mem)) ||
3569 av == arena_for_chunk(mem2chunk(mem)));
3571 if (mem == 0) {
3572 /* Maybe the failure is due to running out of mmapped areas. */
3573 if(av != &main_arena) {
3574 (void)mutex_lock(&main_arena.mutex);
3575 mem = _int_malloc(&main_arena, sz);
3576 (void)mutex_unlock(&main_arena.mutex);
3577 } else {
3578 #if USE_ARENAS
3579 /* ... or sbrk() has failed and there is still a chance to mmap() */
3580 (void)mutex_lock(&main_arena.mutex);
3581 av = arena_get2(av->next ? av : 0, sz);
3582 (void)mutex_unlock(&main_arena.mutex);
3583 if(av) {
3584 mem = _int_malloc(av, sz);
3585 (void)mutex_unlock(&av->mutex);
3587 #endif
3589 if (mem == 0) return 0;
3591 p = mem2chunk(mem);
3593 /* Two optional cases in which clearing not necessary */
3594 #if HAVE_MMAP
3595 if (chunk_is_mmapped(p))
3596 return mem;
3597 #endif
3599 csz = chunksize(p);
3601 #if MORECORE_CLEARS
3602 if (p == oldtop && csz > oldtopsize) {
3603 /* clear only the bytes from non-freshly-sbrked memory */
3604 csz = oldtopsize;
3606 #endif
3608 /* Unroll clear of <= 36 bytes (72 if 8byte sizes). We know that
3609 contents have an odd number of INTERNAL_SIZE_T-sized words;
3610 minimally 3. */
3611 d = (INTERNAL_SIZE_T*)mem;
3612 clearsize = csz - SIZE_SZ;
3613 nclears = clearsize / sizeof(INTERNAL_SIZE_T);
3614 assert(nclears >= 3);
3616 if (nclears > 9)
3617 MALLOC_ZERO(d, clearsize);
3619 else {
3620 *(d+0) = 0;
3621 *(d+1) = 0;
3622 *(d+2) = 0;
3623 if (nclears > 4) {
3624 *(d+3) = 0;
3625 *(d+4) = 0;
3626 if (nclears > 6) {
3627 *(d+5) = 0;
3628 *(d+6) = 0;
3629 if (nclears > 8) {
3630 *(d+7) = 0;
3631 *(d+8) = 0;
3637 return mem;
3640 Void_t**
3641 public_iCALLOc(size_t n, size_t elem_size, Void_t** chunks)
3643 mstate ar_ptr;
3644 Void_t** m;
3646 arena_get(ar_ptr, n*elem_size);
3647 if(!ar_ptr)
3648 return 0;
3650 m = _int_icalloc(ar_ptr, n, elem_size, chunks);
3651 (void)mutex_unlock(&ar_ptr->mutex);
3652 return m;
3655 Void_t**
3656 public_iCOMALLOc(size_t n, size_t sizes[], Void_t** chunks)
3658 mstate ar_ptr;
3659 Void_t** m;
3661 arena_get(ar_ptr, 0);
3662 if(!ar_ptr)
3663 return 0;
3665 m = _int_icomalloc(ar_ptr, n, sizes, chunks);
3666 (void)mutex_unlock(&ar_ptr->mutex);
3667 return m;
3670 #ifndef _LIBC
3672 void
3673 public_cFREe(Void_t* m)
3675 public_fREe(m);
3678 #endif /* _LIBC */
3681 public_mTRIm(size_t s)
3683 int result;
3685 (void)mutex_lock(&main_arena.mutex);
3686 result = mTRIm(s);
3687 (void)mutex_unlock(&main_arena.mutex);
3688 return result;
3691 size_t
3692 public_mUSABLe(Void_t* m)
3694 size_t result;
3696 result = mUSABLe(m);
3697 return result;
3700 void
3701 public_mSTATs()
3703 mSTATs();
3706 struct mallinfo public_mALLINFo()
3708 struct mallinfo m;
3710 (void)mutex_lock(&main_arena.mutex);
3711 m = mALLINFo(&main_arena);
3712 (void)mutex_unlock(&main_arena.mutex);
3713 return m;
3717 public_mALLOPt(int p, int v)
3719 int result;
3720 result = mALLOPt(p, v);
3721 return result;
3725 ------------------------------ malloc ------------------------------
3728 Void_t*
3729 _int_malloc(mstate av, size_t bytes)
3731 INTERNAL_SIZE_T nb; /* normalized request size */
3732 unsigned int idx; /* associated bin index */
3733 mbinptr bin; /* associated bin */
3734 mfastbinptr* fb; /* associated fastbin */
3736 mchunkptr victim; /* inspected/selected chunk */
3737 INTERNAL_SIZE_T size; /* its size */
3738 int victim_index; /* its bin index */
3740 mchunkptr remainder; /* remainder from a split */
3741 unsigned long remainder_size; /* its size */
3743 unsigned int block; /* bit map traverser */
3744 unsigned int bit; /* bit map traverser */
3745 unsigned int map; /* current word of binmap */
3747 mchunkptr fwd; /* misc temp for linking */
3748 mchunkptr bck; /* misc temp for linking */
3751 Convert request size to internal form by adding SIZE_SZ bytes
3752 overhead plus possibly more to obtain necessary alignment and/or
3753 to obtain a size of at least MINSIZE, the smallest allocatable
3754 size. Also, checked_request2size traps (returning 0) request sizes
3755 that are so large that they wrap around zero when padded and
3756 aligned.
3759 checked_request2size(bytes, nb);
3762 If the size qualifies as a fastbin, first check corresponding bin.
3763 This code is safe to execute even if av is not yet initialized, so we
3764 can try it without checking, which saves some time on this fast path.
3767 if ((unsigned long)(nb) <= (unsigned long)(av->max_fast)) {
3768 fb = &(av->fastbins[(fastbin_index(nb))]);
3769 if ( (victim = *fb) != 0) {
3770 *fb = victim->fd;
3771 check_remalloced_chunk(av, victim, nb);
3772 return chunk2mem(victim);
3777 If a small request, check regular bin. Since these "smallbins"
3778 hold one size each, no searching within bins is necessary.
3779 (For a large request, we need to wait until unsorted chunks are
3780 processed to find best fit. But for small ones, fits are exact
3781 anyway, so we can check now, which is faster.)
3784 if (in_smallbin_range(nb)) {
3785 idx = smallbin_index(nb);
3786 bin = bin_at(av,idx);
3788 if ( (victim = last(bin)) != bin) {
3789 if (victim == 0) /* initialization check */
3790 malloc_consolidate(av);
3791 else {
3792 bck = victim->bk;
3793 set_inuse_bit_at_offset(victim, nb);
3794 bin->bk = bck;
3795 bck->fd = bin;
3797 if (av != &main_arena)
3798 victim->size |= NON_MAIN_ARENA;
3799 check_malloced_chunk(av, victim, nb);
3800 return chunk2mem(victim);
3806 If this is a large request, consolidate fastbins before continuing.
3807 While it might look excessive to kill all fastbins before
3808 even seeing if there is space available, this avoids
3809 fragmentation problems normally associated with fastbins.
3810 Also, in practice, programs tend to have runs of either small or
3811 large requests, but less often mixtures, so consolidation is not
3812 invoked all that often in most programs. And the programs that
3813 it is called frequently in otherwise tend to fragment.
3816 else {
3817 idx = largebin_index(nb);
3818 if (have_fastchunks(av))
3819 malloc_consolidate(av);
3823 Process recently freed or remaindered chunks, taking one only if
3824 it is exact fit, or, if this a small request, the chunk is remainder from
3825 the most recent non-exact fit. Place other traversed chunks in
3826 bins. Note that this step is the only place in any routine where
3827 chunks are placed in bins.
3829 The outer loop here is needed because we might not realize until
3830 near the end of malloc that we should have consolidated, so must
3831 do so and retry. This happens at most once, and only when we would
3832 otherwise need to expand memory to service a "small" request.
3835 for(;;) {
3837 while ( (victim = unsorted_chunks(av)->bk) != unsorted_chunks(av)) {
3838 bck = victim->bk;
3839 size = chunksize(victim);
3842 If a small request, try to use last remainder if it is the
3843 only chunk in unsorted bin. This helps promote locality for
3844 runs of consecutive small requests. This is the only
3845 exception to best-fit, and applies only when there is
3846 no exact fit for a small chunk.
3849 if (in_smallbin_range(nb) &&
3850 bck == unsorted_chunks(av) &&
3851 victim == av->last_remainder &&
3852 (unsigned long)(size) > (unsigned long)(nb + MINSIZE)) {
3854 /* split and reattach remainder */
3855 remainder_size = size - nb;
3856 remainder = chunk_at_offset(victim, nb);
3857 unsorted_chunks(av)->bk = unsorted_chunks(av)->fd = remainder;
3858 av->last_remainder = remainder;
3859 remainder->bk = remainder->fd = unsorted_chunks(av);
3861 set_head(victim, nb | PREV_INUSE |
3862 (av != &main_arena ? NON_MAIN_ARENA : 0));
3863 set_head(remainder, remainder_size | PREV_INUSE);
3864 set_foot(remainder, remainder_size);
3866 check_malloced_chunk(av, victim, nb);
3867 return chunk2mem(victim);
3870 /* remove from unsorted list */
3871 unsorted_chunks(av)->bk = bck;
3872 bck->fd = unsorted_chunks(av);
3874 /* Take now instead of binning if exact fit */
3876 if (size == nb) {
3877 set_inuse_bit_at_offset(victim, size);
3878 if (av != &main_arena)
3879 victim->size |= NON_MAIN_ARENA;
3880 check_malloced_chunk(av, victim, nb);
3881 return chunk2mem(victim);
3884 /* place chunk in bin */
3886 if (in_smallbin_range(size)) {
3887 victim_index = smallbin_index(size);
3888 bck = bin_at(av, victim_index);
3889 fwd = bck->fd;
3891 else {
3892 victim_index = largebin_index(size);
3893 bck = bin_at(av, victim_index);
3894 fwd = bck->fd;
3896 /* maintain large bins in sorted order */
3897 if (fwd != bck) {
3898 /* Or with inuse bit to speed comparisons */
3899 size |= PREV_INUSE;
3900 /* if smaller than smallest, bypass loop below */
3901 assert((bck->bk->size & NON_MAIN_ARENA) == 0);
3902 if ((unsigned long)(size) <= (unsigned long)(bck->bk->size)) {
3903 fwd = bck;
3904 bck = bck->bk;
3906 else {
3907 assert((fwd->size & NON_MAIN_ARENA) == 0);
3908 while ((unsigned long)(size) < (unsigned long)(fwd->size)) {
3909 fwd = fwd->fd;
3910 assert((fwd->size & NON_MAIN_ARENA) == 0);
3912 bck = fwd->bk;
3917 mark_bin(av, victim_index);
3918 victim->bk = bck;
3919 victim->fd = fwd;
3920 fwd->bk = victim;
3921 bck->fd = victim;
3925 If a large request, scan through the chunks of current bin in
3926 sorted order to find smallest that fits. This is the only step
3927 where an unbounded number of chunks might be scanned without doing
3928 anything useful with them. However the lists tend to be short.
3931 if (!in_smallbin_range(nb)) {
3932 bin = bin_at(av, idx);
3934 /* skip scan if empty or largest chunk is too small */
3935 if ((victim = last(bin)) != bin &&
3936 (unsigned long)(first(bin)->size) >= (unsigned long)(nb)) {
3938 while (((unsigned long)(size = chunksize(victim)) <
3939 (unsigned long)(nb)))
3940 victim = victim->bk;
3942 remainder_size = size - nb;
3943 unlink(victim, bck, fwd);
3945 /* Exhaust */
3946 if (remainder_size < MINSIZE) {
3947 set_inuse_bit_at_offset(victim, size);
3948 if (av != &main_arena)
3949 victim->size |= NON_MAIN_ARENA;
3950 check_malloced_chunk(av, victim, nb);
3951 return chunk2mem(victim);
3953 /* Split */
3954 else {
3955 remainder = chunk_at_offset(victim, nb);
3956 unsorted_chunks(av)->bk = unsorted_chunks(av)->fd = remainder;
3957 remainder->bk = remainder->fd = unsorted_chunks(av);
3958 set_head(victim, nb | PREV_INUSE |
3959 (av != &main_arena ? NON_MAIN_ARENA : 0));
3960 set_head(remainder, remainder_size | PREV_INUSE);
3961 set_foot(remainder, remainder_size);
3962 check_malloced_chunk(av, victim, nb);
3963 return chunk2mem(victim);
3969 Search for a chunk by scanning bins, starting with next largest
3970 bin. This search is strictly by best-fit; i.e., the smallest
3971 (with ties going to approximately the least recently used) chunk
3972 that fits is selected.
3974 The bitmap avoids needing to check that most blocks are nonempty.
3975 The particular case of skipping all bins during warm-up phases
3976 when no chunks have been returned yet is faster than it might look.
3979 ++idx;
3980 bin = bin_at(av,idx);
3981 block = idx2block(idx);
3982 map = av->binmap[block];
3983 bit = idx2bit(idx);
3985 for (;;) {
3987 /* Skip rest of block if there are no more set bits in this block. */
3988 if (bit > map || bit == 0) {
3989 do {
3990 if (++block >= BINMAPSIZE) /* out of bins */
3991 goto use_top;
3992 } while ( (map = av->binmap[block]) == 0);
3994 bin = bin_at(av, (block << BINMAPSHIFT));
3995 bit = 1;
3998 /* Advance to bin with set bit. There must be one. */
3999 while ((bit & map) == 0) {
4000 bin = next_bin(bin);
4001 bit <<= 1;
4002 assert(bit != 0);
4005 /* Inspect the bin. It is likely to be non-empty */
4006 victim = last(bin);
4008 /* If a false alarm (empty bin), clear the bit. */
4009 if (victim == bin) {
4010 av->binmap[block] = map &= ~bit; /* Write through */
4011 bin = next_bin(bin);
4012 bit <<= 1;
4015 else {
4016 size = chunksize(victim);
4018 /* We know the first chunk in this bin is big enough to use. */
4019 assert((unsigned long)(size) >= (unsigned long)(nb));
4021 remainder_size = size - nb;
4023 /* unlink */
4024 bck = victim->bk;
4025 bin->bk = bck;
4026 bck->fd = bin;
4028 /* Exhaust */
4029 if (remainder_size < MINSIZE) {
4030 set_inuse_bit_at_offset(victim, size);
4031 if (av != &main_arena)
4032 victim->size |= NON_MAIN_ARENA;
4033 check_malloced_chunk(av, victim, nb);
4034 return chunk2mem(victim);
4037 /* Split */
4038 else {
4039 remainder = chunk_at_offset(victim, nb);
4041 unsorted_chunks(av)->bk = unsorted_chunks(av)->fd = remainder;
4042 remainder->bk = remainder->fd = unsorted_chunks(av);
4043 /* advertise as last remainder */
4044 if (in_smallbin_range(nb))
4045 av->last_remainder = remainder;
4047 set_head(victim, nb | PREV_INUSE |
4048 (av != &main_arena ? NON_MAIN_ARENA : 0));
4049 set_head(remainder, remainder_size | PREV_INUSE);
4050 set_foot(remainder, remainder_size);
4051 check_malloced_chunk(av, victim, nb);
4052 return chunk2mem(victim);
4057 use_top:
4059 If large enough, split off the chunk bordering the end of memory
4060 (held in av->top). Note that this is in accord with the best-fit
4061 search rule. In effect, av->top is treated as larger (and thus
4062 less well fitting) than any other available chunk since it can
4063 be extended to be as large as necessary (up to system
4064 limitations).
4066 We require that av->top always exists (i.e., has size >=
4067 MINSIZE) after initialization, so if it would otherwise be
4068 exhuasted by current request, it is replenished. (The main
4069 reason for ensuring it exists is that we may need MINSIZE space
4070 to put in fenceposts in sysmalloc.)
4073 victim = av->top;
4074 size = chunksize(victim);
4076 if ((unsigned long)(size) >= (unsigned long)(nb + MINSIZE)) {
4077 remainder_size = size - nb;
4078 remainder = chunk_at_offset(victim, nb);
4079 av->top = remainder;
4080 set_head(victim, nb | PREV_INUSE |
4081 (av != &main_arena ? NON_MAIN_ARENA : 0));
4082 set_head(remainder, remainder_size | PREV_INUSE);
4084 check_malloced_chunk(av, victim, nb);
4085 return chunk2mem(victim);
4089 If there is space available in fastbins, consolidate and retry,
4090 to possibly avoid expanding memory. This can occur only if nb is
4091 in smallbin range so we didn't consolidate upon entry.
4094 else if (have_fastchunks(av)) {
4095 assert(in_smallbin_range(nb));
4096 malloc_consolidate(av);
4097 idx = smallbin_index(nb); /* restore original bin index */
4101 Otherwise, relay to handle system-dependent cases
4103 else
4104 return sYSMALLOc(nb, av);
4109 ------------------------------ free ------------------------------
4112 void
4113 _int_free(mstate av, Void_t* mem)
4115 mchunkptr p; /* chunk corresponding to mem */
4116 INTERNAL_SIZE_T size; /* its size */
4117 mfastbinptr* fb; /* associated fastbin */
4118 mchunkptr nextchunk; /* next contiguous chunk */
4119 INTERNAL_SIZE_T nextsize; /* its size */
4120 int nextinuse; /* true if nextchunk is used */
4121 INTERNAL_SIZE_T prevsize; /* size of previous contiguous chunk */
4122 mchunkptr bck; /* misc temp for linking */
4123 mchunkptr fwd; /* misc temp for linking */
4126 /* free(0) has no effect */
4127 if (mem != 0) {
4128 p = mem2chunk(mem);
4129 size = chunksize(p);
4131 check_inuse_chunk(av, p);
4134 If eligible, place chunk on a fastbin so it can be found
4135 and used quickly in malloc.
4138 if ((unsigned long)(size) <= (unsigned long)(av->max_fast)
4140 #if TRIM_FASTBINS
4142 If TRIM_FASTBINS set, don't place chunks
4143 bordering top into fastbins
4145 && (chunk_at_offset(p, size) != av->top)
4146 #endif
4149 set_fastchunks(av);
4150 fb = &(av->fastbins[fastbin_index(size)]);
4151 p->fd = *fb;
4152 *fb = p;
4156 Consolidate other non-mmapped chunks as they arrive.
4159 else if (!chunk_is_mmapped(p)) {
4160 nextchunk = chunk_at_offset(p, size);
4161 nextsize = chunksize(nextchunk);
4162 assert(nextsize > 0);
4164 /* consolidate backward */
4165 if (!prev_inuse(p)) {
4166 prevsize = p->prev_size;
4167 size += prevsize;
4168 p = chunk_at_offset(p, -((long) prevsize));
4169 unlink(p, bck, fwd);
4172 if (nextchunk != av->top) {
4173 /* get and clear inuse bit */
4174 nextinuse = inuse_bit_at_offset(nextchunk, nextsize);
4176 /* consolidate forward */
4177 if (!nextinuse) {
4178 unlink(nextchunk, bck, fwd);
4179 size += nextsize;
4180 } else
4181 clear_inuse_bit_at_offset(nextchunk, 0);
4184 Place the chunk in unsorted chunk list. Chunks are
4185 not placed into regular bins until after they have
4186 been given one chance to be used in malloc.
4189 bck = unsorted_chunks(av);
4190 fwd = bck->fd;
4191 p->bk = bck;
4192 p->fd = fwd;
4193 bck->fd = p;
4194 fwd->bk = p;
4196 set_head(p, size | PREV_INUSE);
4197 set_foot(p, size);
4199 check_free_chunk(av, p);
4203 If the chunk borders the current high end of memory,
4204 consolidate into top
4207 else {
4208 size += nextsize;
4209 set_head(p, size | PREV_INUSE);
4210 av->top = p;
4211 check_chunk(av, p);
4215 If freeing a large space, consolidate possibly-surrounding
4216 chunks. Then, if the total unused topmost memory exceeds trim
4217 threshold, ask malloc_trim to reduce top.
4219 Unless max_fast is 0, we don't know if there are fastbins
4220 bordering top, so we cannot tell for sure whether threshold
4221 has been reached unless fastbins are consolidated. But we
4222 don't want to consolidate on each free. As a compromise,
4223 consolidation is performed if FASTBIN_CONSOLIDATION_THRESHOLD
4224 is reached.
4227 if ((unsigned long)(size) >= FASTBIN_CONSOLIDATION_THRESHOLD) {
4228 if (have_fastchunks(av))
4229 malloc_consolidate(av);
4231 if (av == &main_arena) {
4232 #ifndef MORECORE_CANNOT_TRIM
4233 if ((unsigned long)(chunksize(av->top)) >=
4234 (unsigned long)(mp_.trim_threshold))
4235 sYSTRIm(mp_.top_pad, av);
4236 #endif
4237 } else {
4238 /* Always try heap_trim(), even if the top chunk is not
4239 large, because the corresponding heap might go away. */
4240 heap_info *heap = heap_for_ptr(top(av));
4242 assert(heap->ar_ptr == av);
4243 heap_trim(heap, mp_.top_pad);
4249 If the chunk was allocated via mmap, release via munmap(). Note
4250 that if HAVE_MMAP is false but chunk_is_mmapped is true, then
4251 user must have overwritten memory. There's nothing we can do to
4252 catch this error unless MALLOC_DEBUG is set, in which case
4253 check_inuse_chunk (above) will have triggered error.
4256 else {
4257 #if HAVE_MMAP
4258 int ret;
4259 INTERNAL_SIZE_T offset = p->prev_size;
4260 mp_.n_mmaps--;
4261 mp_.mmapped_mem -= (size + offset);
4262 ret = munmap((char*)p - offset, size + offset);
4263 /* munmap returns non-zero on failure */
4264 assert(ret == 0);
4265 #endif
4271 ------------------------- malloc_consolidate -------------------------
4273 malloc_consolidate is a specialized version of free() that tears
4274 down chunks held in fastbins. Free itself cannot be used for this
4275 purpose since, among other things, it might place chunks back onto
4276 fastbins. So, instead, we need to use a minor variant of the same
4277 code.
4279 Also, because this routine needs to be called the first time through
4280 malloc anyway, it turns out to be the perfect place to trigger
4281 initialization code.
4284 #if __STD_C
4285 static void malloc_consolidate(mstate av)
4286 #else
4287 static void malloc_consolidate(av) mstate av;
4288 #endif
4290 mfastbinptr* fb; /* current fastbin being consolidated */
4291 mfastbinptr* maxfb; /* last fastbin (for loop control) */
4292 mchunkptr p; /* current chunk being consolidated */
4293 mchunkptr nextp; /* next chunk to consolidate */
4294 mchunkptr unsorted_bin; /* bin header */
4295 mchunkptr first_unsorted; /* chunk to link to */
4297 /* These have same use as in free() */
4298 mchunkptr nextchunk;
4299 INTERNAL_SIZE_T size;
4300 INTERNAL_SIZE_T nextsize;
4301 INTERNAL_SIZE_T prevsize;
4302 int nextinuse;
4303 mchunkptr bck;
4304 mchunkptr fwd;
4307 If max_fast is 0, we know that av hasn't
4308 yet been initialized, in which case do so below
4311 if (av->max_fast != 0) {
4312 clear_fastchunks(av);
4314 unsorted_bin = unsorted_chunks(av);
4317 Remove each chunk from fast bin and consolidate it, placing it
4318 then in unsorted bin. Among other reasons for doing this,
4319 placing in unsorted bin avoids needing to calculate actual bins
4320 until malloc is sure that chunks aren't immediately going to be
4321 reused anyway.
4324 maxfb = &(av->fastbins[fastbin_index(av->max_fast)]);
4325 fb = &(av->fastbins[0]);
4326 do {
4327 if ( (p = *fb) != 0) {
4328 *fb = 0;
4330 do {
4331 check_inuse_chunk(av, p);
4332 nextp = p->fd;
4334 /* Slightly streamlined version of consolidation code in free() */
4335 size = p->size & ~(PREV_INUSE|NON_MAIN_ARENA);
4336 nextchunk = chunk_at_offset(p, size);
4337 nextsize = chunksize(nextchunk);
4339 if (!prev_inuse(p)) {
4340 prevsize = p->prev_size;
4341 size += prevsize;
4342 p = chunk_at_offset(p, -((long) prevsize));
4343 unlink(p, bck, fwd);
4346 if (nextchunk != av->top) {
4347 nextinuse = inuse_bit_at_offset(nextchunk, nextsize);
4349 if (!nextinuse) {
4350 size += nextsize;
4351 unlink(nextchunk, bck, fwd);
4352 } else
4353 clear_inuse_bit_at_offset(nextchunk, 0);
4355 first_unsorted = unsorted_bin->fd;
4356 unsorted_bin->fd = p;
4357 first_unsorted->bk = p;
4359 set_head(p, size | PREV_INUSE);
4360 p->bk = unsorted_bin;
4361 p->fd = first_unsorted;
4362 set_foot(p, size);
4365 else {
4366 size += nextsize;
4367 set_head(p, size | PREV_INUSE);
4368 av->top = p;
4371 } while ( (p = nextp) != 0);
4374 } while (fb++ != maxfb);
4376 else {
4377 malloc_init_state(av);
4378 check_malloc_state(av);
4383 ------------------------------ realloc ------------------------------
4386 Void_t*
4387 _int_realloc(mstate av, Void_t* oldmem, size_t bytes)
4389 INTERNAL_SIZE_T nb; /* padded request size */
4391 mchunkptr oldp; /* chunk corresponding to oldmem */
4392 INTERNAL_SIZE_T oldsize; /* its size */
4394 mchunkptr newp; /* chunk to return */
4395 INTERNAL_SIZE_T newsize; /* its size */
4396 Void_t* newmem; /* corresponding user mem */
4398 mchunkptr next; /* next contiguous chunk after oldp */
4400 mchunkptr remainder; /* extra space at end of newp */
4401 unsigned long remainder_size; /* its size */
4403 mchunkptr bck; /* misc temp for linking */
4404 mchunkptr fwd; /* misc temp for linking */
4406 unsigned long copysize; /* bytes to copy */
4407 unsigned int ncopies; /* INTERNAL_SIZE_T words to copy */
4408 INTERNAL_SIZE_T* s; /* copy source */
4409 INTERNAL_SIZE_T* d; /* copy destination */
4412 #if REALLOC_ZERO_BYTES_FREES
4413 if (bytes == 0) {
4414 _int_free(av, oldmem);
4415 return 0;
4417 #endif
4419 /* realloc of null is supposed to be same as malloc */
4420 if (oldmem == 0) return _int_malloc(av, bytes);
4422 checked_request2size(bytes, nb);
4424 oldp = mem2chunk(oldmem);
4425 oldsize = chunksize(oldp);
4427 check_inuse_chunk(av, oldp);
4429 if (!chunk_is_mmapped(oldp)) {
4431 if ((unsigned long)(oldsize) >= (unsigned long)(nb)) {
4432 /* already big enough; split below */
4433 newp = oldp;
4434 newsize = oldsize;
4437 else {
4438 next = chunk_at_offset(oldp, oldsize);
4440 /* Try to expand forward into top */
4441 if (next == av->top &&
4442 (unsigned long)(newsize = oldsize + chunksize(next)) >=
4443 (unsigned long)(nb + MINSIZE)) {
4444 set_head_size(oldp, nb | (av != &main_arena ? NON_MAIN_ARENA : 0));
4445 av->top = chunk_at_offset(oldp, nb);
4446 set_head(av->top, (newsize - nb) | PREV_INUSE);
4447 check_inuse_chunk(av, oldp);
4448 return chunk2mem(oldp);
4451 /* Try to expand forward into next chunk; split off remainder below */
4452 else if (next != av->top &&
4453 !inuse(next) &&
4454 (unsigned long)(newsize = oldsize + chunksize(next)) >=
4455 (unsigned long)(nb)) {
4456 newp = oldp;
4457 unlink(next, bck, fwd);
4460 /* allocate, copy, free */
4461 else {
4462 newmem = _int_malloc(av, nb - MALLOC_ALIGN_MASK);
4463 if (newmem == 0)
4464 return 0; /* propagate failure */
4466 newp = mem2chunk(newmem);
4467 newsize = chunksize(newp);
4470 Avoid copy if newp is next chunk after oldp.
4472 if (newp == next) {
4473 newsize += oldsize;
4474 newp = oldp;
4476 else {
4478 Unroll copy of <= 36 bytes (72 if 8byte sizes)
4479 We know that contents have an odd number of
4480 INTERNAL_SIZE_T-sized words; minimally 3.
4483 copysize = oldsize - SIZE_SZ;
4484 s = (INTERNAL_SIZE_T*)(oldmem);
4485 d = (INTERNAL_SIZE_T*)(newmem);
4486 ncopies = copysize / sizeof(INTERNAL_SIZE_T);
4487 assert(ncopies >= 3);
4489 if (ncopies > 9)
4490 MALLOC_COPY(d, s, copysize);
4492 else {
4493 *(d+0) = *(s+0);
4494 *(d+1) = *(s+1);
4495 *(d+2) = *(s+2);
4496 if (ncopies > 4) {
4497 *(d+3) = *(s+3);
4498 *(d+4) = *(s+4);
4499 if (ncopies > 6) {
4500 *(d+5) = *(s+5);
4501 *(d+6) = *(s+6);
4502 if (ncopies > 8) {
4503 *(d+7) = *(s+7);
4504 *(d+8) = *(s+8);
4510 _int_free(av, oldmem);
4511 check_inuse_chunk(av, newp);
4512 return chunk2mem(newp);
4517 /* If possible, free extra space in old or extended chunk */
4519 assert((unsigned long)(newsize) >= (unsigned long)(nb));
4521 remainder_size = newsize - nb;
4523 if (remainder_size < MINSIZE) { /* not enough extra to split off */
4524 set_head_size(newp, newsize | (av != &main_arena ? NON_MAIN_ARENA : 0));
4525 set_inuse_bit_at_offset(newp, newsize);
4527 else { /* split remainder */
4528 remainder = chunk_at_offset(newp, nb);
4529 set_head_size(newp, nb | (av != &main_arena ? NON_MAIN_ARENA : 0));
4530 set_head(remainder, remainder_size | PREV_INUSE |
4531 (av != &main_arena ? NON_MAIN_ARENA : 0));
4532 /* Mark remainder as inuse so free() won't complain */
4533 set_inuse_bit_at_offset(remainder, remainder_size);
4534 _int_free(av, chunk2mem(remainder));
4537 check_inuse_chunk(av, newp);
4538 return chunk2mem(newp);
4542 Handle mmap cases
4545 else {
4546 #if HAVE_MMAP
4548 #if HAVE_MREMAP
4549 INTERNAL_SIZE_T offset = oldp->prev_size;
4550 size_t pagemask = mp_.pagesize - 1;
4551 char *cp;
4552 unsigned long sum;
4554 /* Note the extra SIZE_SZ overhead */
4555 newsize = (nb + offset + SIZE_SZ + pagemask) & ~pagemask;
4557 /* don't need to remap if still within same page */
4558 if (oldsize == newsize - offset)
4559 return oldmem;
4561 cp = (char*)mremap((char*)oldp - offset, oldsize + offset, newsize, 1);
4563 if (cp != MAP_FAILED) {
4565 newp = (mchunkptr)(cp + offset);
4566 set_head(newp, (newsize - offset)|IS_MMAPPED);
4568 assert(aligned_OK(chunk2mem(newp)));
4569 assert((newp->prev_size == offset));
4571 /* update statistics */
4572 sum = mp_.mmapped_mem += newsize - oldsize;
4573 if (sum > (unsigned long)(mp_.max_mmapped_mem))
4574 mp_.max_mmapped_mem = sum;
4575 #ifdef NO_THREADS
4576 sum += main_arena.system_mem;
4577 if (sum > (unsigned long)(mp_.max_total_mem))
4578 mp_.max_total_mem = sum;
4579 #endif
4581 return chunk2mem(newp);
4583 #endif
4585 /* Note the extra SIZE_SZ overhead. */
4586 if ((unsigned long)(oldsize) >= (unsigned long)(nb + SIZE_SZ))
4587 newmem = oldmem; /* do nothing */
4588 else {
4589 /* Must alloc, copy, free. */
4590 newmem = _int_malloc(av, nb - MALLOC_ALIGN_MASK);
4591 if (newmem != 0) {
4592 MALLOC_COPY(newmem, oldmem, oldsize - 2*SIZE_SZ);
4593 _int_free(av, oldmem);
4596 return newmem;
4598 #else
4599 /* If !HAVE_MMAP, but chunk_is_mmapped, user must have overwritten mem */
4600 check_malloc_state(av);
4601 MALLOC_FAILURE_ACTION;
4602 return 0;
4603 #endif
4608 ------------------------------ memalign ------------------------------
4611 Void_t*
4612 _int_memalign(mstate av, size_t alignment, size_t bytes)
4614 INTERNAL_SIZE_T nb; /* padded request size */
4615 char* m; /* memory returned by malloc call */
4616 mchunkptr p; /* corresponding chunk */
4617 char* brk; /* alignment point within p */
4618 mchunkptr newp; /* chunk to return */
4619 INTERNAL_SIZE_T newsize; /* its size */
4620 INTERNAL_SIZE_T leadsize; /* leading space before alignment point */
4621 mchunkptr remainder; /* spare room at end to split off */
4622 unsigned long remainder_size; /* its size */
4623 INTERNAL_SIZE_T size;
4625 /* If need less alignment than we give anyway, just relay to malloc */
4627 if (alignment <= MALLOC_ALIGNMENT) return _int_malloc(av, bytes);
4629 /* Otherwise, ensure that it is at least a minimum chunk size */
4631 if (alignment < MINSIZE) alignment = MINSIZE;
4633 /* Make sure alignment is power of 2 (in case MINSIZE is not). */
4634 if ((alignment & (alignment - 1)) != 0) {
4635 size_t a = MALLOC_ALIGNMENT * 2;
4636 while ((unsigned long)a < (unsigned long)alignment) a <<= 1;
4637 alignment = a;
4640 checked_request2size(bytes, nb);
4643 Strategy: find a spot within that chunk that meets the alignment
4644 request, and then possibly free the leading and trailing space.
4648 /* Call malloc with worst case padding to hit alignment. */
4650 m = (char*)(_int_malloc(av, nb + alignment + MINSIZE));
4652 if (m == 0) return 0; /* propagate failure */
4654 p = mem2chunk(m);
4656 if ((((unsigned long)(m)) % alignment) != 0) { /* misaligned */
4659 Find an aligned spot inside chunk. Since we need to give back
4660 leading space in a chunk of at least MINSIZE, if the first
4661 calculation places us at a spot with less than MINSIZE leader,
4662 we can move to the next aligned spot -- we've allocated enough
4663 total room so that this is always possible.
4666 brk = (char*)mem2chunk(((unsigned long)(m + alignment - 1)) &
4667 -((signed long) alignment));
4668 if ((unsigned long)(brk - (char*)(p)) < MINSIZE)
4669 brk += alignment;
4671 newp = (mchunkptr)brk;
4672 leadsize = brk - (char*)(p);
4673 newsize = chunksize(p) - leadsize;
4675 /* For mmapped chunks, just adjust offset */
4676 if (chunk_is_mmapped(p)) {
4677 newp->prev_size = p->prev_size + leadsize;
4678 set_head(newp, newsize|IS_MMAPPED);
4679 return chunk2mem(newp);
4682 /* Otherwise, give back leader, use the rest */
4683 set_head(newp, newsize | PREV_INUSE |
4684 (av != &main_arena ? NON_MAIN_ARENA : 0));
4685 set_inuse_bit_at_offset(newp, newsize);
4686 set_head_size(p, leadsize | (av != &main_arena ? NON_MAIN_ARENA : 0));
4687 _int_free(av, chunk2mem(p));
4688 p = newp;
4690 assert (newsize >= nb &&
4691 (((unsigned long)(chunk2mem(p))) % alignment) == 0);
4694 /* Also give back spare room at the end */
4695 if (!chunk_is_mmapped(p)) {
4696 size = chunksize(p);
4697 if ((unsigned long)(size) > (unsigned long)(nb + MINSIZE)) {
4698 remainder_size = size - nb;
4699 remainder = chunk_at_offset(p, nb);
4700 set_head(remainder, remainder_size | PREV_INUSE |
4701 (av != &main_arena ? NON_MAIN_ARENA : 0));
4702 set_head_size(p, nb);
4703 _int_free(av, chunk2mem(remainder));
4707 check_inuse_chunk(av, p);
4708 return chunk2mem(p);
4711 #if 0
4713 ------------------------------ calloc ------------------------------
4716 #if __STD_C
4717 Void_t* cALLOc(size_t n_elements, size_t elem_size)
4718 #else
4719 Void_t* cALLOc(n_elements, elem_size) size_t n_elements; size_t elem_size;
4720 #endif
4722 mchunkptr p;
4723 unsigned long clearsize;
4724 unsigned long nclears;
4725 INTERNAL_SIZE_T* d;
4727 Void_t* mem = mALLOc(n_elements * elem_size);
4729 if (mem != 0) {
4730 p = mem2chunk(mem);
4732 #if MMAP_CLEARS
4733 if (!chunk_is_mmapped(p)) /* don't need to clear mmapped space */
4734 #endif
4737 Unroll clear of <= 36 bytes (72 if 8byte sizes)
4738 We know that contents have an odd number of
4739 INTERNAL_SIZE_T-sized words; minimally 3.
4742 d = (INTERNAL_SIZE_T*)mem;
4743 clearsize = chunksize(p) - SIZE_SZ;
4744 nclears = clearsize / sizeof(INTERNAL_SIZE_T);
4745 assert(nclears >= 3);
4747 if (nclears > 9)
4748 MALLOC_ZERO(d, clearsize);
4750 else {
4751 *(d+0) = 0;
4752 *(d+1) = 0;
4753 *(d+2) = 0;
4754 if (nclears > 4) {
4755 *(d+3) = 0;
4756 *(d+4) = 0;
4757 if (nclears > 6) {
4758 *(d+5) = 0;
4759 *(d+6) = 0;
4760 if (nclears > 8) {
4761 *(d+7) = 0;
4762 *(d+8) = 0;
4769 return mem;
4771 #endif /* 0 */
4774 ------------------------- independent_calloc -------------------------
4777 Void_t**
4778 #if __STD_C
4779 _int_icalloc(mstate av, size_t n_elements, size_t elem_size, Void_t* chunks[])
4780 #else
4781 _int_icalloc(av, n_elements, elem_size, chunks)
4782 mstate av; size_t n_elements; size_t elem_size; Void_t* chunks[];
4783 #endif
4785 size_t sz = elem_size; /* serves as 1-element array */
4786 /* opts arg of 3 means all elements are same size, and should be cleared */
4787 return iALLOc(av, n_elements, &sz, 3, chunks);
4791 ------------------------- independent_comalloc -------------------------
4794 Void_t**
4795 #if __STD_C
4796 _int_icomalloc(mstate av, size_t n_elements, size_t sizes[], Void_t* chunks[])
4797 #else
4798 _int_icomalloc(av, n_elements, sizes, chunks)
4799 mstate av; size_t n_elements; size_t sizes[]; Void_t* chunks[];
4800 #endif
4802 return iALLOc(av, n_elements, sizes, 0, chunks);
4807 ------------------------------ ialloc ------------------------------
4808 ialloc provides common support for independent_X routines, handling all of
4809 the combinations that can result.
4811 The opts arg has:
4812 bit 0 set if all elements are same size (using sizes[0])
4813 bit 1 set if elements should be zeroed
4817 static Void_t**
4818 #if __STD_C
4819 iALLOc(mstate av, size_t n_elements, size_t* sizes, int opts, Void_t* chunks[])
4820 #else
4821 iALLOc(av, n_elements, sizes, opts, chunks)
4822 mstate av; size_t n_elements; size_t* sizes; int opts; Void_t* chunks[];
4823 #endif
4825 INTERNAL_SIZE_T element_size; /* chunksize of each element, if all same */
4826 INTERNAL_SIZE_T contents_size; /* total size of elements */
4827 INTERNAL_SIZE_T array_size; /* request size of pointer array */
4828 Void_t* mem; /* malloced aggregate space */
4829 mchunkptr p; /* corresponding chunk */
4830 INTERNAL_SIZE_T remainder_size; /* remaining bytes while splitting */
4831 Void_t** marray; /* either "chunks" or malloced ptr array */
4832 mchunkptr array_chunk; /* chunk for malloced ptr array */
4833 int mmx; /* to disable mmap */
4834 INTERNAL_SIZE_T size;
4835 INTERNAL_SIZE_T size_flags;
4836 size_t i;
4838 /* Ensure initialization/consolidation */
4839 if (have_fastchunks(av)) malloc_consolidate(av);
4841 /* compute array length, if needed */
4842 if (chunks != 0) {
4843 if (n_elements == 0)
4844 return chunks; /* nothing to do */
4845 marray = chunks;
4846 array_size = 0;
4848 else {
4849 /* if empty req, must still return chunk representing empty array */
4850 if (n_elements == 0)
4851 return (Void_t**) _int_malloc(av, 0);
4852 marray = 0;
4853 array_size = request2size(n_elements * (sizeof(Void_t*)));
4856 /* compute total element size */
4857 if (opts & 0x1) { /* all-same-size */
4858 element_size = request2size(*sizes);
4859 contents_size = n_elements * element_size;
4861 else { /* add up all the sizes */
4862 element_size = 0;
4863 contents_size = 0;
4864 for (i = 0; i != n_elements; ++i)
4865 contents_size += request2size(sizes[i]);
4868 /* subtract out alignment bytes from total to minimize overallocation */
4869 size = contents_size + array_size - MALLOC_ALIGN_MASK;
4872 Allocate the aggregate chunk.
4873 But first disable mmap so malloc won't use it, since
4874 we would not be able to later free/realloc space internal
4875 to a segregated mmap region.
4877 mmx = mp_.n_mmaps_max; /* disable mmap */
4878 mp_.n_mmaps_max = 0;
4879 mem = _int_malloc(av, size);
4880 mp_.n_mmaps_max = mmx; /* reset mmap */
4881 if (mem == 0)
4882 return 0;
4884 p = mem2chunk(mem);
4885 assert(!chunk_is_mmapped(p));
4886 remainder_size = chunksize(p);
4888 if (opts & 0x2) { /* optionally clear the elements */
4889 MALLOC_ZERO(mem, remainder_size - SIZE_SZ - array_size);
4892 size_flags = PREV_INUSE | (av != &main_arena ? NON_MAIN_ARENA : 0);
4894 /* If not provided, allocate the pointer array as final part of chunk */
4895 if (marray == 0) {
4896 array_chunk = chunk_at_offset(p, contents_size);
4897 marray = (Void_t**) (chunk2mem(array_chunk));
4898 set_head(array_chunk, (remainder_size - contents_size) | size_flags);
4899 remainder_size = contents_size;
4902 /* split out elements */
4903 for (i = 0; ; ++i) {
4904 marray[i] = chunk2mem(p);
4905 if (i != n_elements-1) {
4906 if (element_size != 0)
4907 size = element_size;
4908 else
4909 size = request2size(sizes[i]);
4910 remainder_size -= size;
4911 set_head(p, size | size_flags);
4912 p = chunk_at_offset(p, size);
4914 else { /* the final element absorbs any overallocation slop */
4915 set_head(p, remainder_size | size_flags);
4916 break;
4920 #if MALLOC_DEBUG
4921 if (marray != chunks) {
4922 /* final element must have exactly exhausted chunk */
4923 if (element_size != 0)
4924 assert(remainder_size == element_size);
4925 else
4926 assert(remainder_size == request2size(sizes[i]));
4927 check_inuse_chunk(av, mem2chunk(marray));
4930 for (i = 0; i != n_elements; ++i)
4931 check_inuse_chunk(av, mem2chunk(marray[i]));
4932 #endif
4934 return marray;
4939 ------------------------------ valloc ------------------------------
4942 Void_t*
4943 #if __STD_C
4944 _int_valloc(mstate av, size_t bytes)
4945 #else
4946 _int_valloc(av, bytes) mstate av; size_t bytes;
4947 #endif
4949 /* Ensure initialization/consolidation */
4950 if (have_fastchunks(av)) malloc_consolidate(av);
4951 return _int_memalign(av, mp_.pagesize, bytes);
4955 ------------------------------ pvalloc ------------------------------
4959 Void_t*
4960 #if __STD_C
4961 _int_pvalloc(mstate av, size_t bytes)
4962 #else
4963 _int_pvalloc(av, bytes) mstate av, size_t bytes;
4964 #endif
4966 size_t pagesz;
4968 /* Ensure initialization/consolidation */
4969 if (have_fastchunks(av)) malloc_consolidate(av);
4970 pagesz = mp_.pagesize;
4971 return _int_memalign(av, pagesz, (bytes + pagesz - 1) & ~(pagesz - 1));
4976 ------------------------------ malloc_trim ------------------------------
4979 #if __STD_C
4980 int mTRIm(size_t pad)
4981 #else
4982 int mTRIm(pad) size_t pad;
4983 #endif
4985 mstate av = &main_arena; /* already locked */
4987 /* Ensure initialization/consolidation */
4988 malloc_consolidate(av);
4990 #ifndef MORECORE_CANNOT_TRIM
4991 return sYSTRIm(pad, av);
4992 #else
4993 return 0;
4994 #endif
4999 ------------------------- malloc_usable_size -------------------------
5002 #if __STD_C
5003 size_t mUSABLe(Void_t* mem)
5004 #else
5005 size_t mUSABLe(mem) Void_t* mem;
5006 #endif
5008 mchunkptr p;
5009 if (mem != 0) {
5010 p = mem2chunk(mem);
5011 if (chunk_is_mmapped(p))
5012 return chunksize(p) - 2*SIZE_SZ;
5013 else if (inuse(p))
5014 return chunksize(p) - SIZE_SZ;
5016 return 0;
5020 ------------------------------ mallinfo ------------------------------
5023 struct mallinfo mALLINFo(mstate av)
5025 struct mallinfo mi;
5026 size_t i;
5027 mbinptr b;
5028 mchunkptr p;
5029 INTERNAL_SIZE_T avail;
5030 INTERNAL_SIZE_T fastavail;
5031 int nblocks;
5032 int nfastblocks;
5034 /* Ensure initialization */
5035 if (av->top == 0) malloc_consolidate(av);
5037 check_malloc_state(av);
5039 /* Account for top */
5040 avail = chunksize(av->top);
5041 nblocks = 1; /* top always exists */
5043 /* traverse fastbins */
5044 nfastblocks = 0;
5045 fastavail = 0;
5047 for (i = 0; i < NFASTBINS; ++i) {
5048 for (p = av->fastbins[i]; p != 0; p = p->fd) {
5049 ++nfastblocks;
5050 fastavail += chunksize(p);
5054 avail += fastavail;
5056 /* traverse regular bins */
5057 for (i = 1; i < NBINS; ++i) {
5058 b = bin_at(av, i);
5059 for (p = last(b); p != b; p = p->bk) {
5060 ++nblocks;
5061 avail += chunksize(p);
5065 mi.smblks = nfastblocks;
5066 mi.ordblks = nblocks;
5067 mi.fordblks = avail;
5068 mi.uordblks = av->system_mem - avail;
5069 mi.arena = av->system_mem;
5070 mi.hblks = mp_.n_mmaps;
5071 mi.hblkhd = mp_.mmapped_mem;
5072 mi.fsmblks = fastavail;
5073 mi.keepcost = chunksize(av->top);
5074 mi.usmblks = mp_.max_total_mem;
5075 return mi;
5079 ------------------------------ malloc_stats ------------------------------
5082 void mSTATs()
5084 int i;
5085 mstate ar_ptr;
5086 struct mallinfo mi;
5087 unsigned int in_use_b = mp_.mmapped_mem, system_b = in_use_b;
5088 #if THREAD_STATS
5089 long stat_lock_direct = 0, stat_lock_loop = 0, stat_lock_wait = 0;
5090 #endif
5092 for (i=0, ar_ptr = &main_arena;; i++) {
5093 (void)mutex_lock(&ar_ptr->mutex);
5094 mi = mALLINFo(ar_ptr);
5095 fprintf(stderr, "Arena %d:\n", i);
5096 fprintf(stderr, "system bytes = %10u\n", (unsigned int)mi.arena);
5097 fprintf(stderr, "in use bytes = %10u\n", (unsigned int)mi.uordblks);
5098 #if MALLOC_DEBUG > 1
5099 if (i > 0)
5100 dump_heap(heap_for_ptr(top(ar_ptr)));
5101 #endif
5102 system_b += mi.arena;
5103 in_use_b += mi.uordblks;
5104 #if THREAD_STATS
5105 stat_lock_direct += ar_ptr->stat_lock_direct;
5106 stat_lock_loop += ar_ptr->stat_lock_loop;
5107 stat_lock_wait += ar_ptr->stat_lock_wait;
5108 #endif
5109 (void)mutex_unlock(&ar_ptr->mutex);
5110 ar_ptr = ar_ptr->next;
5111 if(ar_ptr == &main_arena) break;
5113 #if HAVE_MMAP
5114 fprintf(stderr, "Total (incl. mmap):\n");
5115 #else
5116 fprintf(stderr, "Total:\n");
5117 #endif
5118 fprintf(stderr, "system bytes = %10u\n", system_b);
5119 fprintf(stderr, "in use bytes = %10u\n", in_use_b);
5120 #ifdef NO_THREADS
5121 fprintf(stderr, "max system bytes = %10u\n", (unsigned int)mp_.max_total_mem);
5122 #endif
5123 #if HAVE_MMAP
5124 fprintf(stderr, "max mmap regions = %10u\n", (unsigned int)mp_.max_n_mmaps);
5125 fprintf(stderr, "max mmap bytes = %10lu\n",
5126 (unsigned long)mp_.max_mmapped_mem);
5127 #endif
5128 #if THREAD_STATS
5129 fprintf(stderr, "heaps created = %10d\n", stat_n_heaps);
5130 fprintf(stderr, "locked directly = %10ld\n", stat_lock_direct);
5131 fprintf(stderr, "locked in loop = %10ld\n", stat_lock_loop);
5132 fprintf(stderr, "locked waiting = %10ld\n", stat_lock_wait);
5133 fprintf(stderr, "locked total = %10ld\n",
5134 stat_lock_direct + stat_lock_loop + stat_lock_wait);
5135 #endif
5140 ------------------------------ mallopt ------------------------------
5143 #if __STD_C
5144 int mALLOPt(int param_number, int value)
5145 #else
5146 int mALLOPt(param_number, value) int param_number; int value;
5147 #endif
5149 if(__malloc_initialized < 0)
5150 ptmalloc_init ();
5151 mstate av = &main_arena;
5152 int res = 1;
5154 (void)mutex_lock(&av->mutex);
5155 /* Ensure initialization/consolidation */
5156 malloc_consolidate(av);
5158 switch(param_number) {
5159 case M_MXFAST:
5160 if (value >= 0 && value <= MAX_FAST_SIZE) {
5161 set_max_fast(av, value);
5163 else
5164 res = 0;
5165 break;
5167 case M_TRIM_THRESHOLD:
5168 mp_.trim_threshold = value;
5169 break;
5171 case M_TOP_PAD:
5172 mp_.top_pad = value;
5173 break;
5175 case M_MMAP_THRESHOLD:
5176 #if USE_ARENAS
5177 /* Forbid setting the threshold too high. */
5178 if((unsigned long)value > HEAP_MAX_SIZE/2)
5179 res = 0;
5180 else
5181 #endif
5182 mp_.mmap_threshold = value;
5183 break;
5185 case M_MMAP_MAX:
5186 #if !HAVE_MMAP
5187 if (value != 0)
5188 res = 0;
5189 else
5190 #endif
5191 mp_.n_mmaps_max = value;
5192 break;
5194 case M_CHECK_ACTION:
5195 check_action = value;
5196 break;
5198 (void)mutex_unlock(&av->mutex);
5199 return res;
5204 -------------------- Alternative MORECORE functions --------------------
5209 General Requirements for MORECORE.
5211 The MORECORE function must have the following properties:
5213 If MORECORE_CONTIGUOUS is false:
5215 * MORECORE must allocate in multiples of pagesize. It will
5216 only be called with arguments that are multiples of pagesize.
5218 * MORECORE(0) must return an address that is at least
5219 MALLOC_ALIGNMENT aligned. (Page-aligning always suffices.)
5221 else (i.e. If MORECORE_CONTIGUOUS is true):
5223 * Consecutive calls to MORECORE with positive arguments
5224 return increasing addresses, indicating that space has been
5225 contiguously extended.
5227 * MORECORE need not allocate in multiples of pagesize.
5228 Calls to MORECORE need not have args of multiples of pagesize.
5230 * MORECORE need not page-align.
5232 In either case:
5234 * MORECORE may allocate more memory than requested. (Or even less,
5235 but this will generally result in a malloc failure.)
5237 * MORECORE must not allocate memory when given argument zero, but
5238 instead return one past the end address of memory from previous
5239 nonzero call. This malloc does NOT call MORECORE(0)
5240 until at least one call with positive arguments is made, so
5241 the initial value returned is not important.
5243 * Even though consecutive calls to MORECORE need not return contiguous
5244 addresses, it must be OK for malloc'ed chunks to span multiple
5245 regions in those cases where they do happen to be contiguous.
5247 * MORECORE need not handle negative arguments -- it may instead
5248 just return MORECORE_FAILURE when given negative arguments.
5249 Negative arguments are always multiples of pagesize. MORECORE
5250 must not misinterpret negative args as large positive unsigned
5251 args. You can suppress all such calls from even occurring by defining
5252 MORECORE_CANNOT_TRIM,
5254 There is some variation across systems about the type of the
5255 argument to sbrk/MORECORE. If size_t is unsigned, then it cannot
5256 actually be size_t, because sbrk supports negative args, so it is
5257 normally the signed type of the same width as size_t (sometimes
5258 declared as "intptr_t", and sometimes "ptrdiff_t"). It doesn't much
5259 matter though. Internally, we use "long" as arguments, which should
5260 work across all reasonable possibilities.
5262 Additionally, if MORECORE ever returns failure for a positive
5263 request, and HAVE_MMAP is true, then mmap is used as a noncontiguous
5264 system allocator. This is a useful backup strategy for systems with
5265 holes in address spaces -- in this case sbrk cannot contiguously
5266 expand the heap, but mmap may be able to map noncontiguous space.
5268 If you'd like mmap to ALWAYS be used, you can define MORECORE to be
5269 a function that always returns MORECORE_FAILURE.
5271 If you are using this malloc with something other than sbrk (or its
5272 emulation) to supply memory regions, you probably want to set
5273 MORECORE_CONTIGUOUS as false. As an example, here is a custom
5274 allocator kindly contributed for pre-OSX macOS. It uses virtually
5275 but not necessarily physically contiguous non-paged memory (locked
5276 in, present and won't get swapped out). You can use it by
5277 uncommenting this section, adding some #includes, and setting up the
5278 appropriate defines above:
5280 #define MORECORE osMoreCore
5281 #define MORECORE_CONTIGUOUS 0
5283 There is also a shutdown routine that should somehow be called for
5284 cleanup upon program exit.
5286 #define MAX_POOL_ENTRIES 100
5287 #define MINIMUM_MORECORE_SIZE (64 * 1024)
5288 static int next_os_pool;
5289 void *our_os_pools[MAX_POOL_ENTRIES];
5291 void *osMoreCore(int size)
5293 void *ptr = 0;
5294 static void *sbrk_top = 0;
5296 if (size > 0)
5298 if (size < MINIMUM_MORECORE_SIZE)
5299 size = MINIMUM_MORECORE_SIZE;
5300 if (CurrentExecutionLevel() == kTaskLevel)
5301 ptr = PoolAllocateResident(size + RM_PAGE_SIZE, 0);
5302 if (ptr == 0)
5304 return (void *) MORECORE_FAILURE;
5306 // save ptrs so they can be freed during cleanup
5307 our_os_pools[next_os_pool] = ptr;
5308 next_os_pool++;
5309 ptr = (void *) ((((unsigned long) ptr) + RM_PAGE_MASK) & ~RM_PAGE_MASK);
5310 sbrk_top = (char *) ptr + size;
5311 return ptr;
5313 else if (size < 0)
5315 // we don't currently support shrink behavior
5316 return (void *) MORECORE_FAILURE;
5318 else
5320 return sbrk_top;
5324 // cleanup any allocated memory pools
5325 // called as last thing before shutting down driver
5327 void osCleanupMem(void)
5329 void **ptr;
5331 for (ptr = our_os_pools; ptr < &our_os_pools[MAX_POOL_ENTRIES]; ptr++)
5332 if (*ptr)
5334 PoolDeallocate(*ptr);
5335 *ptr = 0;
5342 #ifdef _LIBC
5343 # include <sys/param.h>
5345 /* We need a wrapper function for one of the additions of POSIX. */
5347 __posix_memalign (void **memptr, size_t alignment, size_t size)
5349 void *mem;
5351 /* Test whether the SIZE argument is valid. It must be a power of
5352 two multiple of sizeof (void *). */
5353 if (alignment % sizeof (void *) != 0 || !powerof2 (alignment) != 0)
5354 return EINVAL;
5356 mem = __libc_memalign (alignment, size);
5358 if (mem != NULL) {
5359 *memptr = mem;
5360 return 0;
5363 return ENOMEM;
5365 weak_alias (__posix_memalign, posix_memalign)
5367 weak_alias (__libc_calloc, __calloc) weak_alias (__libc_calloc, calloc)
5368 weak_alias (__libc_free, __cfree) weak_alias (__libc_free, cfree)
5369 weak_alias (__libc_free, __free) weak_alias (__libc_free, free)
5370 weak_alias (__libc_malloc, __malloc) weak_alias (__libc_malloc, malloc)
5371 weak_alias (__libc_memalign, __memalign) weak_alias (__libc_memalign, memalign)
5372 weak_alias (__libc_realloc, __realloc) weak_alias (__libc_realloc, realloc)
5373 weak_alias (__libc_valloc, __valloc) weak_alias (__libc_valloc, valloc)
5374 weak_alias (__libc_pvalloc, __pvalloc) weak_alias (__libc_pvalloc, pvalloc)
5375 weak_alias (__libc_mallinfo, __mallinfo) weak_alias (__libc_mallinfo, mallinfo)
5376 weak_alias (__libc_mallopt, __mallopt) weak_alias (__libc_mallopt, mallopt)
5378 weak_alias (__malloc_stats, malloc_stats)
5379 weak_alias (__malloc_usable_size, malloc_usable_size)
5380 weak_alias (__malloc_trim, malloc_trim)
5381 weak_alias (__malloc_get_state, malloc_get_state)
5382 weak_alias (__malloc_set_state, malloc_set_state)
5384 #endif /* _LIBC */
5386 /* ------------------------------------------------------------
5387 History:
5389 [see ftp://g.oswego.edu/pub/misc/malloc.c for the history of dlmalloc]
5393 * Local variables:
5394 * c-basic-offset: 2
5395 * End: